

Praise for Introduction to Game Design, Prototyping, and
Development

"Introduction to Game Design, Prototyping, and Development has truly helped me in my
game development journey and has opened my mind to many helpful techniques and
practices. This book not only contains a full introduction to the C# language, but also
includes information about playtesting, game frameworks, and the game industry itself.
Jeremy is able to explain complex concepts in a way that is very informative and
straightforward. I have also found the prototype tutorials to be useful and effective for
developing good programming practices. I would highly recommend this book to anyone
looking to learn game development from scratch, or simply brush up on their skills. I look
forward to using it as a guide and reference for future projects."
—Logan Sandberg, Pinwheel Games & Animation

"Jeremy Gibson Bond's breadth of knowledge and incisively analytical perspective on
game design infuse each page of this highly engaging primer on game development. His
coupling of industry and academic experience provides readers the tools for a running start
in creating games—offering an incredibly valuable and rare synthesis of the conceptual and
the practical. Newcomers to game development will walk away from this book with an
enhanced analytical toolkit and internalized understanding of the value of iteration, as well
as several playable games under their belt. Perfect for the new student yet teeming with
wisdom and enrichment for experienced developers."
—Eileen Hollinger, Game Producer, Instructor, Independent Developer, and Activist.
Former Lead Producer at Funomena

"One of the greatest challenges in learning (and teaching) game development is that only a
few concepts and techniques are truly applicable to all kinds of games—a space shooter
shares very little with a card game, which in turn has little in common with a dungeon
crawler. It's a common experience for an aspiring game developer to complete a dozen
tutorials and still not know how to start the game they want to make.

"Jeremy's approach in this book reflects his long experience as both a game developer and
an educator. He provides a structured introduction to that small set of core ideas and skills,
and then provides tutorials for, literally, a space shooter, a card game, a dungeon crawler,
and several more besides, showing the coding tools and techniques needed for each.

"No other Unity book covers such a broad variety of games, and I've seen very few tutorials
that were so well-made. Each step is explained; each game is self-contained and carefully
designed to demonstrate specific concepts, from basic ideas like GameObjects all the way

2

to powerful object-oriented techniques like Boids.

"I've both used this book in my introductory Unity class and recommended it to many
students for self-study. They appreciate the clear and thorough explanation of the C#
language and the Unity engine, and they are invariably surprised at how much they learn by
completing the prototypes. I use the book myself as a primary reference for good code
architecture in Unity.

"The second edition promises to be even more valuable, with updates to every chapter and
a brand-new tutorial, based on The Legend of Zelda, that includes advanced techniques
like tile-based movement and even a simple level editor. Like the previous edition, it will
be a vital part of both my classroom instruction and my personal Unity library."
—Margaret Moser, Assistant Professor, University of Southern California Interactive
Media & Games Division

"If you want to take your game development to the next level, this book is a must! Not only
does it give you a lot of game examples from beginning to end, it also—and this is the most
important part—makes you think like a game designer. What makes a game fun and
engaging? What makes a player come back to your game over and over again? The answers
are all here. This book gives you a lot more than a couple of online tutorials can give you. It
gives you the whole picture!"
—David Lindskog, Founder, Monster Grog Games

"Prototyping and play-testing are often the most misunderstood and/or underutilized steps in
the game design and development process. Iterative cycles of testing and refining are key to
the early stages of making a good game. Novices often believe that they need to know
everything about a language or build every asset of the game before they can really get
started. Jeremy's second edition of his already terrific book builds on the design aspects of
his first, and even better, prepares readers to go ahead and dive in to the actual design and
prototyping process right away. The changes and additions to the paper prototyping chapter
alone make it well worth the price of admission; for both new readers and fans of the first
addition."
—Stephen Jacobs, Professor, School of Interactive Games and Media and
FOSS@MAGIC Faculty Lead, RIT. Visiting Scholar, The Strong National Museum of Play

"I used Professor Bond's book to teach myself how to code in C# and familiarize myself
with Unity. Since then I have used the book as the backbone for my high school Digital
Game Design class. The programming lessons are top-notch, the prototypes clearly
demonstrate the myriad facets of programming and how those are used to create
recognizable game mechanics, and the prototypes are easily adapted for student
personalization. I can't wait to get hold of the second edition and begin using it in my
classroom."

3

—Wesley Jeffries, Game Design Teacher, Riverside Unified School District
"With the latest edition of Introduction to Game Design, Prototyping, and Development,
Bond builds on the solid foundation of the first. The new edition adds new content
throughout the book, with updated examples and topics across all the chapters. This is a
thorough and thoughtful exploration of the process of making games."
—Drew Davidson, Director, Entertainment Technology Center at Carnegie Mellon
University

"Introduction to Game Design, Prototyping, and Development combines a solid grounding
in evolving game design theory with a wealth of detailed examples of prototypes for digital
games. Together, these provide an excellent introduction to game design and development
that culminates in making working games with Unity. This book is useful for both
introductory courses and as a reference for expert designers. I use this book in my game
design classes, and it is among those few to which I often refer."
—Michael Sellers, Professor of Practice and Director of Game Design Program at Indiana
University. Former Creative Director at Rumble Entertainment and General Manager at
Kabam

"When teaching about game design and development, you often get asked the dreaded
question: 'Where can I learn all this?' Introduction to Game Design, Prototyping, and
Development has been my deliverance, as it provides a one-stop solution and answer. This
book is quite unique in covering both game design and development in depth because it
embraces and exemplifies the idea that design, prototyping, development, and balancing
combine in an iterative process. By sending the message that creating games is both
complex and feasible, I believe this to be a great learning tool, and the new edition with
even more detailed examples seems even better."
—Pietro Polsinelli, Applied Game Designer at Open Lab

"Jeremy's approach to game design shows the importance of prototyping game rules and
prepares readers to be able to test their own ideas. Being able to create your own
prototypes allows for rapid iteration and experimentation, and makes better Game
Designers."
—Juan Gril, Executive Producer, Flowplay. Former President of Joju Games

"Introduction to Game Design, Prototyping, and Development combines the necessary
philosophical and practical concepts for anyone looking to become a Game Designer. This
book will take you on a journey from high-level design theories, through game development
concepts and programming foundations. I regularly recommend this book to any aspiring
game designers who are looking to learn new skills or strengthen their design chops.
Jeremy uses his years of experience as a professor to teach you how to think with vital
game design mindsets so that you can create a game with all the right tools at hand.

4

Regardless of how long you've been in the games industry, you're bound to find
inspirational ideas that will help you improve your design process. I'm personally excited
to dive into the updates in this latest edition and get a refresher course on some of the best
practices for creating amazing games!"
—Michelle Pun, Game Producer at Osmo. Former Lead Game Designer at Disney and
Zynga

"One of the most popular practice targets for new developers is a 1980's-era 'Zelda'-like
action adventure dungeon game. In the last chapter of his newly updated edition of
Introduction to Game Design, Prototyping, and Development, Jeremy thoroughly explains
exactly what a new game programmer needs to know in order to use Unity's capabilities to
faithfully re-create this type of game. His approach includes a healthy mix of leveraging
Unity's built-in structures and frameworks while extending it through well-organized
custom functionality. He covers technical and design concepts in a totally natural way, right
when and how they have practical application to the example at hand. This pragmatic, just-
in-time approach can help new developers retain and apply the information for their own
future projects."
—Chris DeLeon, Founder of Gamkedo Game Development Training, IndieCade
Workshops Co-Chair, Forbes 30 Under 30 in Entertainment

"Whether you're just curious about making games or are on your way to becoming a
professional, this book provides an accessible introduction to game design. Jeremy's
experience as a game developer and professor are evident in the iterative structure he uses
to explain the core fundamentals of game development. Each chapter and lesson combine a
basic technical approach with game theory fundamentals that also challenge your own
creativity to grow as a developer. As a former student of his, I can tell you that this book is
the next best thing to actually being in his class."
—Juan Vaca, Associate Designer, Telltale Games

"Jeremy Gibson Bond's Introduction to Game Design, Prototyping, and Development is a
crucial text that introduces students to critical game design theory and the process of rapid,
iterative prototyping within Unity. Jeremy's sample games demonstrate how various game
genres can be developed in the engine and introduce the student to useful software patterns
that leverage the power of the core Unity objects and other libraries available to C# to
move the reader from an introductory to intermediate level of coding expertise."
—Bill Crosbie, Assistant professor of computer science, Raritan Valley Community
College

5

6

Introduction to Game Design, Prototyping,
and Development

From Concept to Playable Game with Unity and C#

Jeremy Gibson Bond

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco New York • Toronto •
Montreal • London • Munich • Paris • Madrid Capetown • Sydney • Tokyo • Singapore •

Mexico City

7

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher
was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearsoned.com.

Visit us on the Web: informit.com/

Library of Congress Control Number: 2017935715

Copyright © 2018 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education
Global Rights and Permissions Department, please visit www.pearsoned.com/
permissions/.

ISBN-13: 978-0-13-465986-2
ISBN-10: 0-13-465986-4

1 2017

Editor-in-Chief
Greg Wiegand

Senior Acquisitions Editor Laura Lewin

Development Editor
Chris Zahn

Managing Editor

8

Sandra Schroeder

Senior Project Editor
Lori Lyons

Production Manager
Dhayanidhi Karunanidhi

Copy Editor
Paula Lowell

Indexer
Erika Millen

Proofreader
H S Rupa

Technical Editors
Stephen Beeman Reed Coke Grace Kendall

Publishing Coordinator
Olivia Basegio

Cover Designer
Chuti Prasersith

Compositor
codeMantra

9

This book is dedicated to:

My wife Melanie, the love of my life, for her love, intellect, and support

My parents and sisters My many professors, colleagues, and students who inspired me to
write this book

And everyone who read the first edition and sent me comments and feedback; all of you
helped to make this second edition even better.

10

Contents at a Glance

Foreword

Preface

Acknowledgments

About the Author

Part I Game Design and Paper Prototyping
1 Thinking Like a Designer
2 Game Analysis Frameworks
3 The Layered Tetrad
4 The Inscribed Layer
5 The Dynamic Layer
6 The Cultural Layer
7 Acting Like a Designer
8 Design Goals
9 Paper Prototyping

10 Game Testing
11 Math and Game Balance
12 Guiding the Player
13 Puzzle Design
14 The Agile Mentality
15 The Digital Game Industry

Part II Digital Prototyping
16 Thinking in Digital Systems
17 Introducing the Unity Development Environment
18 Introducing Our Language: C#
19 Hello World: Your First Program
20 Variables and Components

11

21 Boolean Operations and Conditionals
22 Loops
23 Collections in C#
24 Functions and Parameters
25 Debugging
26 Classes
27 Object-Oriented Thinking

Part III Game Prototype Examples and Tutorials
28 Prototype 1: Apple Picker
29 Prototype 2: Mission Demolition
30 Prototype 3: Space SHMUP
31 Prototype 3.5: Space SHMUP Plus
32 Prototype 4: Prospector Solitaire
33 Prototype 5: Bartok
34 Prototype 6: Word Game
35 Prototype 7: Dungeon Delver

Part IV Appendices
Appendix A Standard Project Setup Procedure
Appendix B Useful Concepts
Appendix C Online Reference

Index

12

Contents

Foreword

Preface

Acknowledgments

About the Author

Part I Game Design and Paper Prototyping

1 Thinking Like a Designer
You Are a Game Designer
Bartok: A Game Exercise
The Definition of Game
Summary

2 Game Analysis Frameworks
Common Frameworks for Ludology
MDA: Mechanics, Dynamics, and Aesthetics
Formal, Dramatic, and Dynamic Elements
The Elemental Tetrad
Summary

3 The Layered Tetrad
The Inscribed Layer
The Dynamic Layer
The Cultural Layer
The Responsibility of the Designer
Summary

4 The Inscribed Layer
Inscribed Mechanics

13

Inscribed Aesthetics
Inscribed Narrative
Inscribed Technology
Summary

5 The Dynamic Layer
The Role of the Player
Emergence
Dynamic Mechanics
Dynamic Aesthetics
Dynamic Narrative
Dynamic Technology
Summary

6 The Cultural Layer
Beyond Play
Cultural Mechanics
Cultural Aesthetics
Cultural Narrative
Cultural Technology
Authorized Transmedia Are Not Part of the Cultural Layer
Summary

7 Acting Like a Designer
Iterative Design
Innovation
Brainstorming and Ideation
Changing Your Mind
Scoping
Summary

8 Design Goals
Design Goals: An Incomplete List

14

Designer-Centric Goals
Player-Centric Goals
Summary

9 Paper Prototyping
The Benefits of Paper Prototypes
Paper Prototyping Tools
Paper Prototyping for Interfaces
An Example Paper Prototype
Best Uses for Paper Prototyping
Poor Uses for Paper Prototyping
Summary

10 Game Testing
Why Playtest?
Being a Great Playtester Yourself
The Circles of Playtesters
Methods of Playtesting
Other Important Types of Testing
Summary

11 Math and Game Balance
The Meaning of Game Balance
The Importance of Spreadsheets
The Choice of Google Sheets for This Book
Examining Dice Probability with Sheets
The Math of Probability
Randomizer Technologies in Paper Games
Weighted Distributions
Permutations
Using Sheets to Balance Weapons
Positive and Negative Feedback
Summary

15

12 Guiding the Player
Direct Guidance
Four Methods of Direct Guidance
Indirect Guidance
Seven Methods of Indirect Guidance
Teaching New Skills and Concepts
Summary

13 Puzzle Design
Scott Kim on Puzzle Design
Puzzle Examples in Action Games
Summary

14 The Agile Mentality
The Manifesto for Agile Software Development
Scrum Methodology
Burndown Chart Example
Creating Your Own Burndown Charts
Summary

15 The Digital Game Industry
About the Game Industry
Game Education
Getting Into the Industry
Don't Wait to Start Making Games!
Summary

Part II Digital Prototyping

16 Thinking in Digital Systems
Systems Thinking in Board Games
An Exercise in Simple Instructions
Game Analysis: Apple Picker
Summary

16

17 Introducing the Unity Development Environment
Downloading Unity
Introducing Our Development Environment
Launching Unity for the First Time
The Example Project
Setting Up the Unity Window Layout
Learning Your Way Around Unity
Summary

18 Introducing Our Language: C#
Understanding the Features of C#
Reading and Understanding C# Syntax
Summary

19 Hello World: Your First Program
Creating a New Project
Making a New C# Script
Making Things More Interesting
Summary

20 Variables and Components
Introducing Variables
Strongly Typed Variables in C#
Important C# Variable Types
The Scope of Variables
Naming Conventions
Important Unity Variable Types
Unity GameObjects and Components
Summary

21 Boolean Operations and Conditionals
Booleans
Comparison Operators

17

Conditional Statements
Summary

22 Loops
Types of Loops
Set Up a Project
while Loops
do...while Loops
for Loops
foreach Loops
Jump Statements within Loops
Summary

23 Collections in C#
C# Collections
Using Generic Collections
List
Dictionary
Array
Multidimensional Arrays
Jagged Arrays
Whether to Use Array or List
Summary

24 Functions and Parameters
Setting Up the Function Examples Project
Definition of a Function
Function Parameters and Arguments
Returning Values
Proper Function Names
Why Use Functions?
Function Overloading
Optional Parameters

18

The params Keyword
Recursive Functions
Summary

25 Debugging
Getting Started with Debugging
Stepping Through Code with the Debugger
Summary

26 Classes
Understanding Classes
Class Inheritance
Summary

27 Object-Oriented Thinking
The Object-Oriented Metaphor
An Object-Oriented Boids Implementation
Summary

Part III Game Prototype Examples and Tutorials

28 Prototype 1: Apple Picker
The Purpose of a Digital Prototype
Preparing
Coding the Apple Picker Prototype
GUI and Game Management
Summary

29 Prototype 2: Mission Demolition
Getting Started: Prototype 2
Game Prototype Concept
Art Assets
Coding the Prototype
Summary

19

30 Prototype 3: Space SHMUP
Getting Started: Prototype 3
Setting the Scene
Making the Hero Ship
Adding Some Enemies
Spawning Enemies at Random
Setting Tags, Layers, and Physics
Making the Enemies Damage the Player
Restarting the Game
Shooting (Finally)
Summary

31 Prototype 3.5: Space SHMUP Plus
Getting Started: Prototype 3.5
Programming Other Enemies
Shooting Revisited
Showing Enemy Damage
Adding Power-Ups and Boosting Weapons
Making Enemies Drop Power-Ups
Enemy_4—A More Complex Enemy
Adding a Scrolling Starfield Background
Summary

32 Prototype 4: Prospector Solitaire
Getting Started: Prototype 4
Build Settings
Importing Images as Sprites
Constructing Cards from Sprites
The Prospector Game
Implementing Prospector in Code
Implementing Game Logic
Adding Scoring to Prospector

20

Adding Some Art to the Game
Summary

33 Prototype 5: Bartok
Getting Started: Prototype 5
Build Settings
Coding Bartok
Building for WebGL
Summary

34 Prototype 6: Word Game
Getting Started: Prototype 6
About the Word Game
Parsing the Word List
Setting Up the Game
Laying Out the Screen
Adding Interactivity
Adding Scoring
Adding Animation to Letters
Adding Color
Summary

35 Prototype 7: Dungeon Delver
Dungeon Delver—Game Overview
Getting Started: Prototype 7
Setting Up the Cameras
Understanding the Dungeon Data
Adding the Hero
Giving Dray an Attack Animation
Dray's Sword
Enemy: Skeletos
The InRoom Script
Per-Tile Collision

21

Aligning to the Grid
Moving from Room to Room
Making the Camera Follow Dray
Unlocking Doors
Adding GUI to Track Key Count and Health
Enabling Enemies to Damage Dray
Making Dray's Attack Damage Enemies
Picking Up Items
Enemies Dropping Items on Death
Implementing a Grappler
Implementing a New Dungeon—The Hat
The Delver Level Editor
Summary

Part IV Appendices

Appendix A Standard Project Setup Procedure

Appendix B Useful Concepts

Appendix C Online Reference
Index

22

FOREWORD

I have a theory about game designers and teachers. I think that, beneath the possible
differences of our outer appearances, we're secretly the same; that many of the skills
possessed by a good game designer are the same skills held by a great teacher. Have you
ever had a teacher who held a class spellbound with puzzles and stories? Who showed you
simple demonstrations of skills that were easy for you to understand and copy, but were
difficult for you to master? Who gradually, cleverly, helped you put together pieces of
information in your mind, maybe without your even realizing it, until one day your teacher
was able to step aside and watch you do something amazing, something that you never
would have thought was possible?

We video game designers spend a lot of our time finding ways to teach people the skills
they need to play our games, while keeping them entertained at the same time. We
sometimes don't want people to be aware that we're teaching them, though—the best tutorial
levels that video games open with are usually the ones that seem like the beginning of a
thrilling adventure. I was lucky to work at the award-winning game studio Naughty Dog for
eight amazing years, where I was the Lead or Co-Lead Game Designer on all three
PlayStation 3 games in the Uncharted series. Everyone at the studio was very happy with
the sequence that opened our game Uncharted 2: Among Thieves. It effectively taught each
player all the basic moves they would need to play the game, while keeping them on the
edge of their seat because of the gripping predicament our hero Nathan Drake found himself
in, dangling over the edge of a cliff in a ruined train carriage.

Video game designers do this kind of thing over and over again as they create digital
adventures for us to play. Working on a sequence of player experiences like those found in
the Uncharted games, I have to stay very focused on what the player has recently learned. I
have to present my audience with interesting situations that use their new skills and are easy
enough that they won't get frustrated, but challenging enough to hold their interest. To do this
with complete strangers, through the channels of communication that a game provides—the
graphics of the environments and the characters and objects within them, the sounds that the
game makes, and the interactivity of the game's controls—is tremendously challenging. At
the same time, it is one of the most rewarding things I know how to do.

Now that I've become a professor, teaching game design in a university setting, I've
discovered firsthand just how many of the skills I developed as a game designer are useful
in my teaching. I'm also discovering that teaching is just as rewarding as game design. So it

23

came to me as no surprise when I discovered that Jeremy Gibson Bond, the author of this
book, is equally talented as a game designer and a teacher, as you're about to find out.

I first met Jeremy around 15 years ago, at the annual Game Developers Conference in
Northern California, and we immediately hit it off. He already had a successful career as a
game developer, and his enthusiasm for game design struck a chord with me. As you'll see
when you begin to read this book, he loves to talk about game design as a craft, a design
practice, and an emerging art form. Jeremy and I stayed in touch over the years, as he went
back to graduate school at Carnegie Mellon University's excellent Entertainment
Technology Center to study under visionaries like Doctor Randy Pausch and Jesse Schell.
Eventually, I came to know Jeremy as a professor and a colleague in the Interactive Media
& Games Division of the School of Cinematic Arts at the University of Southern California
—part of USC Games, the program in which I now teach.

In fact, I got to know Jeremy even better during his time at USC—and I did it by becoming
his student! In order to acquire the skills that I needed to develop experimental research
games as part of USC's Game Innovation Lab, I took one of Jeremy's classes, and his
teaching transformed me from a Unity n00b with some basic programming experience into
an experienced C# programmer with a strong set of skills in Unity—one of the world's most
powerful, usable, adaptable game engines. Every single one of Jeremy's classes was not
only packed with information about Unity and C#, but was also peppered with inspirational
words of wisdom about game design and practical pieces of advice related to game
development—everything from his thoughts about good "lerping," to great tips for time
management and task prioritization, to the ways that game designers can use spreadsheets to
make their games better. I graduated from Jeremy's class wishing that I could take it again,
knowing that there was a huge amount more I could learn from him.

So I was very happy when I heard that Jeremy was writing a book—and I became even
happier when I read the volume that you now hold in your hands. The good news for both
you and me is that Jeremy has loaded this book with everything that I wanted more of. I
learned a lot in the game industry about best practices in game design, production, and
development, and I'm happy to tell you that in this book, Jeremy does a wonderful job of
summarizing those ways of making games that I've found work best. Within these pages,
you'll find step-by-step tutorials and code examples that will make you a better game
designer and developer in innumerable ways. While the exercises in this book might get
complex, Jeremy won't ask you to do anything complicated without guiding you through it in
clear, easy-to-follow language.

You'll also find history and theory in this book. Jeremy has been thinking deeply about game
design for a long time and is very well-read on the subject. In the first part of this volume,
you'll find an extraordinarily wide and deep survey of the state-of-the-art in game design
theory, along with Jeremy's unique and strongly developed synthesis of the very best ideas

24

he's encountered. Jeremy supports his discussion with interesting historical anecdotes and
fascinating glimpses of the long traditions of play in human culture, all of which help to
frame his conversation in valuable and progressive ways. He continually pushes you to
question your assumptions about games, and to think beyond the console, the controller, the
screen, and the speakers, in ways that might just spur a whole new generation of game
innovators.

Game design is an iterative process, where we test what we've made, receive feedback
about it, revise our designs, and make a new, improved version. If an author is lucky enough
to be able to publish a new edition of their book, they get to iterate on it too, and that's
exactly what Jeremy has done. He spent more than a year writing this second edition, which
you now hold in your hands, and in the process he has reviewed and revised every single
chapter. He has updated some of the game design theory, all the code is now in color to
improve readability, and he has made significant improvements to all of the in-depth game
tutorials in Part III. Each tutorial now has step-by-step, numbered instructions, and
everything has been updated to the latest version of Unity. The Space SHMUP chapter—one
of the most useful but also longest in the first edition—has been split into two separate,
easier-to-understand chapters, and the outdated final two tutorials have been replaced by
Dungeon Delver, a Legend of Zelda-inspired game that neatly illustrates the power of
component-based design in game prototyping. As someone who loves the first edition and
has recommended it widely to students, teachers, and developers alike, I am very excited
about these new changes and am very happy to see this wonderful book evolve.

In 2013, Jeremy Gibson Bond moved on from USC, and he now teaches at the fantastic
gamedev.msu.edu program at Michigan State University. I'm very happy for the generations
of MSU students that he'll lead to new understandings of the craft of game design in the
coming years. The first spring after he left USC, when Jeremy walked into the restaurant at
the annual Game Developers Conference alumni dinner hosted by the USC Games program,
the room full of our current and former students came alive with whoops and cheers, and
moments later broke out into applause. That tells you a lot about what Jeremy is like as a
teacher. You're lucky that, thanks to this book, he can now be your teacher, too.

The world of game design and development is changing at a rapid pace. You can be part of
this wonderful world—a world unlike any other I know, and which I love with all my heart.
You can use the skills you learn through reading this book to develop new prototypes for
new kinds of games and other types of interactive media as well; and in doing so, you might
eventually create whole new genres, in expressive new styles, which appeal to new
markets. You might help people relax and unwind by entertaining them, you might touch
peoples' lives in the way that great art does, and you might even make something that helps
solve some of the thorny problems that our world faces by educating, illuminating, and
explaining the universe as you see it. Some of tomorrow's stars of game design are
currently learning to design and program in homes, schools, and offices all around the

25

world, and many of them are using this book. If you follow the advice and do the exercises
you find in here, it might just help your chances of creating a modern game design classic.

Good luck, and have fun!

Richard Lemarchand
Associate Professor, USC Games

Associate Chair, Interactive Media & Games Division

26

PREFACE

Welcome to the second edition of Introduction to Game Design, Prototyping, and
Development. This book is based on my work over many years as both a professional game
designer and a professor of game design at several universities, including the Media and
Information Department at Michigan State University and the Interactive Media and Games
Division at the University of Southern California.

This preface introduces you to the purpose, scope, and approach of this book.

The Purpose of This Book
My goal in this book is simple: I want to give you all the tools and knowledge you need to
get started down the path to being a successful game designer and prototyper. This book is
the distillation of as much knowledge as I can cram into it to help you toward that goal.
Unlike most books out there, this book combines both the disciplines of game design and
digital development (i.e., computer programming) and wraps them both in the essential
practice of iterative prototyping. The emergence of advanced, yet approachable, game
development engines such as Unity has made it easier than ever before to create playable
prototypes that express your game design concepts to others, and the ability to do so will
make you a much more skilled (and employable) game designer.

The book is divided into four parts:

Part I: Game Design and Paper Prototyping
The first part of the book starts by exploring various theories of game design and the
analytical frameworks for game design that have been proposed by several earlier books.
This section then describes the Layered Tetrad as a way of combining and expanding on
many of the best features of these earlier theories. The Layered Tetrad is explored in depth
as it relates to various decisions that you must make as a designer of interactive
experiences. This part also covers information about the interesting challenges of different
game design disciplines; describes the process of paper prototyping, testing, and iteration;
gives you concrete information to help you become a better designer; and presents you with
effective project and time management strategies to help keep your projects on track.

Part II: Digital Prototyping

27

The second part of the book teaches you how to program. This part draws upon my many
years of experience as a professor teaching nontechnical students how to express their game
design ideas through digital code. If you have no prior knowledge or experience with
programming or development, this part is designed for you. However, even if you do have
some programming experience, you might want to take a look at this part to learn a few new
tricks or get a refresher on some approaches. Part II covers C#—our programming language
—from the basics through class inheritance and object-oriented programming.

Part III: Game Prototype Examples and Tutorials
The third part of the book encompasses several different tutorials, each of which guides you
through the development of a prototype for a specific style of game. The purpose of this
part is twofold: It reveals some best practices for rapid game prototyping by showing you
how I personally approach prototypes for various kinds of games, and it provides you with
a basic foundation on which to build your own games in the future. Many other books on the
market that attempt to teach Unity (our game development environment) do so by taking the
reader through a single, monolithic tutorial that is hundreds of pages long. In contrast, this
book takes you through several much smaller tutorials. The final products of these tutorials
are necessarily less robust than those found in some other books, but my belief is that the
variety of projects in this book will better prepare you for creating your own projects in the
future.

Part IV: Appendices
This book has several important appendices that merit mention here. Rather than repeat
information throughout the book or require you to go hunting through various chapters for it,
any piece of information that is referenced several times in the book or that I think you
would be likely to want to reference later (after you've finished reading the book once) is
placed in the appendices. Appendix A is just a quick step-by-step introduction to the initial
creation process for a game project in Unity. The longest appendix is Appendix B, "Useful
Concepts." Though it has a rather lackluster name, this is the portion of the book that I
believe you will return to most often in the years following your initial read through the
book. "Useful Concepts" is a collection of several go-to technologies and strategies that I
use constantly in my personal game prototyping process, and I think you'll find a great deal
of it to be very useful. The third and final appendix is a list of very useful online references
where you can find answers to questions not covered in this book. It is often difficult to
know the right places to look for help online; this appendix lists those that I personally turn
to most often.

There Are Other Books Out There
As a designer or creator of any kind, I think that it's absolutely essential to acknowledge

28

those on whose shoulders you stand. Many books have been written on games and game
design, and the few that I list here are those that have had the most profound effect on either
my process or my thinking about game design. You will see these books referenced many
times throughout this text, and I encourage you to read as many of them as possible.

Game Design Workshop by Tracy Fullerton
Initially penned by Tracy Fullerton, Chris Swain, and Steven S. Hoffman, Game Design
Workshop is now in its third edition. More than any other text, this is the book that I turn to
for advice on game design. This book was initially based on the Game Design Workshop
class that Tracy and Chris taught at the University of Southern California, a class that
formed the foundation for the entire games program at USC (and a class that I myself taught
there from 2009–2013). The USC Interactive Media and Games graduate program has been
named the number one school for game design in North America by Princeton Review
nearly every year that they have been ranking game programs, and the Game Design
Workshop book and class were the foundation for that success.

Unlike many other books that speak volumes of theory about games, Tracy's book maintains
a laser focus on information that helps budding designers improve their craft. I taught from
this book for many years (even before I started working at USC), and I believe that if you
actually attempt all the exercises listed in the book, you can't help but have a pretty good
paper game at the end.

Fullerton, Tracy, Christopher Swain, and Steven Hoffman, Game Design
Workshop: A Playcentric Approach to Creating Innovative Games, 2nd ed. (Boca
Raton, FL: Elsevier Morgan Kaufmann, 2008)

The Art of Game Design by Jesse Schell
Jesse Schell was one of my professors at Carnegie Mellon University and is a fantastic
game designer with a background in theme park design gained from years working for Walt
Disney Imagineering. Jesse's book is a favorite of many working designers because it
approaches game design as a discipline to be examined through 100 different lenses that are
revealed throughout the book. Jesse's book is a very entertaining read and broaches several
topics not covered in this book.

Jesse Schell, The Art of Game Design: A Book of Lenses (Boca Raton, FL: CRC
Press, 2008)

The Grasshopper by Bernard Suits
While not actually a book on game design at all, The Grasshopper is an excellent
exploration of the definition of the word game. Presented in a style reminiscent of the

29

Socratic method, the book presents its definition of game very early in the text as the
Grasshopper (from Aesop's fable The Ant and the Grasshopper) gives his definition on his
deathbed, and his disciples spend the remainder of the book attempting to critique and
understand this definition. This book also explores the question of the place of games and
play in society.

Bernard Suits, The Grasshopper: Games, Life and Utopia (Peterborough, Ontario:
Broadview Press, 2005)

Level Up! by Scott Rogers
Rogers distills his knowledge from many years in the trenches of game development into a
book that is fun, approachable, and very practical. When he and I co-taught a level design
class, we used this textbook. Rogers is also a comic book artist, and his book is full of
humorous and helpful illustrations that drive home the design concepts.

Scott Rogers, Level Up!: The Guide to Great Video Game Design (Chichester,
UK: Wiley, 2010)

Imaginary Games by Chris Bateman
Bateman uses this book to argue that games are a legitimate medium for scholarly study. He
pulls from several scholarly, practical, and philosophical sources; and his discussions of
books like Homo Ludens by Johan Huizinga; Man, Play, and Games by Roger Caillois;
and the paper "The Game" by Mary Midgley are both smart and accessible.

Chris Bateman, Imaginary Games (Washington, USA: Zero Books, 2011)

Game Programming Patterns by Robert Nystrom
This book is an excellent resource for intermediate-level game programmers. In it, Nystrom
explores the software development patterns (initially cataloged in the book Design
Patterns: Elements of Reusable Object-Oriented Software1) that he believes are most
useful for game development. It's a truly excellent book that you should check out if you
already have some experience with game programming. All of his examples are in a
pseudocode that is similar to C++, but it's not too difficult to understand if you know C#.
Also, although it can be bought in paperback or electronic versions, the entire text of the
book is available for free at:

http://gameprogrammingpatterns.com

Game Design Theory by Keith Burgun
In this book, Burgun explores what he believes are faults in the current state of game design

30

http://gameprogrammingpatterns.com

and development and proposes a much narrower definition of game than does Suits.
Burgun's goal in writing this text was to be provocative and to push the discussion of game
design theory forward. While largely negative in tone, Burgun's text raises a number of
interesting points, and helped me to refine my personal understanding of game design.

Keith Burgun, Game Design Theory: A New Philosophy for Understanding
Games (Boca Raton, FL: A K Peters/CRC Press, 2013)

Our Digital Prototyping Environment: Unity and C#
All the digital game examples in this book are based on the Unity Game Engine and the C#
programming language. I have taught students to develop digital games and interactive
experiences for more than a decade, and in my experience, Unity is—by far—the best
environment for learning to develop games. I have also found that C# is the best initial
language for game prototypers to learn. Some other tools out there are easier to learn and
require no real programming (Game Maker and Construct 2 are two examples), but Unity
allows you much more flexibility and performance in a package that is basically free (the
free version of Unity includes nearly all the capabilities of the paid version, and it is the
version used throughout this book). Unreal is another game engine that is used by many
studios, but in Unreal, there is very little middle ground between the simplified graphical
programming of the Blueprint system and the very complex C++ code on which the engine
is built. If you want to actually learn to program games and have success doing it, Unity is
the engine you want to use.

Similarly, some programming languages are initially a little more approachable than C#. In
the past, I have taught my students both ActionScript and JavaScript. However, C# is the
one language I have used that continually impresses me with its flexibility and feature set.
Learning C# means learning not only programming but also good programming practices.
Languages such as JavaScript allow a lot of sloppy behaviors that I have found actually
lead to slower development. C# keeps you honest (via things like strongly typed variables),
and that honesty will not only make you a better programmer but will also result in your
being able to code more quickly (e.g., strong variable typing enables very robust code
hinting and auto-completion, which makes coding faster and more accurate).

Who This Book Is For
There are many books about game design, and there are many books about programming.
This book seeks to fill the gap between the two. As game development technologies like
Unity become more ubiquitous, it is increasingly important that game designers have the
ability to sketch their design ideas not only on paper but also through working digital
prototypes. This book exists to help you learn to do just that:

 If you're interested in game design but have never programmed, this book is perfect

31

for you. Part I introduces you to several practical theories for game design and presents
you with the practices that can help you develop and refine your design ideas. Part II
teaches you how to program from nothing to understanding object-oriented class
hierarchies. Since I became a college professor, the majority of my classes have focused
on teaching nonprogrammers how to program games. I have distilled all of my
experience doing so into Part II of this book. Part III takes you through the process of
developing several different game prototypes across several different game genres. Each
demonstrates fast methods to get from concept to working digital prototype. Lastly, the
appendices explain specific game development and programming concepts in-depth and
guide you to resources to learn more after you've finished the book. This in depth content
was moved largely to Appendix B, "Useful Concepts," so that you could continue to use
that section of the book as a reference in the years to come.
 If you're a programmer who is interested in game design, Parts I and III of this book
will be of most interest to you. Part I introduces you to several practical theories for
game design and presents you with the practices that can help you develop and refine
your design ideas. You can skim Part II, which introduces C# and how it is used in
Unity. If you are familiar with other programming languages, C# looks like C++ but has
the advanced features of Java. Part III takes you through the process of developing
several different game prototypes across several different game genres. Game
development in Unity is very different from what you might be used to from other game
engines. Many elements of development are managed outside of the code. Each
prototype will demonstrate the style of development that works best in Unity to get from
concept to working digital prototype quickly. You will also want to look carefully at
Appendix B, "Useful Concepts," which is full of detailed information about various
Unity development concepts and is arranged as a reference that you can return to later.

Conventions
This book maintains several writing conventions to help make the text more easily
understandable.

Any place that specific button names, menu commands, other multi-word nouns, or new key
terms appear in the text, they will be listed in italics. This includes terms like the Main
Camera GameObject. An example menu command is Edit > Project Settings > Physics,
which would instruct you to select the Edit menu from the menu bar, choose the Project
Settings submenu, and then select Physics.

Book Elements
The book includes several different types of asides that feature useful or important
information that does not fit in the flow of the regular body text.

32

Note
Callouts in this format are for information that is useful but not critical.
Information in notes will often be an interesting aside to the main text that
provides a little bit more info about the topic.

Tip
This element provides additional information that is related to the book content
and can help you as you explore the concepts in the book.

Warning
BE CAREFUL Warnings cover information about things that you need to be
aware of to avoid mistakes or other pitfalls.

SIDEBAR
The sidebar is for discussions of longer topics that are important to the text but
should be considered separately from it.

Code
Several conventions apply to the code samples in this book. When specific elements from
the code listing are placed in regular paragraph text, they appear in a monospaced font.
The variable variableOnExistingLine from the following code listing is an
example of this.

Code listings also utilize a monospaced font and appear as follows:
Click here to view code image

1 public class SampleClass {
2 public GameObject variableOnExistingLine; // a
3 public GameObject variableOnNewLine; // b
 … // c
7 void Update() { … } // d
8 }

33

a. Code listings are often annotated; in this case, additional information about the line
marked with // a would appear in this first annotation.

b. Many code listings will be expansions on code that you've already written or that
already exists in the C# script file for another reason. In this case, the old lines will be
at normal weight, and the new lines will be at bold weight. In all of these
cases, I endeavor to include enough other existing lines that you can understand where
to put the new bolded lines.

c. Anywhere that code has been omitted (to save printing space), I include ellipses (…).
In this code listing, I've skipped lines 4 through 6.

d. In places where I've omitted the entire text of a pre-existing function or method, you
will often see ellipses between braces ({ … }) to denote this.

Most of the code listings in the first two parts of the book include line numbers (as shown
in the preceding listing). You do not need to type the line numbers when entering the code
into MonoDevelop (it automatically numbers all lines). In the final part of the book, there
are no line numbers due to the size and complexity of the code listings.

Finally, if a line of code is too long to fit within the width of the page, you will see a
continuation character () at the start of the next line on the printed page. This indicates
that as you type these lines into the computer, they should be entered as a single line. You
should not type the continuation character.

Book Website
The website for this book includes all the files referenced in the chapters, lecturer notes,
starter packages, playable examples of some of the games, updates, and much more! It is
available at

http://book.prototools.net

1. Erich Gamma, Richard Help, Ralph Johnson, and John Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software (Upper Saddle River, NJ: Addison-
Wesley, 1995)

34

http://book.prototools.net

ACKNOWLEDGMENTS

A tremendous number of people deserve to be thanked here. First and foremost, I want to
thank my wife, Melanie, whose help and feedback on my chapters throughout the entire
process improved the book tremendously. I also want to thank my family for their many
years of support, with special thanks to my father for teaching me how to program as a
child.

On this second time into the breach, several people at Pearson provided support to me and
once more shepherded me through the process. Chief among them were Chris Zahn, Laura
Lewin, Paula Lowell, Lori Lyons, Olivia Basegio, and Dhayanidhi Karunanidhi, who each
demonstrated laudable patience in working with me. I also had the support of some
fantastic technical reviewers: Marc Destefano, Charles Duba, and Margaret Moser on the
first edition and Grace Kendall, Stephen Beeman, and Reed Coke for the second edition.
Their keen eyes and minds found many places in the original text that could be clarified or
improved.

I would also like to thank all the educators who have taught me and worked as my
colleagues. Special thanks go to Dr. Randy Pausch and Jesse Schell. Though I had worked
as a professor and game designer before meeting them, they each had a profound effect on
my understanding of design and education. I also owe tremendous thanks to Tracy Fullerton,
Mark Bolas, and Scott Fisher, who were friends and mentors to me in the years I taught at
the University of Southern California's Interactive Media and Games Division. My new
work family at Michigan State University has also been tremendous to work with, including
Andrew Dennis (who did the art for Chapter 35), Brian Winn, Elizabeth LaPensée, Ricardo
Guimaraes, and many others. Many other brilliant faculty and friends at USC and University
of Michigan also helped me to flesh out the ideas in this book, including Adam Liszkiewicz,
William Huber, Richard Lemarchand, Scott Rogers, Vincent Diamante, Sam Roberts, Logan
Ver Hoef, and Marcus Darden.

Many of my friends in the industry have also helped me by giving me suggestions for the
book and feedback on the ideas presented therein. These included Michael Sellers,
Nicholas Fortugno, Jenova Chen, Zac Pavlov, Joseph Stevens, and many others.

Thanks as well to all the fantastic students whom I have taught over the past nearly two
decades. It is you who inspired me to want to write this book and who convinced me that
there was something important and different about the way that I was teaching game
development. Every day that I teach, I find myself inspired and invigorated by your

35

creativity, intelligence, and passion.

Finally, I would like to thank you. Thank you for purchasing this book and for your interest
in developing games. I hope that this book helps you get started, and I would love to see
what you make with the knowledge you gain here.

36

ABOUT THE AUTHOR

Jeremy Gibson Bond is a Professor of Practice, teaching game design and development in
the Media and Information Department at Michigan State University
(http://gamedev.msu.edu), which has been ranked a top-ten game design program for the
last several years. Since 2013, he has served the IndieCade independent game festival and
conference as the Chair of Education and Advancement, where he co-chairs the
IndieXchange summit each year. In 2013, Jeremy founded the company ExNinja Interactive,
through which he develops his independent game projects. Jeremy has also spoken several
times at the Game Developers Conference.

Prior to joining the faculty at Michigan State, Jeremy taught for three years as a Lecturer in
the Electrical Engineering and Computer Science department at the University of Michigan
Ann Arbor, where he taught game design and software development. From 2009 to 2013,
Jeremy was an Assistant Professor of Practice teaching game design for the Interactive
Media and Games Division of the University of Southern California's School of Cinematic
Arts, which was named the number one game design school in North America throughout
his tenure there.

Jeremy earned a Master of Entertainment Technology degree from Carnegie Mellon
University's Entertainment Technology Center in 2007 and a Bachelor of Science degree in
Radio, Television, and Film from the University of Texas at Austin in 1999. He started his
career as a programmer and prototyper for companies such as Human Code and frog
design; has also taught classes for Great Northern Way Campus (in Vancouver, BC), Texas
State University, the Art Institute of Pittsburgh, Austin Community College, and the
University of Texas at Austin; and has worked for Walt Disney Imagineering, Maxis, and
Electronic Arts/Pogo.com, among others. While in graduate school, his team created the
online game Skyrates, which won the Silver Gleemax Award for Strategic Gaming at the
2008 Independent Games Festival. Jeremy also apparently has the distinction of being the
first person to ever teach game design in Costa Rica.

37

http://gamedev.msu.edu

PART I

GAME DESIGN AND PAPER PROTOTYPING

1 Thinking Like a Designer
2 Game Analysis Frameworks
3 The Layered Tetrad
4 The Inscribed Layer
5 The Dynamic Layer
6 The Cultural Layer
7 Acting Like a Designer
8 Design Goals
9 Paper Prototyping

10 Game Testing
11 Math and Game Balance
12 Guiding the Player
13 Puzzle Design
14 The Agile Mentality
15 The Digital Game Industry

38

CHAPTER 1

THINKING LIKE A DESIGNER

Our journey starts here. This chapter presents the basic theories of design upon
which the rest of the book is built. In this chapter, you also encounter your first
game design exercise and learn more about the underlying philosophy of this
book.

You Are a Game Designer
As of this moment, you are a game designer, and I want you to say it out loud:1

"I am a game designer."

It's okay. You can say it out loud, even if other people can hear you. In fact, according to
psychologist Robert Cialdini's book Influence: The Psychology of Persuasion,2 if other
people hear you commit to something, you're more likely to follow through. So, go ahead
and post it to Facebook, tell your friends, tell your family:

"I am a game designer."

But, what does it mean to be a game designer? This book will help you answer that
question and will give you the tools to start making your own games. Let's start with a
design exercise.

Bartok: A Game Exercise
I first saw this exercise used by game designer Malcolm Ryan as part of a Game Design
Workshop session at the Foundations of Digital Gaming conference. The goal of this
exercise is to demonstrate how even a simple change to the rules of a game can have a
massive effect on the experience of playing the game.

Bartok is a simple game played with a single deck of cards that is very similar to the
commercial game Uno. In the best case scenario, you would play this game with three
friends who are also interested in game design; however, I've also made a digital version of
the game for you to play solo. Either the paper or digital version will work fine for our
purposes.3

39

GETTING THE DIGITAL VERSION OF BARTOK
The digital version of Bartok is available in the Chapter 1 section of the website
for this book:

http://book.prototools.net

Objective
Be the first player to get rid of all the cards in your hand.

Getting Started
Here are the basic rules for Bartok:

1. Start with a regular deck of playing cards. Remove the Jokers, leaving you with 52
cards (13 of each suit ranked Ace–King).

2. Shuffle the deck and deal seven cards to each player.
3. Place the rest of the cards face-down in a draw pile.
4. Pick the top card from the draw pile and place it on the table face-up to start the

discard pile.
5. Starting with the player to the left of the dealer and proceeding clockwise, each player

must play a card onto the discard pile if possible, and if she cannot play a card, the
player must draw a single card from the draw pile (see Figure 1.1).

40

http://book.prototools.net

Figure 1.1 The initial layout of Bartok. In the situation shown, the player can choose to
play any one of the cards highlighted with blue borders (7C, JC, 2H, 2S)

6. A player may play a card onto the discard pile if the card is either:
a. The same suit as the top card of the discard pile. (For example, if the top card of the

discard pile is a 2 of Clubs (2C), any other Club may be played onto the discard pile.)
b. The same rank as the top card of the discard pile. (For example, if the top card of the

discard pile is a 2C, any other 2 may be played onto the discard pile.)
7. The first player to successfully get rid of all of her cards wins.

Playtesting
Try playing the game a couple of times to get a feel for it. Be sure to thoroughly shuffle the
cards between each playthrough. Games will often result in a somewhat sorted discard
pile, and without a good shuffle, subsequent games may have results weighted by the
nonrandom card distribution.

Tip
DEBLOCKING This is the term for strategies used to break up blocks of
cards (that is, groups of similar cards). In Bartok, each successful game ends

41

with all the cards sorted into blocks of the same suit and blocks of the same rank.
If you don't deblock those groups, the subsequent game will end much faster
because players are more likely to be dealt cards that match each other.

According to mathematician and magician Persi Diaconis, seven good riffle
shuffles should be sufficient for nearly all games;4 if you run into issues, though,
some of these de-blocking strategies can help.

Here are some standard strategies for deblocking a deck of cards if standard
shuffling doesn't work:

 Deal the cards into several different piles. Then shuffle these piles together.

 Deal the cards out face-down into a large, spread-out pool. Then use both
hands to move the cards around almost like mixing water. This is how
dominoes are usually shuffled, and it can help break up your card blocks. Then
gather all the cards into a single stack.

 Play 52 Pickup: Throw all the cards on the floor and pick them up.

Analysis: Asking the Right Questions
After each playtest, it's important to ask the right questions. Of course, each game will
require slightly different questions, though you can base many of them on these general
guidelines:

 Is the game of the appropriate difficulty for the intended audience? Is it too difficult, too
easy, or just right?
 Is the outcome of the game based more on strategy or chance? Does randomness play
too strong a role in the game, or, alternatively, is the game too deterministic so that after
one player has taken the lead, the other players are unable to catch up?
 Does the game have meaningful, interesting decisions? When it's your turn, do you have
several choices, and is the decision between those choices an interesting one?
 Is the game interesting when it's not your turn? Do you have any effect on the other
players' turns, or do their turns have any immediate effect on you?

We could ask many other questions, but these are some of the most common.

Take a moment to think about your answers to these questions relative to the games of
Bartok you just played and write them down. If you're playing the paper version of this
game with other human players, it's worthwhile to ask them to write down their own

42

answers to the questions individually and then discuss the questions as a group afterward.
This keeps the responses from being influenced by other players.

Modifying the Rules
As you'll see throughout this book, game design is primarily a process:

1. Incrementally modify the rules, changing very few things between each playtest.
2. Playtest the game with the new rules.
3. Analyze how the feel of the game is altered by the new rules.
4. Design new rules that you think may move the feel of the game in the direction you

want.
5. Repeat this process until you're happy with the game.

Iterative design is the term for this repetitive process of deciding on a small change to the
game design, implementing that change, playtesting the game, analyzing how the change
affected the gameplay, and then starting the process over again by deciding on another small
change. Chapter 7, "Acting Like a Designer," covers iterative design in detail.

For the Bartok example, why don't you start by picking one of the following three rule
changes and playtesting it:

 Rule 1: If a player plays a 2, the person to her left must draw two cards instead of
playing.
 Rule 2: If any player has a card that matches the number and color (red or black) of the
top card, she may announce "Match card!" and play it out of turn. Play then continues
with the player to the left of the one who just played the out-of-turn card. This can lead
to players having their turns skipped.
For example: The first player plays a 3C (three of Clubs). The third player has the 3S,
so she calls "Match card!" and plays the 3S on top of the 3C out-of-turn, skipping the
second player's turn. Play then continues with the fourth player.
 Rule 3: A player must announce "Last card" when she has only one card left. If someone
else calls it first, she must draw two cards (bringing her total number of cards to three).

Choose only one of the rule changes from the previous listing and play the game through a
couple of times with the new rule. Then have each player write their answers to the four
playtest questions. You should also try playing with another one of the rules (although I
would recommend still only using one of them at a time when trying a new rule for the first
time).

43

If you're playing the digital version of the game, you can use the check boxes on the menu
screen to choose various game options.

Warning
WATCH OUT FOR PLAYTESTING FLUKES A weird shuffle or other
external factor can sometimes cause a single play through the game to feel really
different from the others. This is known as a fluke, and you want to be careful not
to make game design decisions based on flukes. If something you do seems to
affect the game feel in a very unexpected way, be sure to play through the game
multiple times with that rule change to make sure you're not experiencing a fluke.

Analysis: Comparing the Rounds
Now that you've played through the game with some different rule options, it's time to
analyze the results from the different rounds. Look back over your notes and see how each
different rule set felt to play. As you experienced, even a simple rule change can greatly
change the feel of the game. Here are some common reactions to the previously listed rules:

 The original rules
Many players find the original version of the game to be pretty boring. There are no
interesting choices to make, and as the players remove cards from their hands, the
number of possible choices dwindles, as well, often leaving the player with only one
valid choice for most of the later turns of the game. The game is largely based on chance,
and players have no real reason to pay attention to other players' turns because they don't
really have any way of affecting each other.
 Rule 1: If a player plays a 2, the person to her left must draw two cards instead of
playing.
This rule allows players to directly affect each other, which generally increases interest
in the game. However, whether a player has 2s is based entirely on luck, and each player
only really has the ability to affect the player on her left, which often seems unfair.
However, this does make other players' turns a bit more interesting because other
players (or at least the player to your right) have the ability to affect you.
 Rule 2: If any player has a card that matches the number and color (red or black) of
the top card, she may announce "Match card!" and play it out of turn. Play then
continues with the player to the left of the one who just played the out-of-turn card.
This rule often has the greatest effect on player attention. Because any player has the
opportunity to interrupt another player's turn, all players tend to pay a lot more attention
to each other's turns. Games played with this rule often feel more dramatic and exciting

44

than those played with the other rules.
 Rule 3: A player must announce "Last card!" when she has only one card left. If
someone else calls it first, she must draw two cards.
This rule only comes into play near the end of the game, so it doesn't have any effect on
the majority of gameplay, however, it does change how players behave at the end. This
can lead to some interesting tension as players try to jump in and say "last card" before
the player who is down to only one card. This is a common rule in both domino and card
games where the players are trying to empty everything from their hands because it gives
other players a chance to catch up to the lead player if the leader forgets about the rule.

Designing for the Game Feel That You Want
Now that you've seen the effects of a few different rules on Bartok, it's time to do your job
as a designer and make the game better. First, decide on the feel that you want the game to
have: do you want it to be exciting and cutthroat, do you want it to be leisurely and slow, or
do you want it to be based more on strategy than chance?

Once you have a general idea of how you want the game to feel, think about the rules that
we tried out and try to come up with additional rules that can push the feel of the game in
the direction that you want. Here are some tips to keep in mind as you design new rules for
the game:

 Change only one thing in between each playtest. If you change (or even tweak) a number
of rules between each play through the game, it can be difficult to determine which rule
is affecting the game in what way. Keep your changes incremental, and you'll be better
able to understand the effect that each is having.
 The bigger change you make, the more playtests it will take to understand how it
changes the game feel. If you only make a subtle change to the game, one or two plays
can tell you a lot about how that change affects the feel. However, if it's a major rule
change, you will need to test it more times to avoid being tricked by a fluke game.
 Change a number and you change the experience. Even a seemingly small change can
have a huge effect on gameplay. For instance, think about how much faster this game
would be if there were two discard piles to choose from or if the players started with
five cards instead of seven.

Of course, adding new rules is a lot easier to do when playing the card game in person with
friends than when working with the digital prototype. That's one of the reasons that paper
prototypes can be so important, even when you're designing digital games. The first part of
this book discusses both paper and digital design, but most of the examples and design
exercises are done with paper games because they can be so much faster to develop and
test than digital games.

45

The Definition of Game
Before moving too much further into design and iteration, we should probably clarify what
we're talking about when we use terms such as game and game design. Many very smart
people have tried to accurately define the word game. Here are a few of them in
chronological order:

 In his 1978 book The Grasshopper, Bernard Suits (who was a professor of philosophy
at the University of Waterloo) declares that "a game is the voluntary attempt to overcome
unnecessary obstacles."5

 Game design legend Sid Meier says that "a game is a series of interesting decisions."
 In Game Design Workshop, Tracy Fullerton defines a game as "a closed, formal system
that engages players in a structured conflict and resolves its uncertainty in an unequal
outcome."6

 In The Art of Game Design, Jesse Schell playfully examines several definitions for
game and eventually decides on "a game is a problem-solving activity, approached with
a playful attitude."7

 In the book Game Design Theory, Keith Burgun presents a much more limited definition
of game: "a system of rules in which agents compete by making ambiguous,
endogenously meaningful decisions."8, 9

As you can see, all of these are compelling and correct in their own way. Perhaps even
more important than each individual definition is the insight that it gives us into the author's
intent when crafting that definition.

Bernard Suits' Definition
In addition to the short definition "a game is the voluntary attempt to overcome unnecessary
obstacles," Suits also offers a longer, more robust version:

To play a game is to attempt to achieve a specific state of affairs, using only means permitted by rules, where
the rules prohibit use of more efficient in favor of less efficient means, and where the rules are accepted just
because they make possible such activity.

Throughout his book, Suits proposes and refutes various attacks on this definition; and
having read the book, I am certainly willing to say that he has found the definition of "game"
that most accurately matches the way that the word is used in day-to-day life.

However, it's also important to realize that this definition was crafted in 1978, and even
though digital games and role-playing games existed at this time, Suits was either unaware
of them or intentionally ignored them. In fact, in Chapter 9 of The Grasshopper, Suits
laments that there is no kind of game with rules for dramatic play through which players

46

could burn off dramatic energy (much like children can burn off excess athletic energy via
play of any number of different sports), even though that is exactly the kind of play that was
enabled by role-playing games like Dungeons & Dragons.10

Although this is a small point, it gets at exactly what is missing from this definition:
Whereas Suits' definition of game is an accurate definition of the word, it offers nothing to
designers seeking to craft good games for others.

For an example of what I mean, take a moment to play Jason Rohrer's fantastic game
Passage: http://hcsoftware.sourceforge.net/passage/ (see Figure 1.2).11 The game only
takes 5 minutes to play, and it does a fantastic job of demonstrating the power that even
short games can have. Try playing through it a couple of times.

Figure 1.2 Passage by Jason Rohrer (released December 13, 2007)

Suits' definition will tell you that yes, this is a game. In fact, it is specifically an "open
game," which he defines as a game that has as its sole goal the continuance of the game.12 In
Passage, the goal is to continue to play for as long as possible…or is it? Passage has
several potential goals, and it's up to the player to choose which of these she wants to
achieve. These goals could include the following:

 Moving as far to the right as possible before dying (exploration)
 Earning as many points as possible by finding treasure chests (achievement)
 Finding a wife (socialization)

The point of Passage as an artistic statement is that each of these can be a goal in life, and
to some extent, these goals are mutually exclusive. If you find a wife early in the game,
getting treasure chests is subsequently more difficult because the two of you together are
unable to enter areas that could be entered singly (however, moving a step to the right now
gains you two points instead of one). If you choose to seek treasure, you will spend your
time exploring the vertical space of the world and won't be able to explore as much of the
scenery to the right. If you choose to move as far to the right as possible, you won't rack up
nearly as much treasure.

In this incredibly simple game, Rohrer exposes a few of the fundamental decisions that
every one of us must make in life and demonstrates how even early decisions can have a
major effect on the rest of our lives. The important thing here is that he is giving players

47

http://hcsoftware.sourceforge.net/passage/

choice and demonstrating to them that their choices matter.

This is an example of one of a number of designer's goals that I will introduce in this book:
experiential understanding. Whereas a linear story like a book can encourage empathy
with a character by exposing the reader to the character's life and the decisions that she has
made, games can allow players to not only understand the outcome of decisions but also to
be complicit in that outcome by giving the player the power and the responsibility of
making decisions and then showing her the outcome wrought by her decisions. Chapter 8,
"Design Goals," explores experiential understanding and other designer's goals in greater
depth.

Sid Meier's Definition
By stating that "a game is a series of interesting decisions," Meier is saying very little about
the definition of the word game (there are many, many things that could be categorized as a
series of interesting decisions and yet are not games) and quite a bit about what he
personally believes makes for a good game. As the designer of games such as Pirates,
Civilization, Alpha Centauri, and many more, Sid Meier is one of the most successful
game designers alive, and he has consistently produced games that present players with
interesting decisions. This, of course, raises the question of what makes a decision
interesting. An interesting decision is generally one where

 The player has multiple valid options from which to choose.
 Each option has both positive and negative potential consequences.
 The outcome of each option is predictable but not guaranteed.

This brings up the second of our designer's goals: to create interesting decisions. If a
player is presented with a number of choices, but one choice is obviously superior to the
others, the experience of deciding which to choose doesn't actually exist. If a game is
designed well, players will often have multiple choices from which to choose, and those
decisions will be tricky ones.

Tracy Fullerton's Definition
As she states in her book, Tracy is much more concerned with giving designers tools to
make better games than she is with the philosophical definition of game. Accordingly, her
definition of a game as "a closed, formal system that engages players in a structured conflict
and resolves its uncertainty in an unequal outcome" is not only a good definition of game
but also a list of elements that designers can modify in their games:

 Formal elements: The elements that differentiate a game from other types of media:
rules, procedures, players, resources, objectives, boundaries, conflict, and outcome.

48

 (Dynamic) systems: Methods of interaction that evolve as the game is played.
 Conflict structure: The ways in which players interact with each other.
 Uncertainty: The interaction between randomness, determinism, and player strategy.
 Unequal outcome: How does the game end? Do players win, lose, or something else?

Another critical element in Fullerton's book is her continual insistence on actually making
games. The only way to become a better game designer is to make games. Some of the
games you'll design will probably be pretty awful—some of mine certainly have been—but
even designing a terrible game is a learning process, and every game you create improves
your design skills and helps you better understand how to make great games.

Jesse Schell's Definition
Schell defines a game as "a problem-solving activity, approached with a playful attitude."
This is similar in many ways to Suits' definition, and like that definition, it approaches the
definition of game from the point of view of the player. According to both, it is the playful
attitude of the player that makes something a game. In fact, Suits argues in his book that two
people could both be involved in the same activity, and to one, it would be a game,
whereas to the other, it would not be. Suits example is a foot race where one runner is just
running because he wants to take part in the race, but the other runner knows that at the
finish line there is a bomb she must defuse before it explodes. According to Suits, although
the two runners would both be running in the same foot race, the one who is simply racing
would follow the rules of the race because of what Suits calls his lusory attitude. On the
other hand, the bomb-defusing runner would break the rules of the game the first chance she
got because she has a serious attitude (as is required to defuse a bomb) and is not engaged
in the game.

Ludus is the Latin word for play, so Suits proposes the term lusory attitude to describe the
attitude of one who willingly takes part in playing a game. It is because of their lusory
attitude that players will happily follow the rules of a game even though there might be an
easier way to achieve the stated goal of the game (what Suits would call the pre-lusory
goal). For example, the pre-lusory goal of golf is to get the golf ball into the cup, but there
are many easier ways to do so than to stand hundreds of yards away and hit the ball with a
bent stick. When people have a lusory attitude, they set challenges for themselves just for
the joy of overcoming them.

So, another design goal is to encourage a lusory attitude. Your games should be designed
to encourage players to enjoy the limitations placed on them by the rules. Think about why
each rule is there and how it changes the player experience. If a game is balanced well and
has the proper rules, players will enjoy the limitations of the rules rather than feel
exasperated by them.

49

Keith Burgun's Definition
Burgun's definition of a game as "a system of rules in which agents compete by making
ambiguous, endogenously meaningful decisions" is his attempt to push the discourse on
games forward from a rut that he feels it has fallen into by narrowing the meaning of game
down to something that can be better examined and understood. The core of this definition
is that the player is making choices and that those choices are both ambiguous (the player
doesn't know exactly what the outcome of the choice will be) and endogenously meaningful
(the choice is meaningful because it has a noticeable effect upon the game system).

Burgun's definition is intentionally limited and purposefully excludes several of the things
that many people think of as games (including foot races and other competitions based on
physical skill) as well as reflective games like The Graveyard, by Tale of Tales, in which
the player experiences wandering through a graveyard as an old woman. Both of these are
excluded because the decisions in them lack ambiguity and endogenous meaning.

Burgun chooses such a limited definition because he wants to get down to the essence of
games and what makes them unique. In doing so, he makes several good points, including
his statement that whether an experience is fun or not has little to do with the question of
whether it is a game. Even a terribly boring game is still a game; it's just a bad game.

In my discussions with other designers, I have found that a lot of contention can exist about
this question of what types of things should fall under the term game. Games are a medium
that has experienced a tremendous amount of growth, expansion, and maturation over the
last couple of decades, and the current explosion of independent game development has
only hastened the pace. Today, more people with disparate voices and backgrounds are
contributing work to the field of games than ever before, and as a result, the definition of
the medium is expanding, which is understandably bothersome to some people because it
can be seen as blurring the lines of what is considered a game. Burgun's response to this is
his concern that rigorously advancing a medium is difficult if we lack a good definition of
the boundaries of what that medium comprises.

Why Care About the Definition of Game?
In his 1953 book Philosophical Investigations, Ludwig Wittgenstein proposed that the term
game, as it is used colloquially, had come at that time to refer to several very different
things that shared some traits (which he likened to a family resemblance) but couldn't be
encapsulated in a single definition. In 1978, Bernard Suits attacked this idea by using his
book, The Grasshopper, to argue very stringently for the specific definition of game that
you read earlier in this chapter. However, as Chris Bateman points out in his book,
Imaginary Games, though Wittgenstein used the word game as his example, he was really
trying to make a larger point: that words are created to define things rather than things being

50

created to meet the definition of words.

In 1974 (between the publications of Philosophical Investigations and The Grasshopper),
the philosopher Mary Midgley published a paper titled "The Game Game" in which she
explored and refuted the "family resemblance" claim by Wittgenstein not by arguing for a
specific definition of game herself but instead by exploring why the word game existed. In
her paper, she agrees with Wittgenstein that the word game came into being long after
games existed, but she makes the statement that words like game are not defined by the
things that they encompass but instead by the needs that they meet. As she states:

Something can be accepted as a chair provided it is properly made for sitting on, whether it consists of a plastic
balloon, a large blob of foam, or a basket slung from the ceiling. Provided you understand the need you can see
whether it has the right characteristics, and aptness for that need is what chairs have in common.13

In her paper, Midgley seeks to understand some of the needs that games fulfill. She
completely rejects the idea that games are closed systems by both citing many examples of
game outcomes that have effects beyond the game and pointing out that games cannot be
closed because humans have a reason for entering into them. To her, that reason is
paramount. The following are just a few reasons for playing games:

 Humans desire structured conflict: As Midgley points out, "The Chess Player's desire
is not for general abstract intellectual activity, curbed and frustrated by a particular set
of rules. It is a desire for a particular kind of intellectual activity, whose channel is the
rules of chess." As Suits pointed out in his definition, the rules that limit behavior are
there precisely because the challenge of those limitations is appealing to players.
 Humans desire the experience of being someone else: We are all acutely aware that
we have but one life to live (or at least one at a time), and play can allow us to
experience another life. Just as a game of Call of Duty allows a player to pretend to
experience the life of a soldier, so too does The Graveyard allow the player to pretend
to experience the life of an old woman, and playing the role of Hamlet allows an actor to
pretend to experience the life of a troubled Danish prince.
 Humans desire excitement: Much popular media is devoted to this desire for
excitement, be it action films, courtroom dramas, or romance novels. The thing that
makes games different in this regard is that the player is actively taking part in the
excitement rather than vicariously absorbing it, as is the case for the majority of linear
media. As a player, you aren't watching someone else be chased by zombies, you're
being chased yourself.

Midgley found it critical to consider the needs that are fulfilled by games in order to
understand both their importance in society and the positive and negative effects that games
can have on the people who play them. Both Suits and Midgley spoke about the potentially
addictive qualities of games in the 1970s, long before video games became ubiquitous and

51

public concern emerged about players becoming addicted. As game designers,
understanding these needs and respecting their power can be incredibly useful.

The Nebulous Nature of Definitions
As Midgley pointed out, thinking of the word game as being defined by the need that it fills
is worthwhile. However, she also stated that a chess player doesn't want to play just any
kind of game; he specifically wants to play chess. Not only is coming up with an all-
encompassing definition for game difficult, it's also true that the same word will mean
different things to different people at different times. When I say that I'm going to play a
game, I usually mean a console or video game; when my wife says the same thing, though,
she usually means Scrabble or another word game. When my parents say they want to play
a game, it means something like Alan R. Moon's Ticket to Ride (a board game that is
interesting but doesn't require players to be overly competitive with each other), and my in-
laws usually mean a game of cards or dominoes when they use the word. Even within our
family, the word has great breadth.

The meaning of the word game is also constantly evolving. When the first computer games
were created, no one could have possibly imagined the multibillion-dollar industry that we
now have or the rise of the fantastic indie renaissance that we've seen over the past several
years. All that they knew was that these things people were doing on computers were kind
of like tabletop war board games (I'm thinking of Space War here), and they were called
"computer games" to differentiate them from the preexisting meanings of game.

The evolution of digital games was a gradual process with each new genre building in
some way on the ones that had come before, and along the way, the term game expanded
further and further to encompass all of them.

Now, as the art form matures, many designers are entering the field from various other
disciplines and bringing with them their own concepts about what can be created with the
technologies and design methodologies that have been developed to make digital games.
(You might even be one of them.) As these new artists and designers enter the space, some
of them are making things that are very different from what we think of as a stereotypical
game. That's okay; in fact, I think it's fantastic! And, this isn't just my opinion. IndieCade,
the international festival of independent games, seeks every year to find games that push the
envelope of what is meant by game. According to Festival Chair Celia Pearce and Festival
Director Sam Roberts, if an independent developer wants to call the interactive piece that
she has created a game, IndieCade will accept it as one.14

Summary
After all these interwoven and sometimes contradictory definitions, you might be

52

wondering why this book has spent so much time exploring the definition of the word game.
I have to admit that in my day-to-day work as an educator and game designer, I don't spend
a lot of time wrestling with the definitions of words. As Shakespeare points out, were a
rose to be named something else, it would still smell as sweet, still have thorns, and still be
a thing of fragile beauty. However, I believe that an understanding of these definitions can
be critical to you as a designer in the following three ways:

 Definitions help you understand what people expect from your games. This proves
especially true if you're working in a specific genre or for a specific audience.
Understanding how your audience defines the term can help you to craft better games for
them.
 Definitions can lead you to understand not only the core of the defined concept but also
the periphery. As you read through this chapter, you encountered several different
definitions by different people, and each had both a core and a periphery (i.e., games
that fit the definition perfectly [the core] and games that just barely fit the definition [the
periphery]). The places where these peripheries don't mesh can be hints at some of the
interesting areas to explore with a new game. For example, the area of disagreement
between Fullerton and Midgley about whether a game is a closed system highlights the
previously untracked ground that in the 2000s grew into alternate reality games (ARGs),
a genre centered on perforating the closed magic circle of play.15

 Definitions can help you speak eloquently with others in the field. This chapter has more
references and footnotes than any other in the book because I want you to be able to
explore the philosophical understanding of games in ways that are beyond the scope of
this one book (especially since this book focuses on the practicalities of actually making
digital games). Following these footnotes and reading the source material can help
improve your critical thinking about games.

The Core Lessons of This Book
This book teaches you how to design a lot more than just games. In fact, it teaches you how
to craft any kind of interactive experience. As I define it:

An interactive experience is any experience created by a designer; inscribed into rules, media, or technology;
and decoded by people through play.

That makes interactive experience an intentionally expansive term. In fact, any time that
you attempt to craft an experience for people—whether you're designing a game, planning a
surprise birthday party, or even planning a wedding—you're using the same tools that you
will learn as a game designer. The processes described in this book are more than just the
proper way to approach game design. They are a meaningful way to approach any design
problem, and the iterative process of design that is introduced in Chapter 7, "Acting Like a
Designer," is the essential method for improving the quality of any design.

53

No one bursts forth from the womb as a brilliant game designer. My friend Chris Swain16 is
fond of saying that "Game design is 1% inspiration and 99% iteration," a play on the
famous quote by Thomas Edison. He is absolutely correct, and one of the great things about
game design (unlike the previously mentioned examples of the surprise party and the
wedding) is that you get the chance to iterate on your designs, playtest the game, make
subtle tweaks, and play it again. With each prototype you make—and with every iteration of
each prototype—your skills as a designer improve. Similarly, after you reach the parts of
this book that teach digital development, be sure to keep experimenting and iterating. The
code samples and tutorials are designed to show you how to make a playable game
prototype, but every tutorial in this book ends where your work as a designer should begin.
Each one of these prototypes could be built into a larger, more robust, better balanced
game, and I encourage you to do so.

Moving Forward
Now that you've experienced a bit of game design and explored various definitions of
game, it's time to move on to a more in-depth exploration of a few different analytical
frameworks that game designers use to understand games and game design. The next chapter
explores various frameworks that have been used over the past several years, and the
chapter that follows synthesizes those into the Layered Tetrad framework used throughout
the remainder of this book.

1. I thank my former professor Jesse Schell for asking me to make this statement publicly
in a class full of people. He also includes this request in his book The Art of Game
Design: A Book of Lenses (Boca Raton, FL: CRC Press, 2008), 1.

2. Robert B. Cialdini. Influence: The Psychology of Persuasion (New York: Morrow,
1993).

3. The card images in this book and in the digital card games presented in the book are
based on Vectorized Playing Cards 1.3, Copyright 2011, Chris Aguilar. Licensed under
LGPL 3—http://www.gnu.org/copyleft/lesser.html,
http://sourceforge.net/projects/vector-cards/.

4. Persi Diaconis, "Mathematical Developments from the Analysis of Riffle Shuffling,"
Groups, Combinatorics and Geometry, edited by Ivanov, Liebeck, and Saxl. World
Scientific (2003): 73–97. Also available online at
http://statweb.stanford.edu/~cgates/PERSI/papers/Riffle.pdf.

5. Bernard Suits, The Grasshopper (Toronto: Toronto University Press, 1978), 56.
6. Tracy Fullerton, Christopher Swain, and Steven Hoffman. Game Design Workshop: A

Playcentric Approach to Creating Innovative Games, 2nd ed. (Boca Raton, FL:
Elsevier Morgan Kaufmann, 2008), 43.

7. Jesse Schell, Art of Game Design: A Book of Lenses (Boca Raton, FL: CRC Press,
2008), 37.

54

http://www.gnu.org/copyleft/lesser.html
http://sourceforge.net/projects/vector-cards/
http://statweb.stanford.edu/~cgates/PERSI/papers/Riffle.pdf

8. Keith Burgun. Game Design Theory: A New Philosophy for Understanding Games
(Boca Raton, FL: A K Peters/CRC Press, 2013), 10, 19.

9. Endogenous means inherent to or arising from the internal systems of a thing, so
"endogenously meaningful decisions" are those decisions that actually affect the game
state and change the outcome. Choosing the color of your avatar's clothing in Farmville
is not endogenously meaningful, whereas choosing the color of your clothing in Metal
Gear Solid 4 is, because the color of your clothing affects whether your avatar is
visible to enemies.

10. Suits, Grasshopper, 95.
11. At this time, Passage is about a decade old, and Rohrer is sometimes not able to keep it

running on newer systems. However, in the past, I've written him about it, and he's
updated the build.

12. Suits contrasts these with closed games, which have a specific goal (for example,
crossing a finish line in a race or ridding yourself of all your cards in Bartok). Suits'
example of an open game is the games of make-believe that children play.

13. Mary Midgley. "The Game Game," Philosophy 49, no. 189 (1974): 231–53.
14. This was stated during the Festival Submission Workshop given by Celia Pearce and

Sam Roberts at IndieCade East 2014 and is paraphrased on the IndieCade submissions
website at http://www.indiecade.com/submissions/faq/.

15. The first large-scale ARG was Majestic (Electronic Arts, 2001), a game that would
phone players in the middle of the night and send them faxes and emails. Smaller-scale
ARGs include the game Assassin, which is played on many college campuses, where
players can "assassinate" each other (usually with Nerf or water guns, or by snapping a
photo) any time that they are outside of classes. One of the fun aspects of these games is
that they are always happening and can interfere with normal life.

16. Chris Swain co-wrote the first edition of Game Design Workshop with Tracy Fullerton
and taught the class of the same name at the University of Southern California for many
years. He is now an entrepreneur and independent game designer.

55

http://www.indiecade.com/submissions/faq/

CHAPTER 2

GAME ANALYSIS FRAMEWORKS

Ludology is the fancy name for the study of games and game design. Over the
past decade, ludologists have proposed various analytical frameworks for games
to help them understand and discuss the structure and fundamental elements of
games and the impact of games on players and society.

This chapter presents a few of the most commonly used frameworks that you
should know as a designer. The next chapter, Chapter 3, "The Layered Tetrad,"
synthesizes ideas from these common frameworks into the Layered Tetrad
framework used throughout this book.

Common Frameworks for Ludology
The frameworks presented in this chapter include the following:

 MDA: First presented by Robin Hunicke, Marc LeBlanc, and Robert Zubek, MDA
stands for mechanics, dynamics, and aesthetics. It is the framework that is most familiar
to professional game designers, and it provides important points to consider about the
difference between how designers and players approach games.
 Formal, Dramatic, and Dynamic Elements: Presented by Tracy Fullerton and Chris
Swain in the book Game Design Workshop, the FDD framework focuses on concrete
analytical tools to help designers make better games and push their ideas further. It owes
a lot to the history of film studies.
 Elemental Tetrad: Presented by Jesse Schell in his book The Art of Game Design, the
elemental tetrad splits games into four core elements: mechanics, aesthetics, story, and
technology.

Each of these frameworks has benefits and drawbacks, and each has contributed to the
Layered Tetrad presented in this book. They are covered here in the order that they were
published.

MDA: Mechanics, Dynamics, and Aesthetics

56

First proposed at the Game Developers Conference in 2001 and formalized in the 2004
paper "MDA: A Formal Approach to Game Design and Game Research,"1 MDA is the most
commonly referenced analytical framework for ludology. The key elements of MDA are its
definitions of mechanics, dynamics, and aesthetics; its understanding of the different
perspectives from which the designer and player view a game; and its proposal that
designers should first approach a game through the lens of aesthetics and then work back
toward the dynamics and mechanics that will generate those aesthetics.

Definitions of Mechanics, Dynamics, and Aesthetics
One of the things that can be confusing about the three frameworks presented in this chapter
is that they each reuse some of the same words, and each framework defines them slightly
differently. MDA defines these terms as follows:2

 Mechanics: The particular components of the game at the level of data representation
and algorithms
 Dynamics: The runtime behavior of the mechanics acting on player inputs and each
other's outputs over time
 Aesthetics: The desirable emotional responses evoked in the player when she interacts
with the game system3

Designer and Player Views of a Game
According to MDA, designers should consider games first in terms of the aesthetics, the
emotions that the designer wants players to feel while playing the game. After a designer
has decided on the aesthetics, she will work backward to the kinds of dynamic play that
would prompt those feelings, and finally to the gameplay mechanics that will create those
dynamics. Players tend to view the game in the opposite way: first experiencing the
mechanics (often by reading the written rules for the game), then experiencing the dynamics
by playing the game, and finally (hopefully) experiencing the aesthetics that were initially
envisioned by the designer (see Figure 2.1).

Figure 2.1 According to MDA, designers and players view a game from different
directions4

Design from Aesthetics to Dynamics to Mechanics
Based on these differing views, MDA proposes that designers should first approach a game

57

by deciding on the emotional response (aesthetics) that they want to engender in the player
and then work backward from that to create dynamics and mechanics that fit this chosen
aesthetic.

For example, children's games are often designed to make each player feel like they're
doing well and have a chance to win up until the very end. To have this feeling, players
must feel that the end of the game is not inevitable and must be able to hope for good luck
throughout the game. Keep this in mind when looking at the layout of a Snakes and Ladders
game.

Snakes and Ladders
Snakes and Ladders is a board game for children that originated in ancient India where it
was known as Moksha Patamu.5 The game requires no skill and is entirely based on
chance. Each turn, a player rolls one die and moves her counter the number of spaces
shown. Counters are not placed on the board initially, so if a player rolls a 1 on her first
turn, she lands on the first space of the board. The goal is to be the first player to reach the
end of the board (space 100). If a player ends her move on a space at the start of a green
arrow (a ladder), she must move to the space at the end of the arrow (for example, a player
ending her move on the 1 space must move her piece to the 38). If a player ends her move
on the start of a red arrow (a snake), she must move her piece to the space at the end of the
arrow (for example, a player ending her move on space 87 must move her piece all the way
down to 24).

In the board layout depicted in Figure 2.2, the positioning of the snakes and ladders is very
important. Here are just a few examples of how:

58

Figure 2.2 A layout for the classic game Snakes and Ladders

 There is a ladder from 1 to 38. This enables a player who rolls a 1 on her first turn
(which would normally feel unlucky) to move immediately to 38 and gain a strong lead.
 There are three snakes in the final row of the game (93 to 73, 95 to 75, and 98 to 79).
These serve to slow any player who is nearing the end of the game.
 The snake 87 to 24 and the ladder 28 to 84 form an interesting pair. If a player lands on
28 and moves to 84, her opponents can hope that she will subsequently land on 87 and
be forced back to 24. Contrastingly, if a player lands on 87 and moves to 24, she can
then hope to land on 28 and be moved back up to 84.

Each of these examples of snake and ladder placement are based on building hope in
players and helping them to believe that dramatic changes in position are possible in the
game. If the snakes and ladders were absent from the board, a player who was significantly
behind the others would have little hope of catching up.

59

In this original version of the game, the desired aesthetic is for the players to experience
hope, reversal of fortune, and excitement in a game in which the players never make any
choices. The mechanic is the inclusion of the snakes and the ladders, and the dynamic is the
intersection of the two where the act of the players encountering the mechanics leads to the
aesthetic feelings of hope and excitement.

Modifying Snakes and Ladders for More Strategic Play
Young adult and adult players often look for more challenge in games and want to feel that
they have won a game not by chance but by making strategic choices along the way. Given
that we as designers want the game to feel more strategic and intentional, it is possible to
modify the rules (an element of the mechanics) without changing the board to achieve this
aesthetic change. One example of this would be accomplished by adding the following
rules:

1. Players each control two pieces instead of one.
2. On her turn, each player rolls two dice.
3. She may either use both dice for one piece or one die for each piece.
4. She may alternatively sacrifice one die and use the other to move one opponent's piece

backward the number of spaces shown on the die.
5. If a player's piece lands on the same space as any opponent's piece, the opponent's

piece is knocked down one row. (For example, a piece knocked off of 48 would fall to
33, and a piece knocked off 33 would fall to 28 and then take the ladder up to 84!)

6. If a player's piece lands on the same space as her own other piece, the other piece is
knocked up one row. (For example, a piece knocked off of 61 could be knocked up to 80
and then follow the ladder to 100!)

These changes allow for a lot more strategic decision making on the part of the players (a
change to the dynamic play of the game). With rules 4 and 5 in particular, it is possible to
directly hurt or help other players,6 which can lead to players forming alliances or grudges.
Rules 1 through 3 also allow for more strategic decisions and make the game much less
susceptible to chance. With the choice of which die to use for either piece, and the option
for a player to choose to not move her own pieces, a smart player will never be forced to
move her own piece onto a snake.

This is but one of many demonstrations of how designers can modify mechanics to change
dynamic play and achieve aesthetic goals.

Formal, Dramatic, and Dynamic Elements
Where MDA seeks to help both designers and game critics better understand and discuss

60

games, the framework of formal, dramatic, and dynamic elements7 was created by Tracy
Fullerton and Chris Swain to help students in their Game Design Workshop class at the
University of Southern California more effectively design games.

This framework breaks games down into three types of elements:

 Formal elements: The elements that make games different from other forms of media or
interaction and provide the structure of a game. Formal elements include things like
rules, resources, and boundaries.
 Dramatic elements: The story and narrative of the game, including the premise.
Dramatic elements tie the game together, help players understand the rules, and
encourage the player to become emotionally invested in the outcome of the game.
 Dynamic elements: The game in motion. After players turn the rules into actual
gameplay, the game has moved into dynamic elements. Dynamic elements include things
like strategy, behavior, and relationships between game entities. It is important to note
that this is related to the use of the term dynamics in MDA but is broader because it
includes more than just the runtime behavior of the mechanics.

Formal Elements
Game Design Workshop proposes seven formal elements of games that differentiate them
from other forms of media:

 Player interaction pattern: How do the players interact? Is the game single-player,
one-on-one, team versus team, multilateral (multiple players versus each other, as is the
case in most board games), unilateral (one player versus all the other players like some
Mario Party minigames or the board game Scotland Yard), cooperative play, or even
multiple individual players each working against the same system?
 Objectives: What are the players trying to achieve in the game? When has someone
won the game?
 Rules: Rules limit the players' actions by telling them what they may and may not do in
the game. Many rules are explicitly written and included in the game, but others are
implicitly understood by all players. (For example, no rule says so, but it's implicitly
understood that you can't steal money from the bank in Monopoly.)
 Procedures: The types of actions taken by the players in the game. A rule in Snakes and
Ladders tells you to roll the die and move the number of spaces shown. The procedure
dictated by that rule is the actual action of rolling the die and moving the piece.
Procedures are often defined by the interaction of a number of rules. Some are also
outside of the rules; though it is not explicitly dictated in the rules of poker, bluffing is an
important procedure in the game.

61

 Resources: Resources are elements that have value in the game. These include things
like money, health, items, and property.
 Boundaries: Where does the game end and reality begin? In his book Homo Ludens,
Johan Huizinga describes how games create a temporary world where the rules of the
game apply rather than the rules of the ordinary world, something that has come to be
known as the "magic circle." In a sport like football or ice hockey, the magic circle is
defined by the boundaries of the playing field; but in an alternative reality game like I
Love Bees (the ARG for Halo 2), the boundaries are more vague.
 Outcome: How did the game end? There are both final and incremental outcomes in
games. In a zero-sum game like chess, the final outcome is that one player wins and the
other loses. In a pen-and-paper roleplaying game like Dungeons & Dragons, there are
incremental outcomes when a player defeats an enemy or gains a level, and even death is
often not a final outcome because it is possible to resurrect players.

According to Fullerton, another way to look at formal elements is that the game ceases to
exist when they are removed. If one removes the rules, outcome, and so on from a game, it
ceases to be a game.

Dramatic Elements
Dramatic elements help make the rules and resources more understandable to players and
can give players greater emotional investment in the game.

Fullerton presents three types of dramatic elements:

 Premise: The basic story of the game world. In Monopoly, the premise is that each of
the players is a real-estate developer trying to get a monopoly on corporate real estate in
Atlantic City, New Jersey. In Donkey Kong, the player is trying to single-handedly save
Pauline from a gorilla that has kidnapped her. The premise forms the basis around which
the rest of the game's narrative is built.
 Character: Characters are the individuals around whom the story revolves, be it the
nameless and largely undefined silent first-person protagonist of games like Quake or a
character like Nathan Drake, from the Uncharted series of games, who is as deep and
multidimensional as the lead characters in most movies. Unlike movies, where the goal
of the director is to encourage the audience to have empathy for the film's protagonist, in
games, the player actually is the protagonist character, and designers must choose
whether the protagonist will act as an avatar for the player (conveying the emotions,
desires, and intentions of the player into the world of the game and following the wishes
of the player) or as a role that the player must take on (so that instead the player acts out
the wishes of the game character). The latter is the most common of the two and is much
simpler to implement.

62

 Story: The plot of the game. Story encompasses the actual narrative that takes place
through the course of the game. The premise sets the stage on which the story takes
place.

One of the central purposes of dramatic elements that is not specifically covered in the
preceding three types is that of helping the player to better understand the rules. In the board
game Snakes and Ladders, the fact that the green arrows in our diagram are called
"ladders" in the game implies that players are meant to move up them. In 1943, when
Milton Bradley began publishing the game in the United States, they changed the name to
Chutes and Ladders.8 Presumably, this helped American children to better grasp the rules
of the game because the chutes (which look like playground slides) were a more obvious
path downward than the original snakes, just as the ladders were an obvious path upward.

In addition to this, many versions of the game have included images of a child doing a good
deed at the bottom of a ladder and an image of her being rewarded for doing so at the top of
the ladder. Conversely, the top of chutes depicted a child misbehaving, and the bottom of
the chute showed her being punished for doing so. In this way, the narrative embedded in
the board also sought to encourage the moral standards of 1940s America. Dramatic
elements cover both the ability of the embedded narrative to help players remember rules
(as in the case of the snakes being replaced by chutes) and the ability of the game narrative
to convey meaning to the players that persists outside of the game (as was intended by the
images of good and bad deeds and their consequences).

Dynamic Elements
Dynamic elements are those that occur only when the game is being played. The core
concepts of Fullerton's dynamic game elements are:

 Emergence: Collisions of seemingly simple rules can lead to unpredictable outcomes.
Even an incredibly simplistic game like Snakes and Ladders can lead to unexpected
dynamic experiences. If one player of the game happened to exclusively land on ladders
throughout the game while another exclusively landed on snakes, each would have a
very different experience of the game. If you consider the six "more strategic" rules
proposed earlier in this chapter, you can easily imagine that the range of gameplay
experienced by players would expand due to the new rules. (For example, now, instead
of just fate being against player A, perhaps player B would choose to attack A at every
possible opportunity, leading to a very negative play experience for A.) Simple rules
lead to complex and unpredictable behavior. One of a game designer's most important
jobs is to attempt to understand the emergent implications of the rules in a game.
 Emergent narrative: In addition to the dynamic behavior of mechanics covered in the
MDA model, Fullerton's model also recognizes that narrative can also be dynamic, with
a fantastic breadth of narratives emerging from the gameplay itself. Games, by their

63

nature, put players in extra-normal situations, and as a result, they can lead to interesting
stories. This is one of the central appeals of pen-and-paper roleplaying games like
Dungeons & Dragons, in which a single player acts as the Dungeon Master and crafts a
scenario for the other players to experience and characters for them to interact with.
This is different from the embedded narrative covered by Fullerton's dramatic elements
and is one of the entertainment possibilities that is unique to interactive experiences.
 Playtesting is the only way to understand dynamics: Experienced game designers can
often make better predictions about dynamic behavior and emergence than novice
designers, but no one understands exactly how the dynamics of a game will play out
without playtesting them. The six additional rules proposed for Snakes and Ladders
seem like they would increase strategic play, but it is only through several rounds of
playtests that one could determine the real effect the rules changes would have on the
game. Repeated playtesting reveals information about the various dynamic behaviors
that a game could have and helps designers understand the range of experiences that
could be generated by their game.

The Elemental Tetrad
In The Art of Game Design: a Book of Lenses,9 Jesse Schell describes the elemental tetrad,
through which he presents his four basic elements of games:

 Mechanics: The rules for interaction between the player and the game. Mechanics are
the elements in the tetrad that differentiate games from all noninteractive forms of media
(like film or books). Mechanics contain things like rules, objectives, and the other
formal elements described by Fullerton. This is different from the mechanics presented
by MDA because Schell's use of the term differentiates between game mechanics and the
underlying technology that enables them.
 Aesthetics: Aesthetics describe how the game is perceived by the five senses: vision,
sound, smell, taste, and touch. Aesthetics cover everything from the soundtrack of the
game to the character models, packaging, and cover art. This is different from MDA's
use of the word "aesthetics" because MDA uses the word to refer to the emotional
response engendered by the game, whereas Schell uses the word to refer to assets that
are crafted by the game developers like actual game art and sound.
 Technology: This element covers all the underlying technology that makes the game
work. Although this most obviously refers to things such as console hardware, computer
software, rendering pipelines, and such, it also covers technological elements in board
games. Technology in board games can include things like the type and number of dice
that are chosen, whether dice or a deck of cards are used as a randomizer, and various
stats and tables used to determine the outcome of actions. In fact, the Technology Award
at the IndieCade game conference in 2012 went to Zac S. for Vornheim, a collection of
tools—in the form of a printed book—to be used by game masters when running tabletop

64

roleplaying games set in a city.10

 Story: Schell uses the term story to convey everything covered by Fullerton's dramatic
elements, not just what she terms "story." Story is the narrative that occurs in your game
and includes both premise and characters as well.

Schell arranges these elements into the tetrad shown in Figure 2.3.

Figure 2.3 The elemental tetrad by Jesse Schell11

The tetrad shows how the four elements all interrelate with each other. In addition, Schell
points out that the aesthetics of the game are always very visible to the player (again, this is
different from the aesthetic feelings described in MDA), and the technology of the game is
the least visible with players generally having a better understanding of the game mechanics
(e.g., the way that snakes and ladders affect the position of the player) than game technology
(e.g., the probability distribution of a pair of six-sided dice). Schell's tetrad does not touch
on dynamic play of the game and is more about the static elements of the game as it comes
in a box (in the case of a board game) or on disk. Schell's elemental tetrad is discussed and
expanded considerably in the next chapter as it forms the elemental aspect of the Layered
Tetrad.

65

Summary
Each of these frameworks for understanding games and interactive art approaches the
understanding of games from a different perspective:

 MDA seeks to demonstrate and concretize the idea that players and designers approach
games from different directions and proposes that designers can be more effective by
learning to see their games from the perspective of their players.
 The Formal, Dramatic, and Dynamic elements framework breaks game design into
specific components that can each be considered and improved. It is meant to be a
designer's toolkit and to enable designers to isolate and examine all the parts of their
games that could be improved. FDD also asserts the primacy of narrative in player
experience.
 The Elemental Tetrad is more of a game developer's view on games. It separates the
basic elements of a game into the sections that are generally assigned to various teams:
game designers handle mechanics, artists handle aesthetics, writers handle story, and
programmers handle technology.

The following chapter presents the Layered Tetrad as a combination of and expansion on
the ideas presented in all of these frameworks. It is important to understand these
frameworks as the underlying body of theory that led to the Layered Tetrad, and I strongly
recommend reading the original paper and books in which they were presented.

1. Robin Hunicke, Marc LeBlanc, and Robert Zubek, "MDA: A Formal Approach to
Game Design and Game Research," in Proceedings of the AAAI workshop on
Challenges in Game AI Workshop (San Jose, CA: AAAI Press, 2004),
http://www.cs.northwestern.edu/~hunicke/MDA.pdf.

2. Ibid. p. 2.
3. Note that this is a very singular definition of aesthetics. No other framework defines

aesthetics this way. Aesthetics usually refers to the branch of philosophy having to do
with notions of beauty, ugliness, etc. And, more colloquially, a design aesthetic is the
cohesive intent of a design.

4. Adapted from: Hunicke, LeBlanc, and Zubek, "MDA: A Formal Approach to Game
Design and Game Research," 2.

5. Jack Botermans, The Book of Games: Strategy, Tactics, & History (New York /
London: Sterling, 2008), 19. 38. This enables a player who rolls a 1 on her first turn
(which would normally feel unlucky) to move immediately to 38 and gain a strong lead.
24. Contrastingly, if a player lands on 87 and moves to 24, she can then hope to land on
28 and be moved back up to 84.

6. An example of how this could be used to help another player would be a situation in
which knocking another player's piece down a row would land the piece on the

66

http://www.cs.northwestern.edu/~hunicke/MDA.pdf

beginning of a ladder.
7. Tracy Fullerton, Christopher Swain, and Steven Hoffman. Game Design Workshop: A

Playcentric Approach to Creating Innovative Games, 2nd ed. (Boca Raton, FL:
Elsevier Morgan Kaufmann, 2008).

8. About.com entry on Chutes and Ladders versus Snakes and Ladders:
http://boardgames.about.com/od/gamehistories/p/chutes_ladders.htm. Last accessed
March 1, 2014.

9. Jesse Schell, The Art of Game Design: a Book of Lenses (Boca Raton, FL: CRC Press,
2008).

10. http://www.indiecade.com/2012/award_winners/.
11. Adapted from Schell, The Art of Game Design, 42.

67

http://boardgames.about.com/od/gamehistories/p/chutes_ladders.htm
http://www.indiecade.com/2012/award_winners/

CHAPTER 3

THE LAYERED TETRAD

The previous chapter presented you with various analytical frameworks for
understanding games and game design. This chapter presents the Layered
Tetrad, a combination and extension of many of the best aspects of those
frameworks. Each layer of the Layered Tetrad is further expanded in one of the
following chapters.

The Layered Tetrad tool helps you understand and create the various aspects of
a game. It helps you analyze games you love and look at your game holistically,
leading to an understanding of not only the game's mechanics but also their
implications in terms of play, socialization, meaning, and culture.

The Layered Tetrad is an expansion and combination of the ideas expressed by the three
game analysis frameworks presented in the previous chapter. The Layered Tetrad does not
define what a game is. Rather, it is a tool to help you understand all the different elements
that need to be designed to create a game and what happens to those elements both during
play and beyond as the game becomes part of culture.

The Layered Tetrad is composed of four elements—as was Schell's elemental tetrad—but
those four elements are experienced through three layers. The first two layers—inscribed
and dynamic—are based on the division between Fullerton's formal and dynamic elements.
In addition, a third cultural layer is added that covers the game's life and effects outside of
play, providing a link between game and culture that is critical to understand for us to be
responsible game designers and creators of meaningful art.

Each of the layers is described briefly in this chapter, and each layer has a chapter devoted
to it later in the book.

The Inscribed Layer
The inscribed layer of the tetrad (see Figure 3.1) is very similar to Schell's elemental
tetrad. The definitions of the four elements are similar to Schell's, but they are limited to the
aspects of the game that exist when the game is not being played.

68

Figure 3.1 The inscribed layer of the Layered Tetrad1

 Mechanics: The systems that define how the player and the game will interact. This
includes the rules of the game and the following additional formal elements from
Fullerton's book: player interaction patterns, objectives, resources, and boundaries.
 Aesthetics: Aesthetics describe how the game looks, sounds, smells, tastes, and feels.
Aesthetics cover everything from the soundtrack of the game to the character models,
packaging, and cover art. This definition differs from the use of the word "aesthetics" in
the MDA (Mechanics, Dynamics, Aesthetics) framework because the MDA used the
word to refer to the emotional response engendered by the game, whereas Schell and I
use the word to refer to game elements that are sensed by the player such as art and
sound assets.
 Technology: Just as with Schell's technology element, this element covers all the
underlying technology that makes the game work for both paper and electronic games.
For digital games, the technology element is primarily developed by programmers, but it
is vital for designers to understand this element because the technology written by
programmers forms the possibility space of decisions that can be made by game
designers. This understanding is also critical because a seemingly simple design
decision (for example, let's move this level from solid ground onto a rocking ship in a
massive storm) can require thousands of hours of development time to implement.
 Narrative: Schell uses the term "story" in his elemental tetrad, but I've chosen to use
the broader term "narrative" to encompass the premise and characters in addition to the
plot and to be more in line with Fullerton's use of these terms. The inscribed narrative
includes all pre-scripted story and pre-generated characters that are in the game.

The Dynamic Layer
As in Fullerton's book Game Design Workshop, the dynamic layer (see Figure 3.2)

69

emerges when the game is played.

Figure 3.2 The dynamic layer positioned relative to the inscribed layer

As you can see in the figure, it is players who take the static inscribed layer of the game and
from it construct the dynamic layer. Everything in the dynamic layer arises from the game
during play, and the dynamic layer is composed of both elements in the players' direct
control and of the results of their interaction with the inscribed elements. The dynamic layer
is the realm of emergence, the phenomenon of complex behavior arising from seemingly
simple rules. The emergent behavior of a game is often difficult to predict, but one of the
great skills of game design that you will build over time is the ability to do so, or at least
make pretty good guesses. The four dynamic elements are:

 Mechanics: Whereas inscribed mechanics covers rules, objectives, and so on, the
dynamic mechanics cover how the players interact with those inscribed elements.
Dynamic mechanics include procedures, strategies, emergent game behavior, and
eventually the outcome of the game.
 Aesthetics: Dynamic aesthetics cover the way that aesthetic elements are generated for
the player during play. This includes everything from procedural art (digital game art or
music generated on the fly by computer code) to the physical strain that can result from
having to mash a button repeatedly over a long period of time.
 Technology: Dynamic technology describes the behavior of the technological
components of a game during play. This covers how a pair of dice never actually seems
to generate the smooth bell curve of results predicted by mathematical probability. It
also covers nearly everything that is done by computer code in digital games. One
specific example of this could be the performance of the game's artificial intelligence

70

code for enemies, but in its broadest sense, dynamic technology covers absolutely
everything that a digital game's code does after the game has been launched.
 Narrative: Dynamic narrative refers to stories that emerge procedurally out of game
systems. This can mean an individual player's path through a branching scripted
narrative such as L.A. Noire or Heavy Rain, the family story created by a play through
The Sims, or the stories generated by team play with other human players. In 2013, the
Boston Red Sox baseball team went from worst to first in a story that mirrored the city
of Boston's recovery from the bombing at the 2013 Boston Marathon. That kind of story,
enabled by the rules of professional baseball, also fits under dynamic narrative.

The Cultural Layer
The third and final layer of the Layered Tetrad is cultural, and it describes the game beyond
play (see Figure 3.3). The cultural layer covers both the impact of culture upon the game
and the impact of the game upon culture. The community of players around the game moves
it into the cultural layer, and at this point players actually have more control and ownership
over the game than the designers, and it is through this layer that our societal responsibility
as designers becomes clear.

Figure 3.3 The cultural layer exists at the collision of the game and society

The delineations between the four elements are much blurrier in the cultural layer, but it is
still worthwhile to approach this layer through the lens of the four elements:

71

 Mechanics: The simplest form of cultural mechanics is represented by things like game
mods (modifications to a game that are created by players to affect the inscribed
mechanics of the game). This also covers things as complex as the impact that the
emergent play of a game can have on society. For instance, the much-maligned ability for
the player character in Grand Theft Auto 3 to sleep with a prostitute and then kill her to
get his money back was a result of emergent dynamic mechanics in the game, but it had a
massive impact on the perception of the game by the general public (which is part of the
cultural layer).
 Aesthetics: As with the mechanics, cultural aesthetics can cover things like fan art,
remixes of the music for the game or other aesthetic fan activities like cosplay (short for
costume play, when fans of the game dress in costume to resemble game characters).
One key point here is that authorized transmedia properties (i.e., a conversion of the
game's intellectual property [IP] to another medium by the owners of that IP, such as the
movie version of Tomb Raider, a Pokémon lunchbox, etc.) are not part of the cultural
layer. This is because authorized transmedia properties are controlled by the original
owners of the game's intellectual property, whereas cultural aesthetics are controlled
and created by the community of the game's players.
 Technology: Cultural technology covers both the use of game technologies for non-
game purposes (e.g., flocking algorithms for game characters could also be used in
robotics) and the ability of technology to affect the game experience. Back in the days of
the NES (Nintendo Entertainment System), having an Advantage or Max controller gave
the player the ability to press turbo buttons (which was an automated method of pressing
the regular A or B controller buttons very rapidly). This was a massive advantage in
some games and had an effect on the game experience. Cultural technology also covers
the expansion of possibilities of what the word "game" can mean by continually
expanding the possibility space of gaming and the technological aspects of mods made
by players to alter the inscribed elements of a game.
 Narrative: Cultural narrative encompasses the narrative aspects of fan-made
transmedia properties created from the game (e.g., fan fiction, the narratives of fan-made
tribute movies, and the fan-made characters and premises that are part of some game
mods). It also covers the stories told about the game in culture and society, including
both the stories that vilify games like Grand Theft Auto and the stories that extol the
virtues and artistic merit of games like Journey and Ico.

The Responsibility of the Designer
All designers are aware of their responsibility for the inscribed layer of the game. It's
obvious that the developers of the game must include clear rules, interesting art, and so on
to enable and encourage players to play a game.

At the dynamic layer, some designers get a little muddier about their responsibility. Some

72

designers are surprised by the behavior that emerges out of their games and want to pass
responsibility for that behavior on to the players. For example, a few years ago, Valve
decided to give hats to players of their game Team Fortress 2. The mechanic they chose
was to randomly reward hats to players who were logged in at randomly selected times.
Because the distribution of hats was based exclusively on whether the player was logged in
to a game at the right time, servers sprouted up that had players camping in them—not
actually playing the game—just waiting for hat drops. Valve discovered this behavior and
chose to punish the players for it by taking hats back from any player that they suspected of
having camped on a server rather than actually playing the game.

One way of interpreting this is to see the players as trying to cheat the game. However,
another is to realize that the players were just engaging in the most efficient method for
obtaining hats as defined by the rules for hat drops that Valve had created. Because the
system was designed to give players hats any time they were online regardless of whether
they were actually doing anything, the players settled on the easiest path to get the hats. The
players may not have honored the intent of the designers of the hat drop system, but they
didn't cheat the system itself. Their dynamic behavior was exactly what was implied by the
rules of the system that Valve set in place. As you can see from this example, the designer is
also responsible for the experience at the dynamic layer through the implications of the
systems she designs. In fact, one of the most important aspects of game design is the
anticipation and crafting of the dynamic player experience. Of course, doing so is a very
difficult task, but that's part of what makes it interesting.

So, what is the designer's responsibility at the cultural layer? As a result of most game
designers rarely if ever considering the cultural layer, video games are generally regarded
in society as puerile and vulgar—selling violence and misogyny to teenage boys. You and I
know that this doesn't have to be the case and that it isn't actually true of many or even most
games, but this is the ubiquitous perception among the general public. Games can teach,
games can empower, and games can heal. Games can promote pro-social behavior and help
players learn new skills. A ludic attitude and some quickly devised rules can make even the
dullest task enjoyable. As a designer, you are responsible for what your game says to
society about gaming and for the impact that it has on players. We have become so good at
making games compelling that some players are addicted to them to their detriment. Some
designers have even made games that attempted to scam children into spending hundreds or
thousands of dollars (eventually leading to a massive class-action lawsuit in at least one
case). This kind of behavior by designers damages the reputation of games in society and
prevents many people from considering games worthy of either their time or of being
regarded as art, and that's truly sad.

I believe that it is our responsibility as designers to promote pro-social, thoughtful
behavior through our games and to respect our players and the time that they dedicate to
experiencing what we create.

73

Summary
As demonstrated in this chapter, it's important to explicitly realize that the three layers of
the Layered Tetrad represent a transition of ownership from the developers of the game to
the players of the game. Everything in the inscribed layer is owned, developed, and
implemented by the game designers and developers. The inscribed layer is completely
within the developers' control.

The dynamic layer is the point at which the game is actually experienced, so game
designers require that players take action and make decisions for the games inscribed by the
designers to actually be experienced. Through players' decisions and their effect on game
systems, players take some ownership of the experience, yet that experience is still subject
to the inscribed decisions of the developers. Thus, the ownership over the dynamic layer is
shared between the developers and the players.

At the cultural layer, the game is no longer under the developers' control. This is why things
like game mods fit in the cultural layer; through a game mod, a player takes control of and
changes inscribed aspects of the game. Of course, most of the original inscribed game still
remains, but the player (as mod developer) determines which inscribed elements she
chooses to leave and which she chooses to replace; the player is in control. This is also
why I have excluded authorized transmedia from the cultural layer. The developers and
owners of the inscribed game maintain ownership over the authorized transmedia, and the
cultural layer is defined by the shift of ownership to the players and the communities that
surround the game. Additionally, the aspect of the cultural layer that covers the perception
of the game by non-players in society is also largely controlled by the player community's
representation of their gameplay experience. People who don't play a game have their
opinion of that game shaped by the media they read, which was (hopefully) written by
people who did actually play the game. However, even though the cultural layer is largely
controlled by players, the developers and designers of a game still have an important
influence over and responsibility for the game and its effect on society.

The next three chapters each cover one layer of the Layered Tetrad and reveal it in more
detail.

1. Adapted from: Jesse Schell, The Art of Game Design: A Book of Lenses (Boca Raton,
FL: CRC Press, 2008), 42.

74

CHAPTER 4

THE INSCRIBED LAYER

This is the first of three chapters that explore the layers of the Layered Tetrad in
greater depth.

As you learned in Chapter 3, "The Layered Tetrad," the inscribed layer covers
all elements that are directly designed and encoded by game developers.

In this chapter, we look at the inscribed aspects of all four elements: mechanics,
aesthetics, narrative, and technology.

Inscribed Mechanics
The inscribed mechanics are most of what one would think of as the traditional job of the
game designer. In board games, this includes designing the board layout, the rules, the
various cards that might be used, and any tables that could be consulted. Much of the
inscribed mechanics are described very well by Tracy Fullerton's book Game Design
Workshop in her chapter on formal elements of games, and for the sake of lexical solidarity
(and my distaste for every game design book using different terminology), I reuse her
terminology throughout this section of the chapter as much as the Layered Tetrad framework
allows.

In Chapter 2, "Game Analysis Frameworks," I listed seven formal elements of games that
were presented in Game Design Workshop: player interaction patterns, objectives, rules,
procedures, resources, boundaries, and outcomes. In the formal, dramatic, and dynamic
elements framework, these seven elements constitute the aspects that make games different
from other media.

Inscribed mechanics are a bit different from this, though there is a lot of overlap because
mechanics is the element of the tetrad that is unique to games. However, the core of the
inscribed layer is that everything in it is intentionally designed by a game developer, and
the mechanics are no exception. As a result of this, inscribed mechanics does not include
procedures or outcomes (although they are part of Fullerton's formal elements) because
both are controlled by the player and therefore part of the dynamic layer. We'll also add a
couple of new elements to give us the following list of inscribed mechanical elements:

75

 Objectives: Objectives cover the goals of the players in the game. What are the players
trying to accomplish?
 Player relationships: Player relationships define the ways that players combat and
collaborate with each other and the game. How do the players' objectives intersect, and
does this cause them to collaborate or compete?
 Rules: Rules specify and limit player actions. What can and can't the players do to
achieve their objective?
 Boundaries: Boundaries define the limits of the game and relate directly to the magic
circle. Where are the edges of the game? Where does the magic circle exist?
 Resources: Resources include assets or values that are relevant within the boundaries
of the game. What does the player own in-game that enables her in-game actions?
 Spaces: Spaces define the shape of the game space and the possibilities for interaction
therein. This is most obvious in board games, where the board itself is the space of the
game.
 Tables: Tables define the statistical shape of the game. How do players level up as they
grow in power? What moves are available to a player at a given time?

All of these inscribed mechanical elements interact with each other, and overlap certainly
exists between them (e.g., the tech tree in Civilization is a table that is navigated like a
space). The purpose of dividing them into these seven categories for this book is to help
you as a designer think about the various possibilities for design in your game. Not all
games have all elements, but as with the "lenses" in Jesse Schell's book The Art of Game
Design: A Book of Lenses, these inscribed mechanical elements are seven different ways to
look at the various things that you can design for a game.

Objectives
Although many games have an apparently simple objective—to win the game—in truth,
every player constantly weighs several objectives every moment of your game. These can
be categorized based on their immediacy and their import to the player, and some
objectives may be considered very important to one player while being less important to
another.

Immediacy of Objectives
As shown in the image in Figure 4.1 from the beautiful game Journey by thatgamecompany
(TGC), nearly every screen of a modern game presents the player with short-, mid-, and
long-term objectives.

76

Figure 4.1 Short-, mid-, and long-term objectives in the first level of Journey with
objectives highlighted in green, blue, and purple respectively

 Short-term objectives: The player wants to charge her scarf (which enables flying in
Journey), so she is singing (the white sphere around her) to draw the highlighted scarf
pieces to her. She also is drawn to explore the nearby building.
 Mid-term objectives: Three additional structures can be seen near the horizon.
Because the rest of the desert is largely barren, the player is attracted to these ruins and
is very likely to head toward one of them (this indirect guidance strategy is used several
times throughout Journey and is analyzed in Chapter 13, "Guiding the Player").
 Long-term objectives: In the first few minutes of the game, the player is shown the
mountain with the shaft of light (shown in the top-left corner of Figure 4.1), and her
long-term goal throughout the game is to reach the top of this mountain.

Importance of Objectives
Just as objectives vary in immediacy, they also vary in importance to the player. An open-
world game like Skyrim by Bethesda Game Studios has both primary and optional
objectives. Some players may choose to exclusively seek the primary objectives and can
play through Skyrim in as little as 10 to 20 hours, whereas others who want to explore
various side quests and optional objectives can spend more than 400 hours in the game
without exhausting the content (and even without finishing the primary objectives). Optional
objectives are often tied to specific types of gameplay; in Skyrim, a whole series of
missions exists for players who want to join the Thieves Guild and specialize in stealth and
theft. Other series of missions are also available for those who want to focus on archery or
melee1 combat. This ensures that the game can adapt to the varying gameplay styles of
different players.

77

Conflicting Objectives
As a player, the objectives that you have will often conflict with each other or compete for
the same resources. In a game like Monopoly, the overall objective of the game is to finish
the game with the most money, but you must give up money to purchase assets like property,
houses, and hotels that will eventually make you more money later. Looking at the design
goal of presenting the player with interesting choices, a lot of the most interesting choices
that a player can make are those that are double-edged, benefitting one objective while
hurting another.

Approaching it from a more pragmatic perspective, each objective in the game takes time to
complete, and a player may only have a certain amount of time that she is willing to devote
to the game. Returning to the Skyrim example, many people (myself included) never
finished the main quest of Skyrim because they spent all of their time playing the side quests
and lost track of the urgency of the main story. Presumably, the goal of Skyrim's designers
was to allow each player to form her own story as she played through the game—and it's
possible that the designers wouldn't care that I hadn't finished the main quest as long as I
enjoyed playing the game—but as a player, I felt that the game ended not with a bang but a
whimper as the layers upon layers of quests I was given had seemingly smaller and smaller
returns. If, as a designer, it's important to you that your players complete the main quest of
the game, you need to make sure that the player is constantly reminded of the urgency of the
task and (unlike many open world games) you might need to have consequences for the
player if she does not complete the main quest in a timely manner. As an example, in the
classic game Star Control, if the player did not save a certain alien species within a given
amount of time from the start of the game, the species' planet actually disappeared from the
universe.

Player Relationships
Just as an individual player has several objectives in mind at any given time, the objectives
that players have also determine relationships between them.

Player Interaction Patterns
In Game Design Workshop, Fullerton lists seven different player interaction patterns:

 Single player versus game: The player has the objective of beating the game.
 Multiple individual players versus game: Several co-located players each have the
objective of beating the game, but they have little or no interaction with each other. This
can often be seen in MMOs (massively multiplayer online roleplaying games [also seen
as "MMORPGs"]) such as World of Warcraft when players each seek to succeed at their
missions in the same game world but are not required to interact with each other.

78

 Cooperative play: Multiple players share the common objective of beating the game
together.
 Player versus player: Each of two players has the objective of defeating the other.
 Multilateral competition: The same as player versus player, except that there are more
than two players, and each player is trying to defeat all the others.
 Unilateral competition: One player versus a team of other players. An example is the
board game Scotland Yard (also called Mr. X), where one player plays a criminal trying
to evade the police and the other 2 to 4 players of the game are police officers trying to
collaborate to catch the criminal.
 Team competition: Two teams of players, each with the objective of beating the other.

Some games, such as BioWare's Mass Effect, provide computer-controlled allies for the
player. In terms of designing player interaction patterns, you can think of these computer-
controlled allies either as an element of the single player's abilities in the game or as
proxies for other players that could play the game, so a designer could approach a single-
player game with computer-controlled allies either as single player versus game or as
cooperative play.

Objectives Define Player Relationships and Roles
In addition to the interaction patterns listed in the preceding section, various combinations
of them also exist, and in several games, one player might be another player's ally at one
point and their competitor at another. For example, when trading money for property in a
game such as Monopoly, two players make a brief alliance with each other, even though the
game is primarily multilateral competition.

At any time, the relationship of each player to the game and to other players is defined by
the combination of all the players' layered objectives. These relationships lead each player
to play one of several different roles:

 Protagonist: The protagonist role is that of the player trying to conquer the game.
 Competitor: The player trying to conquer other players. This is usually done solely to
win the game, but in rare cases can be done on behalf of the game (e.g., in the 2004
board game Betrayal at House on the Hill, partway through the game, one of the players
is turned evil and then must try to kill the other players).
 Collaborator: The player working to aid other players.
 Citizen: The player in the same world as other players but not really collaborating or
competing with them.

In many multiplayer games, all players will play each of these roles at different times, and

79

as you'll see when we look into the dynamic layer, different types of players prefer different
roles.

Rules
Rules limit the players' actions. Rules are also the most direct inscription of the designer's
concept of how the game should be played. In the written rules of a board game, the
designer attempts to inscribe and encode the experience that she wants for the players to
have when they play the game. Later, the players decode these rules through play and
hopefully experience something like what the designer intended.

Unlike paper games, digital games usually have very few inscribed rules that are read
directly by the player; however, the programming code written by game developers is
another way of encoding rules that will be decoded through play. Because rules are the
most direct method through which the game designer communicates with the player, rules
act to define many of the other elements. The money in Monopoly only has value because
the rules declare that players can use it to buy assets and other resources.

Explicitly written rules are the most obvious form of rules, but implicit rules also exist. For
example, when you play poker, an implicit rule is that you shouldn't hide cards up your
sleeve. This is not explicitly stated in the rules of poker, but every player understands that
doing so would be cheating.2

Boundaries
Boundaries define the edges of the space and time in which the game takes place. Within the
boundaries, the rules and other aspects of the game apply: poker chips are worth something,
it is okay to slam into other hockey players on the ice, and which car crosses an arbitrary
line on the ground first matters. Sometimes, boundaries are physical, like the wall around a
hockey rink. Other times, boundaries are less obvious. When someone plays an ARG
(Alternate Reality Game), the point of playing the game is that it surrounds and permeates
the player's normal life. In one of the first ARGs, Majestic (a 2001 game by Electronic
Arts), players of the game gave EA their phone number, fax number, email address, and
home address and then would receive phone calls, faxes, and so on at all times of the day
from characters in the game. The intent of the game was to blur the boundaries between
gaming and everyday life.

Resources
Resources are things of value in a game. These can be either assets (in-game objects) or
non-material attributes. Assets in games include things such as the equipment that Link has
collected in a Legend of Zelda game; the resource cards that players earn in the board game

80

Settlers of Catan; and the houses, hotels, and property deeds that players purchase in
Monopoly. Attributes often include things such as health, the amount of air left when
swimming under water, and experience points. Because money is so versatile and
ubiquitous, it is somewhere between the two. A game can have physical money assets (like
the cash in Monopoly), or it can have a nonphysical money attribute (like the amount of
money that a player has in Grand Theft Auto).

Spaces
Designers are often tasked with creating navigable spaces. This includes both designing the
board for a board game and designing virtual levels in a digital game. In both cases, you
want to think about both flow through the space and making the areas of the space unique
and interesting. Things to keep in mind when designing spaces include the following:

 The purpose of the space: Architect Christopher Alexander spent years researching
why some spaces were particularly well suited to their use and why others weren't. He
distilled this knowledge into the concept of design patterns in his book A Pattern
Language,3 which explored various patterns for good architectural spaces. The purpose
of that book was to put forward a series of patterns that others could use to make a space
that correctly matched the use for which it was intended.
 Flow: Does your space allow the player to move through it easily, or if it does restrict
movement, is there a good reason? In the board game Clue, players roll a single die each
turn to determine how far they can move. This can make it very slow to move about the
game board. (The board is 24 x 25 spaces, so with an average roll of 3.5, it could take 7
turns to cross the board.) Realizing this, the designers added secret passages that allow
players to teleport from each corner of the board to the opposite corner, which helped
flow through the mansion quite a bit.
 Landmarks: It is more difficult for players to create a mental map of 3D virtual spaces
than actual spaces through which they have walked in real life. Because of this, it is
important that you create landmarks in your virtual spaces that players can use to more
easily orient themselves. In Honolulu, Hawaii, people don't give directions in terms of
compass directions (north, south, east, and west) because these are not terribly obvious
unless it's sunrise or sunset. Instead, the people of Honolulu navigate by obvious
landmarks: mauka (the mountains to the northeast), makai (the ocean to the southwest),
Diamond Head (the landmark mountain to the southeast), and Ewa (the area to the
northwest). On other parts of the Hawaiian Islands, mauka means inland and makai
means toward the ocean, regardless of compass direction (islands being circular).
Making landmarks that players can easily see limits the number of times your players
need to consult the map to figure out where they are.
 Experiences: The game as a whole is an experience, but the map or space of the game
also needs to be sprinkled with interesting experiences for your players. In Assassin's

81

Creed 4: Black Flag, the world map is a vastly shrunken version of the Caribbean Sea.
Even though the actual Caribbean has many miles of empty ocean between islands that
would take a sailing vessel hours or days to cross, the Caribbean of AC4 has events
sprinkled throughout it that ensure that the player will encounter a chance to have an
experience several times each minute. These could be small experiences such as finding
a single treasure chest on a tiny atoll, or large experiences such as coming across a fleet
of enemy ships.
 Short-, mid-, and long-term objectives: As demonstrated in the screen shot from
Journey shown in Figure 4.1, your space can contain multiple levels of goals. In open-
world games, a player is often shown a high-level enemy early on so that she has
something to aspire to defeat later in the game. Many games also clearly mark areas of
the map as easy, medium, or high difficulty.

Tables
Tables are a critical part of game balance, particularly when designing modern digital
games. Put simply, tables are grids of data that are often synonymous with spreadsheets, but
tables can be used to design and illustrate many different things:

 Probability: Tables can be used to determine probability in very specific situations. In
the board game Tales of the Arabian Nights, the player selects the proper table for the
individual creature she has encountered, and it gives her a list of possible reactions that
she can have to that encounter and the various results of each of her possible reactions.
 Progression: In paper role-playing games (RPGs) such as Dungeons & Dragons,
tables show how a player's abilities increase and change as her player character's level
increases.
 Playtest Data: In addition to tables that players use during the game, you as a designer
will also create tables to hold playtest data and information about player experiences.
You can find more info on this in Chapter 10, "Game Testing."

Of course, tables are also a form of technology in games, so they cross the line between
mechanics and technology. Tables as technology include the storage of information and any
transformation of information that can happen in the table (e.g., formulae in spreadsheets).
Tables as mechanics include the design decisions that game designers make and inscribe
into the table.

Inscribed Aesthetics
Inscribed aesthetics are those aesthetic elements that are crafted by the developers of the
game. These cover all five senses, and as a designer, you should be aware that throughout
the time that your player is playing the game, she will be sensing with all five of her senses.

82

The Five Aesthetic Senses
Designers must consider all five human senses when inscribing games. These five senses
are:

 Vision: Of the five senses, vision is the one that gets the most attention from most game
development teams. As a result, the fidelity of the visual experience that we can deliver
to players has seen more obvious improvement over the past decades than that of any
other sense. When thinking about the visible elements of your game, be sure to think
beyond the 3D art in the game or the art of the board or cards in a paper game. Realize
that everything that players (or potential players) see that has anything to do with your
game affects both their impression and their enjoyment of it. Some game developers in
the past have put tremendous time into making their in-game art beautiful only to have the
game packaged in (and hidden behind) awful box art.
 Hearing: Audio in games is second only to video in the amazing level of fidelity that
can be delivered to players. All modern consoles can output 5.1-channel sound, and
some can do even better than that. Game audio is composed of sound effects, music, and
dialogue. Each takes a different amount of time to be interpreted by the player, and each
has a different best use. In addition, on a medium-to-large development team, a different
artist usually handles each of the three audio types.

Audio Type Immediacy Best For
Sound effects Immediate Alerting the player; conveying simple information
Music Medium Setting the mood
Dialogue Medium / LongConveying complex information

Another aspect of audio to consider is background noise. For mobile games, you can
almost always expect that the player is going to be in a non-optimal audio situation when
playing your game. Though audio can always add to a game, it's just not prudent to make
audio a vital aspect of a mobile game unless it's the core feature of the game (e.g., games
such as Papa Sangre by Somethin' Else or Freeq by Psychic Bunny). You must also
consider background noise in computer and console games. Some cooling fans are very
loud, which you must take into account when developing quiet audio for digital games.
 Touch: Touch is very different between board games and digital games, but in both
cases, it's the most direct contact that you have with the player. In a board game, touch
comes down to the feel of the playing pieces, cards, board, and so on. Do the pieces for
your game feel high quality or do they feel cheap? Often you want them to be the former,
but the latter isn't terrible. James Ernst—possibly the most prolific board game designer
in the world for several years—ran a company called Cheap Ass Games, the mission of
which was to get great games to players at as low a cost to them as possible. To cut

83

costs, playing pieces were made of cheap materials, but this was fine with players
because the games from his company cost less than $10 each instead of the $40–$50 that
many board games cost. All design decisions are choices; just make sure that you're
aware of the options.
One of the most exciting recent technological advancements for board game prototyping
is 3D printing, and many board game designers are starting to print pieces for their game
prototypes. There are also several online companies now that can print your game
board, cards, or pieces.
Digital games also have aspects of touch. The way that the controller feels in a player's
hands and the amount of fatigue that it causes are definitely aspects that a designer needs
to consider. When the fantastic PlayStation 2 game Okami was ported to the Nintendo
Wii, the designers chose to change the attack command from a button press (the X on the
PlayStation controller) to a waggle of the Wiimote (which mimicked the attack gesture
from The Legend of Zelda: Twilight Princess that had done very well on the Wii).
However, while attacks in the heat of battle in Twilight Princess happen about once
every couple of seconds, attacks in Okami happen several times per second, so the
attack gesture that worked well in Twilight Princess instead caused player fatigue in
Okami. With the rise of tablet and smartphone gaming, touch and gesture are elements
that every digital game designer must consider carefully.
Another aspect of touch in digital games is rumble-style player feedback. As a designer,
you can choose the intensity and style of rumble feedback in most modern console
controllers, and some controllers—such as those for the Nintendo Switch—offer
tremendous control over rumble feedback.
 Smell: Smell is not often a designed aspect of inscribed aesthetics, but it is there. Just
as different book printing processes have different smells, so too do different board and
card game printing processes. Make sure that you get a sample from your manufacturer
before committing to printing 1,000 copies of something that might smell strange.
 Taste: Taste factors into even fewer games than smell, yet it is still a factor in some
games, including drinking games and some kissing games.

Aesthetic Goals
Humankind has been making art and music since long before the dawn of written history.
Therefore, when designing and developing the inscribed aesthetic elements of a game, we
as game developers are taking advantage of hundreds of years of cultural understanding of
other forms of art. Interactive experiences have the advantages of being able to pull from
all of that experience and of allowing us as designers to incorporate all the techniques and
knowledge of aesthetic art into the games that we create. However, when we do so, it must
be done with a reason, and it must mesh cohesively with the other elements of the game.
Two important goals that aesthetic elements can serve well in our games are mood and

84

information.

 Mood: Aesthetics do a fantastic job of helping to set the emotional mood of a game.
Though mood can definitely be conveyed through game mechanics, both visual art and
music can do a fantastic job of influencing a player's mood much faster than mechanics
are able to.
 Information: Several informational colors are built in to our psyche as mammals. For
example, many species in the animal kingdom perceive the color red or patterns of
alternating yellow and black as indicators of danger.4 In contrast, cool colors like blue
and green are usually seen as peaceful.
In addition, designers can train players to understand various aesthetics as having
specific meaning. The LucasArts game X-Wing was one of the first to have a soundtrack
that was procedurally generated by the in-game situation.5 The music would rise in
intensity to warn the player that enemies were attacking. Similarly, as described in
Chapter 13, "Guiding the Player," the Naughty Dog game Uncharted 3 uses the colors
bright blue and yellow throughout the game to help the player identify handholds and
footholds for climbing.

Inscribed Narrative
As with all forms of experience, dramatics and narrative are an important part of many
interactive experiences. However, game narratives face challenges that are not present in
any form of linear media, and as such, writers are still learning how to craft and present
interactive narratives. This section explores the components of inscribed dramatics,
purposes for which they are used, methods for storytelling in games, and differences
between game narrative and linear narrative.

Components of Inscribed Narrative
In both linear and interactive narrative, the components of the dramatics are the same:
premise, setting, character, and plot.

 Premise: The premise is the narrative basis from which the story emerges:6

A long time ago in a galaxy far, far away, an intergalactic war is brought to the doorstep
of a young moisture farmer who doesn't yet realize the importance of his ancestry or
himself.
Gordon Freeman has no idea about the surprises that are in store for him on his first day
of work at the top-secret Black Mesa research facility.
Edward Kenway must fight and pirate his way to fortune on the high seas of the
Caribbean while discovering the secret of the mysterious Observatory, sought by

85

Templars and Assassins alike.
 Setting: The setting expands upon the skeleton of the premise to provide a detailed
world in which the narrative can take place. The setting can be something as large as a
galaxy far, far away or as small as a tiny room beneath the stairs, but it's important that it
is believable within the bounds of the premise and that it is internally consistent; if your
characters will choose to fight with swords in a world full of guns, you need to have a
good reason for it.
In Star Wars, when Obi Wan Kenobi gives the lightsaber to Luke, he explains to Luke
and the audience why someone would use a sword in the Star Wars universe by stating
that it is "not as clumsy or random as a blaster; an elegant weapon for a more civilized
age."
 Character: Stories are about characters, and the best stories are about characters we
care about. Narratively, characters are composed of a backstory and one or more
objectives. These combine to give the character a role in the story: protagonist,
antagonist, companion, lackey, mentor, and so on.
 Plot: Plot is the sequence of events that take place in your narrative. Usually, this takes
the form of the protagonist wanting something but having difficulty achieving it because
of either an antagonist or an antagonistic situation getting in the way. The plot then
becomes the story of how the protagonist attempts to overcome this difficulty or
obstruction.

Traditional Dramatics
Though interactive narrative offers many new possibilities to writers and developers, it
still generally follows traditional dramatic structures.

Five-Act Structure
German writer Gustav Freytag wrote about five-act structure in his 1863 book Die Technik
des Dramas (The Technique of Dramas). It described the purpose of the five acts often used
by Shakespeare and many of his contemporaries (as well as Roman playwrights) and
proposed what has come to be known as Freytag's pyramid (see Figure 4.2). The vertical
axes in Figures 4.2 and 4.3 represent the level of audience excitement at that point in the
story.

86

Figure 4.2 Freytag's pyramid of five-act structure showing examples from Romeo and
Juliet by William Shakespeare

Figure 4.3 Syd Field's three-act structure, with examples from Star Wars: A New Hope

According to Freytag, the acts work as follows:

 Act I: Exposition: Introduces the narrative premise, the setting, and the important
characters. Act I of William Shakespeare's Romeo and Juliet introduces us to Verona,
Italy and the feud between the powerful Montague and Capulet families. Romeo is

87

introduced as the son of the Montague family and is infatuated with Rosaline.
 Act II: Rising action: Something happens that causes new tension for the important
characters, and the dramatic tension rises. Romeo sneaks into the Capulet's ball and is
instantly smitten with Juliet, the daughter of the Capulet family.
 Act III: Climax: Everything comes to a head, and the outcome of the play is decided.
Romeo and Juliet are secretly married, and the local friar hopes that this may lead to
peace between their families. However, the next morning, Romeo is accosted by Juliet's
cousin Tybalt. Romeo refuses to fight, so his friend Mercutio fights in his stead, and
Tybalt accidentally kills Mercutio (because Romeo got in the way). Romeo is furious
and chases Tybalt, eventually killing him. Romeo's decision to kill Tybalt is the moment
of climax of the play because before that moment, it seemed like everything might work
out for the two lovers, and after that moment, the audience knows that things will end
horribly.
 Act IV: Falling action: The play continues toward its inevitable conclusion. If it's a
comedy, things get better; if it's a tragedy, things might appear to be getting better, but
inevitably just get worse. The results of the climax are played out for the audience.
Romeo is banished from Verona. The friar concocts a plan to allow Romeo and Juliet to
escape together. He has Juliet fake her death and sends a message to Romeo to let him
know, but the messenger never makes it to Romeo.
 Act V: Denouement (pronounced "day-new-maw"): The play resolves. Romeo enters
the tomb believing Juliet to be truly dead and kills himself. She immediately awakens to
find him dead and then kills herself as well. The families become aware of this tragedy,
and everyone weeps, promising to end the feud.

Three-Act Structure
In his books and lectures, American screenwriter Syd Field has proposed another way of
understanding traditional narrative in terms of three acts.7 Between each act, a plot point
changes the direction of the story and forces the characters' actions. Figure 4.3 provides an
example that is further explained in the following list.

The core elements of Field's three-act structure are:

 Act I: Exposition: Introduces the audience to the world of the narrative and presents the
premise, setting, and main characters. In Act I of Star Wars, Luke is a young, idealistic
kid who works on his uncle's moisture farm. Out in the galaxy, a rebellion is happening
against a fascist Empire, but he's just a simple farm boy dreaming of flying starfighters.

 Hook: Gets the audience's attention quickly. According to Field, an audience decides
in the first few minutes whether they're going to watch a film, so the first few minutes
should be really exciting, even if the action in them has nothing to do with the rest of

88

the film
(e.g., the beginning of any James Bond film). In Star Wars, the opening scene of
Princess Leia's ship being attacked by a Star Destroyer had some of the best special
visual effects that 1977 audiences had ever seen and a fantastic score by John
Williams, both of which helped make it an exciting hook.
 Inciting Incident: Something new enters the life of the main character, causing her to
start the adventure. Luke is leading a pretty normal life until he finds Leia's secret
message stored inside of R2-D2. This discovery causes him to seek out "Old Ben"
Kenobi, who changes his life.
 First Plot Point: The first plot point ends the first act and pushes the protagonist down
the path toward the second. Luke has decided to stay home and not help Obi-Wan
Kenobi, but when he finds that the Empire has killed his aunt and uncle, he changes his
mind and decides to join Obi-Wan and train to become a Jedi.

 Act II: Antagonism: The protagonist starts her journey, but a series of obstacles get in
her way. Luke and Obi-Wan hire Han Solo and Chewbacca to help them deliver the
secret plans carried by R2-D2 to Alderaan; however, when they arrive Alderaan has
been destroyed, and their ship is captured by the Death Star.

 Second Plot Point: The second plot point ends the second act and pushes the
protagonist into her decision of what she will attempt in the third act. After much
struggle, Luke and his friends escape from the Death Star with both the princess and
the plans, but his mentor, Obi-Wan Kenobi, is killed in the process. The Death Star
follows them to the rebel's secret base, and Luke must choose whether to aid in the
attack on the Death Star or to leave with Han Solo.

 Act III: Resolution: The story concludes, and the protagonist either succeeds or fails.
Either way, she emerges from the story with a new understanding of who she is. Luke
chooses to help attack the Death Star and ends up saving the day.

 Climax: The moment when everything comes to a head and the main question of the
plot is answered. Luke is alone in the Death Star trench having lost both his wingmen
and R2-D2. Just as he is about to be shot down by Darth Vader, Han and Chewbacca
appear to save him, allowing him a clean shot. Luke chooses to trust the Force rather
than technology and shoots with his eyes closed, successfully making an extremely
difficult shot and destroying the Death Star.

In most modern movies and in nearly all video games, the climax is very close to the end of
the narrative with almost no time for falling action or denouement. One marked example of
this not being the case is Red Dead Redemption by Rockstar Games. After the big climax
where the main character, John Marston, finally defeats the man the government hired him
to kill, he is allowed to go home to his family, with the game playing its only sung musical
track as John rides home slowly in the snow. The player is then subjected to a series of
rather dull missions where John clears crows out of the family grain silo, teaches his

89

petulant son to wrangle cattle, and does other chores around the house. The player feels the
boredom of these missions much like John does. Then, the same government agents that
initially hired John come to his farm to kill him, eventually succeeding in their task. After
John dies, the game fades to black and fades back in on the player in the role of Jack (John's
son) three years after his father's death. The game returns to more action-based missions as
Jack attempts to track down the agents who killed his father. This kind of falling action is
rare and refreshing to see in games, and it made the narrative of Red Dead Redemption one
of the most memorable that I've played.

Differences Between Interactive and Linear Narrative
At their core, interactive, and linear narratives are quite different because of the difference
in the role of the audience versus the player. Though an audience member of course brings
her own background and interpretations to any media that she consumes, she is still unable
to change the actual media itself, only her perception thereof. However, a player is
constantly affecting the media in which she is taking part, and therefore a player has actual
agency in the interactive narratives that she experiences. This means that authors of
interactive narrative must be aware of some core differences in how they can craft their
narratives.

Plot Versus Free Will
One of the most difficult things to give up when crafting interactive narratives is control
over the plot. Both authors and readers/viewers are accustomed to plots with elements such
as foreshadowing, fate, irony, and other ways in which the intended outcome of the plot
actually influences earlier parts of the story. In a truly interactive experience, this would be
impossible because of the free will of the player. Without knowing what choices the player
will make, it is very difficult to intentionally foreshadow the results of those choices.
However, several possibilities exist for dealing with this dichotomy, some of which are
already used often in digital games and others of which can be used in pen-and-paper RPGs
but have not yet been implemented in many digital games:

 Limited possibilities: Limited possibilities are an important part of nearly all
interactive narrative experiences. In fact, most games, at their inscribed level, are not
actually interactive narratives. All the most popular series of games over the past
decade (Prince of Persia, Call of Duty, Halo, Uncharted, and so on) have exclusively
linear stories at their core. No matter what you do in the game, your choices are to either
continue with the narrative or quit the game. Spec Ops: The Line by Yager Development
explored this issue beautifully, placing the player and the main character of the story in
the same position of having only two real choices: continue to perform increasingly
horrific acts or just stop playing the game. In Prince of Persia: The Sands of Time, this
is handled by having the narrator (the prince of the title and the protagonist) say "No, no,

90

no; that's not the way it happened. Shall I start again?" whenever the player dies and the
game has to back up to the most recent checkpoint. In the Assassin's Creed series, this is
handled by stating that you have become "desynchronized" from your ancestor's story if
(through lack of player skill) the ancestor is allowed to die.
Several examples also exist of games that limit choices to only a few possibilities and
base those on the player's actions throughout the game. Both Fable, by Lionhead Studios,
and Star Wars: Knights of the Old Republic, by BioWare, claimed to be watching the
player throughout the game to determine the final game outcome, but though each did
track the player on a good versus evil scale throughout the game, in both cases (as in
many other games), a single choice made at the end of the game could override an entire
game of good or evil behavior.
Other games such as the Japanese RPGs Final Fantasy VII and Chrono Trigger have
more subtle and varied possibilities. In Final Fantasy VII, there is a point when the
main character, Cloud, goes on a date with one of the other major characters at the
Golden Saucer amusement park. The default is for Cloud to go out with Aeris; however,
if the player has ignored Aeris throughout the game and kept her out of the battle party,
Cloud will instead go out with Tifa. The possibilities for the date are the characters
Aeris, Tifa, Yuffie, and Barrett, although having the date with Barrett takes resolute
effort. The game never explains that this math is happening in the background but it is
always there, and the Final Fantasy team used a similar strategy in Final Fantasy X to
determine with whom the protagonist, Tidus, would share a romantic snowmobile ride.
Chrono Trigger uses several metrics to determine which of the game's thirteen endings
to choose (and some of those endings have multiple possibilities within them). Again,
the calculations for this are largely invisible to the player.
 Allow the player to choose from several linear side quests: Many of Bethesda
Softworks' open-world games use this strategy, including Fallout 3 and Skyrim.
Although the main quest is generally pretty linear for these games, it is only a small
fraction of the game's total content. In Skyrim, for instance, the main quest takes about 12
to 16 hours to complete, but the game has more than 400 hours of additional side quests.
A player's reputation and history in the game lead to some side quests being unlocked
and exclude her from playing others. This means that each individual who plays the
game has the potential to have a different combination of linear experiences that add up
to a different overall game experience from other players.
 Foreshadowing multiple things: If you foreshadow several different things that might
happen, some of them probably will happen. Players generally ignore the foreshadowing
that does not eventually pay off while noticing that which does. This happens often in
serial television shows where several possibilities for future plots are put in place but
only a few are ever actually executed (e.g., the Nebari plot to take over the universe that
is revealed in the Farscape episode "A Clockwork Nebari" but is never mentioned
again and the titular character from the Doctor Who episode "The Doctor's Daughter"

91

who never returns to the show).
 Develop minor non-player characters (NPCs) into major ones: Game masters (GMs)
of pen-and-paper RPGs often use this tactic. An example of this would be if the players
were attacked by a group of ten bandits, and the players defeated the bandits, but one got
away. The GM could then choose to have that bandit return at some point with a vendetta
against the players for killing his friends. This differs significantly from games like
Final Fantasy VI (originally titled Final Fantasy III in the U.S.), where it is rather
obvious from early in the game that Kefka will be a recurring, annoying, and eventually
wholly evil nemesis character. Though the characters in the player's party don't realize
this, just the fact that the developers chose to give Kefka a special sound effect for his
laugh makes it apparent to the player.

Tip
Pen-and-paper RPGs still offer players a unique interactive gaming experience,
and I highly recommend them. In fact, when I taught at the University of Southern
California, I required all of my students to run an RPG and play in a couple run
by their peers. Roughly 40% of the students each semester listed it as their
favorite assignment.

Because pen-and-paper RPGs are run by a person, that game master (GM) can
craft the narrative in real time for the players in a way that computers have yet to
match. GMs use all the strategies listed earlier to guide their players and make
their experiences seem fated, foreshadowed, or ironic in ways that are usually
reserved for linear narrative.

The perennial RPG Dungeons & Dragons, by Wizards of the Coast, is a good
place to get started, and a tremendous number of source books are available for
it. However, I have found that D&D campaigns tend to be rather combat-focused,
and the combat can take a very long time. For an experience that allows you to
most easily create and experience interactive stories, I recommended the FATE
Accelerated system by Evil Hat Productions.8

Empathetic Character Versus Avatar
In linear narratives, the protagonist is often a character with whom the audience is expected
to empathize. When the audience watches Romeo and Juliet make stupid decisions, they
remember being young themselves and empathize with the feelings that lead the two lovers
down their fatal path. In contrast, the protagonist in an interactive narrative is not a
character separate from the player but instead the player's avatar in the world. (Avatar is a

92

word from Sanskrit that refers to the physical embodiment of a god on Earth; in games, it is
the virtual embodiment of the player in the game world.) This can lead to a dissonance
between the actions and personality that the player would like to have in the world and the
personality of the player-character (PC). For me, this was driven home by my experience
with Cloud Strife as the protagonist of Final Fantasy VII. Throughout the game, Cloud was
a little more petulant than I would have liked, but in general, his silence allowed me to
project my own character on to him. However, after a pivotal scene where Cloud loses
someone close to him, he chose to sit, unresponsive in a wheelchair instead of fighting to
save the world from Sephiroth, as I wanted to. This dichotomy between the PC's choice and
the choice that I as the player wanted to make was extremely frustrating for me.

An excellent example of this dichotomy being used to great effect happens in the fantastic
game Okami (2006), by Clover Studio. In Okami, the player character is Amaterasu, a
reincarnation of the female god of the sun in the form of a white wolf. However,
Amaterasu's powers have diminished over the past 100 years, and the player must work to
reclaim them. About a quarter of the way through the narrative, the main antagonist, the
demon Orochi, chooses a maiden to be sacrificed to him. Both the player and Amaterasu's
companion, Issun, know that Amaterasu has only regained a few of her powers at this point,
and the player feels wary of facing Orochi in such a weakened state. However, despite
Issun's protests, Amaterasu runs directly to the fight. As the music swells in support of her
decision, my feelings as a player changed from trepidation to temerity, and I, as the player,
actually felt like a hero because I knew that the odds were against me, but I was still doing
what needed to be done.

Designers of games and interactive narratives have approached this character versus avatar
dichotomy in several ways:

 Role fulfillment: By far, the most common approach in games is to have the player
roleplay the game character. When playing character-driven games like the Tomb Raider
or Uncharted series, players do not play themselves but instead play Lara Croft or
Nathan Drake. The player sets aside her own personality to fulfill the inscribed
personality of the game's protagonist.
 The silent protagonist: In a tradition reaching at least as far back as the first Legend of
Zelda game, many protagonists are largely silent. Other characters talk to them and react
as if they've said things, but the player never sees the statements made by the player
character. This was done with the idea that the player could then impress her own
personality on the protagonist rather than being forced into a personality inscribed by the
game developers. However, regardless of what Link says or doesn't say, his personality
is demonstrated rather clearly by his actions, and even without Cloud saying a word,
players can still experience a dissonance between their wishes and his actions as
described in the preceding example.

93

 Multiple dialogue choices: Many games offer the player multiple dialogue choices for
her character, which can certainly help the player to feel more control over the
character's personality. However, a couple of important requirements are:

 The player must understand the implications of her statement: Sometimes, a line
that might seem entirely clear to the game's writers does not seem to have the same
connotations to the player. If the player chooses dialogue that seems to her to be
complimentary, but the writer meant for it to be antagonistic, the NPC's reaction can
seem very strange to the player.
 The choice of statement must matter: Some games offer the player a fake choice,
anticipating that she will make the choice that the game desires. If, for instance, she's
asked to save the world, and she just says "No," the game responds with something
like "Oh, you can't mean that," and refuses to actually accept her choice.

One fantastic example of this being done well is the dialog wheel in the Mass Effect
series by BioWare. These games present the player with a wheel of dialog choices, and
the sections of the wheel are coded with meaning. A choice on the left side of the wheel
usually extends the conversation, whereas one on the right side shortens it. A choice on
the top of the wheel is friendly, whereas one on the bottom is surly or antagonistic. By
positioning the dialog options in this way, the player is granted important information
about the connotations of her possible choices and is not surprised by the outcome.
Another very different but equally compelling example is Blade Runner by Westwood
Studios (1997). The designers felt that choosing dialog options would interrupt the flow
of the player experience, so instead of offering the player a choice between dialogue
options at every statement, the player was able to choose a mood for her character
(friendly, neutral, surly, or random). The protagonist would act and speak as dictated by
his mood without any interruption in the narrative flow, and the player could change the
mood at any time to alter her character's response to the situation.
 Track player actions and react accordingly: Some games now track the player's
relationships with various factions and have the faction members react to the player
accordingly. Do a favor for the Orcs, and they might let you sell goods at their trading
post. Arrest a member of the Thieves Guild, and you might find yourself mugged by them
in the future. This is a common feature of open-world western roleplaying games like
those by Bethesda Softworks and is in some ways based on the morality system of eight
virtues and three principles that was introduced in Ultima IV, by Origin Systems, one of
the first examples of complex morality systems in a digital game.

Purposes for Inscribed Narrative
Inscribed narrative can serve several purposes in game design:

 Evoking emotion: Over the past several centuries, writers have gained skill in

94

manipulating the emotions of their audiences through dramatics. This holds true in games
and interactive narrative as well, and even purely linear narrative inscribed over a game
can focus and shape the player's feelings.
 Providing motivation and justification: Just as dramatics can shape emotions, they can
also be used to encourage the player to take certain actions or to justify actions if those
actions seem distasteful. This is very true of the fantastic retelling of Joseph Conrad's
Heart of Darkness in the game Spec Ops: The Line. A more positive example comes
from The Legend of Zelda: The Wind Waker. At the beginning of the game, Link's sister
Aryll lets him borrow her telescope for one day because it's his birthday. On the same
day, she is kidnapped by a giant bird, and the first part of the game is driven narratively
by Link's desire to rescue her. The inscribed storytelling of her giving something to the
player before being kidnapped increases the player's personal desire to rescue her.
 Providing progression and reward: Many games use cut scenes and other inscribed
narrative to help the player know where she is in the story and to reward her for
progression. If the narrative of a game is largely linear, the player's understanding of
traditional narrative structure can help her to understand where in the three-act structure
the game narrative currently is, and thereby, she can tell how far she has progressed in
the overall plot of the game. Narrative cut scenes are also often used as rewards for
players to mark the end of a level or other section of the game. This is true in the single-
player modes of nearly all top-selling games with linear narratives (e.g., the Modern
Warefare, Halo, and Uncharted series).
 Reinforcing mechanics: One of the most critical purposes of inscribed dramatics is the
reinforcement of game mechanics. The German board game Up the River by
Ravensburger is a fantastic example of this. In the game, players are trying to move their
three boats forward along a board that is constantly moving backward. Calling the board
a "river" reinforces the backward movement game mechanic. A board space that stops
forward progress is called a "sandbar" (as boats often get hung up on sandbars).
Similarly, the space that pushes the player forward is called a "high tide." Because each
of these elements has narrative meaning associated with it, it is much easier to remember
than, for instance, if the player were asked to remember that space #3 stopped the boat
and #7 moved the boat forward.

Inscribed Technology
Much like inscribed mechanics, inscribed technology is largely understood only through its
dynamic behavior. This is true whether considering paper or digital technology. The choice
of how many dice of how many sides each to be thrown by the player only really matters
when those dice are in play just as the code written by a programmer is only really
understood by the player when she sees the game in action. This is one of the reasons that—
as pointed out in Jesse Schell's Elemental Tetrad9—technology is the least visible of the
inscribed elements.

95

In addition, a large overlap exists between inscribed mechanics and inscribed technology.
Technology enables mechanics, and mechanical design decisions can lead to a choice of
which technologies to use.

Inscribed Paper Game Technology
Inscribed technologies in paper games are often used for randomization, state tracking, and
progression.

 Randomization: Randomization is the most common form of technology in paper
games. This ranges from dice, to cards, to dominoes, to spinners, and so on. As a
designer, you have a lot of control over which of these you choose and how the
randomization works. You can also combine randomization with tables to do things such
as generate random encounters or characters for a game. In Chapter 11, "Math and Game
Balance," you can read about the various types of randomizers and when you might want
to use them.
 State tracking: State tracking can be everything from keeping track of the scores of the
different players of the game (like a cribbage board) or tables like the complex
character sheets used in some roleplaying games.
 Progression: Progression is often inscribed via charts and tables. This includes things
such as player progression of abilities when the player levels up, the progression of
various technologies and units in the technology tree of a game like Civilization,
progression of resource renewal in the board game Power Grid, and so on.

Inscribed Digital Game Technology
The latter sections of this book extensively cover digital game technology in the form of
programming games using Unity and the C# programming language. Just as with inscribed
paper game technology, the art of game programming is that of encoding the experience you
want the player to have into inscribed rules (in the form of programming code) that the
player then decodes as she plays the game.

Summary
The four elements of the inscribed layer make up everything that players receive when they
purchase or download your game, and therefore the inscribed layer is the only one over
which the game developers have complete control. In the next chapter, we allow players to
move our games from the static form of the inscribed layer up to the emergence of the
dynamic layer.

In a final note on the inscribed layer—as Jesse Schell pointed out in his discussion of the
Elemental Tetrad—each of the elements of the inscribed layer align well with a job within

96

a small game studio: Game Designers create the mechanics, Artists create the aesthetics,
Writers craft the narrative, and Programmers develop the technology.

1. This is a word that is often mispronounced by gamers. The French word melee is
pronounced "may-lay." The word mealy (pronounced "mee-lee") means either pale or
in some other way like grain meal (e.g., cornmeal).

2. This is a good example of one of the differences between single-player and multiplayer
game design. In a multiplayer poker game, concealing a card would be cheating and
could ruin the game. However, in the game Red Dead Redemption by Rockstar Studios,
the in-game poker tournaments become much more interesting and entertaining once the
player acquires the suit of clothes that allows her character to conceal and swap poker
cards at will, with a risk of being discovered by NPCs (Non-Player Characters).

3. Christopher Alexander, Sara Ishikawa, and Murray Silverstein, A Pattern Language:
Towns, Buildings, Construction (New York: Oxford University Press, 1977).

4. Warning coloration like this is called aposematism, another name for the idea of
"warning colors" proposed in 1867 by Alfred Russel Wallace and then published in
1877. Wallace, Alfred Russel (1877). "The Colours of Animals and Plants. I.—The
Colours of Animals." Macmillan's Magazine. 36 (215): 384–408.

5. Other very early games with a procedurally generated soundtrack include Wing
Commander (1990) by Origin Systems and Monkey Island 2: Le Chuck's Revenge
(1991) by LucasArts.

6. These are the premises of Star Wars: A New Hope, Half-Life, and Assassin's Creed 4:
Black Flag.

7. Syd Field, Screenplay: The Foundations of Screenwriting (New York: Delta Trade
Paperbacks, 2005).

8. http://www.evilhat.com/home/fae/, accessed April 1, 2017.
9. Schell's Elemental Tetrad is covered in Chapter 2, "Game Analysis Frameworks."

97

http://www.evilhat.com/home/fae/

CHAPTER 5

THE DYNAMIC LAYER

When players start playing a game, it moves from the inscribed layer into the
dynamic layer of the Layered Tetrad. Play, strategy, and meaningful player
choices all emerge in this layer.

This chapter explores the dynamic layer, various qualities of emergence, and how
designers can anticipate the dynamic play that emerges from their inscribed
design decisions.

The Role of the Player
A fellow designer once told me that a game isn't a game unless someone is playing it.
Although this might sound initially like a rehash of "if a tree falls in the woods, and there's
no one to hear it, does it make a sound?" this definition is actually much more important for
interactive media than any other medium. A film can still exist and show in a theater if
there's no one to watch it.1 Television can be sent out over the airwaves and still be
television, even if no one is tuned to that station. Games, however, just don't exist without
players, for it is through the actions of players that games transform from a collection of
inscribed elements into a dynamic experience (see Figure 5.1).

98

Figure 5.1 Players move the game from the inscribed layer into the dynamic layer

There are, of course, some edge cases to this, as there are to all things. The game Core War
is a hacking game where players each try to write a computer virus that will propagate and
take over a fake computer core from the viruses of their competitors. Players submit their
viruses and wait for them to fight each other for memory and survival. In the yearly
RoboCup tournament, various teams of robots compete against each other in soccer without
any interference by the programmers during the game. In the classic card game War, players
make no decision beyond the choice of which of the two decks to take at the beginning of
the game, and the game plays out entirely based on the luck of the initial shuffle. Though in
each of these cases, the player has no input and makes no choices during the actual play of
the game, the play is still influenced by player decisions made before the official start of
the match, and the players certainly have interest in and are waiting for the outcome of the
game. Additionally, all of these cases also require players to set up the game and to make
the choices that determine its outcome.

Though players have a tremendous effect on the game and gameplay (including influences
on the tetrad elements), players sit outside of the tetrad as the engine that makes it work.
Players cause games to come into being and allow them to become the experience that game
developers have encoded into the inscribed layer of the game. As designers, we rely on
players to aid us in helping the game become what we intend. Several aspects of gameplay
in the dynamic layer are completely beyond our control as designers, including: whether the
player is actually trying to follow the rules, whether the player cares about winning or not,
the physical environment in which the game is played, the emotional state of the players,
and so on. Because players are so important, we as developers need to treat them with
respect and take care to ensure that the inscribed elements of the game—especially the

99

rules—are clear enough to the players that they can decode them into the game experience
that we intend.

Emergence
The most important concept in this chapter is emergence, the core of which is that even
very simple rules can beget complex dynamic behaviors. Consider the game of Bartok that
you played and experimented with in Chapter 1, "Thinking Like a Designer." Though
Bartok had very few rules, complex play emerged from them. When you started changing
rules and adding your own, you were also able to see that even simple, seemingly
innocuous rule changes had the potential to lead to large changes in both the feel and the
play of the game.

The dynamic layer of the Layered Tetrad encompasses the results of the intersection of
player and game across all four elements of the tetrad: mechanics, aesthetics, dramatics,
and technology.

Unexpected Mechanical Emergence
My friend Scott Rogers, author of two great books on game design,2 once told me that he
"didn't believe in emergence." After discussing it with him for a while, we came to the
conclusion that he did believe in emergence, but he didn't believe that it was legitimate for
game designers to use emergence as an excuse for irresponsible design. We agree that as
the designer of the systems within a game, you are responsible for the play that emerges
from those systems. Of course, it's extremely difficult to know what possibilities will
emerge from the rules that you put in place, which is why playtesting is so critically
important. As you develop your games, playtest early and often, and take special care to
note unusual things that happen in only one playtest. After your game gets out in the wild,
the sheer number of people playing will cause those unusual flukes to happen a lot more
often than you would expect. Of course, this happens to all designers—look at some of the
cards that have been declared illegal in Magic: The Gathering—but as Scott says, it's
important that designers take responsibility for these issues and for resolving them.

Dynamic Mechanics
Dynamic mechanics are the dynamic layer of the elements that separate games and
interactive media from other media; the elements that make them games. Dynamic
mechanics include procedures, meaningful play, strategy, house rules, player intent, and
outcome. As with the inscribed mechanics, many of these are an expansion of elements
described in Tracy Fullerton's book Game Design Workshop.3 The dynamic mechanics we
will cover are:

100

 Procedures: Actions that players take
 Meaningful Play: Giving weight to player decisions
 Strategy: Plans devised by players
 House Rules: Simple game modifications made by players
 Player Intent: The motivations and goals of players
 Outcome: The result(s) of playing the game

Procedures
Mechanics in the inscribed layer included rules, the instructions from the designer to the
players about how to play the game. Procedures are the dynamic actions taken by the
players in response to those rules. Another way to say this is that procedures emerge from
rules. Consider this optional rule from the Bartok game in Chapter 1:

 Rule 3: A player must announce "Last card" when she has only one card left. If someone
else calls it first, she must draw two cards (bringing her total number of cards to three).

This rule directly instructs the active player to follow the procedure of announcing when
she has only one card remaining. However, the rule also indirectly implies another
procedure: that of other players watching the hand of the active player so that they can catch
her if she forgets to announce it. Prior to this rule, there was no real reason for a player to
pay attention to the game during another person's turn, but this simple rule change altered
the procedures of playing the game for both the active and inactive players.

Meaningful Play
In Rules of Play, Katie Salen and Eric Zimmerman define meaningful play as play that is
both discernable to the player and integrated into the larger game.4

 Discernable: An action is discernable to the player if the player can tell that the action
has been taken. For example, when you press the call button for an elevator, the action is
discernable because the call button lights up. If you've ever tried to call an elevator
when the light inside the button was burned out, you know how frustrating it can be to
attempt an action and yet not be able to discern whether the game interpreted your
action.
 Integrated: An action is integrated if the player can tell that it is tied to the outcome of
the game. For example, when you press the call button for the elevator, that action is
integrated because you know that doing so will cause the elevator to stop on your floor.
In Super Mario Bros., the decision of whether to stomp an individual enemy or just
avoid it is generally not very meaningful because that individual action is not integrated

101

into the overall outcome of the game. Super Mario Bros. never gives you a tally of the
number of enemies defeated; it only requires that you finish each level before the time
runs out and finish the game without running out of lives. In HAL Laboratories' series of
Kirby games, however, the player character Kirby gains special abilities by defeating
enemies, so the decision of which enemy to defeat is directly integrated into the
acquisition of abilities, making the decision more meaningful.

If a player's actions in the game are not meaningful, she can quickly lose interest. Salen and
Zimmerman's concept of meaningful play reminds designers to constantly think about the
mindset of the player and whether the interactions of their games are transparent or opaque
from the player's perspective.

Strategy
When a game allows meaningful actions, players will usually create strategies to try to win
the game. A strategy is a calculated set of actions to help the player achieve a goal.
However, that goal can be anything of the player's choosing and does not necessarily need
to be the goal of winning the game. For instance, when playing with a young child or with
someone of a lower skill level in a game, the player's goal might be to make sure that the
other person enjoys playing the game and learns something, sometimes at the expense of the
player winning the game.

Optimal Strategy
When a game is very simple and has few possible actions, it is possible for a player to
devise an optimal strategy for the game. If both players of a game are playing rationally
with the goal of winning, an optimal strategy is the possible strategy with the highest
likelihood of winning. Most games are too complex to really have an optimal strategy, but
some games like Tic-Tac-Toe are simple enough to allow one. In fact, Tic-Tac-Toe is so
simple that chickens have (possibly) been trained to play it and force a draw or a win
almost every time.5

An optimal strategy is more often a fuzzy idea of the kind of thing that would likely improve
a player's chance of winning. For instance, in the board game Up the River by Manfred
Ludwig, players are trying to move three boats up a river to dock at the top of the game
board, and arriving at the dock is worth 12 points to the first boat to arrive, then 11 points
for the second boat, and down to only 1 point for the twelfth boat. Every round (that is,
every time that all players have taken one turn), the river moves backward 1 space, and any
boat that falls off the end of the river (the waterfall) is lost. Each turn, the player rolls 1d6
(a single six-sided die) and chooses which boat to move. Because the average roll of a six-
sided die is 3.5, and the player must choose from among her three boats to move every turn,
each boat will move an average of 3.5 spaces every three of her turns. However, the board

102

will move backward 3 spaces every three turns, so each boat only makes an average
forward progression of 0.5 spaces every three turns (or 0.1666 [or 1/6] spaces every
turn).6

In this game, the optimal strategy is for the player to never move one of her boats and just
let it fall off the waterfall. Then each boat would move forward an average of 3.5 spaces
every two turns instead of three. With the board moving backward 2 spaces in two turns,
this would give each of her boats an average movement forward of 1.5 spaces every two
turns (or 0.75 spaces each turn), which is much better than the 0.1666 afforded to the player
if she tries to keep all of her boats. Then this player would have a better chance of getting
to the dock in first and second place, giving her 23 total points (12 + 11). In a two-player
game, this strategy wouldn't work because the second player would tie up at 10, 9, and 8
for 27 points, but in a three- or four-player game, it's the closest thing to an optimal strategy
for Up the River. However, the other players' choices, randomized outcomes of the dice,
and additional factors mean that the strategy won't always ensure a win; it just makes a win
more likely.

Designing for Strategy
As a designer, you can do several things to make strategy more important in your game. For
now, the main thing to keep in mind is that presenting the player with multiple possible
ways to win will require her to make more difficult strategic decisions during play. In
addition, having some of these goals conflict with each other while others are
complementary (i.e., some of the requirements for the two goals are the same) can actually
cause individual players to move into certain roles as the game progresses. When a player
can see that she is starting to fulfill one of the goals, she will pick its complementary goals
to pursue as well, and this will lead her to make tactical decisions that fulfill the role for
which those goals were designed. If these goals cause her to take a specific type of action
in the game, it can alter her in-game relationship with other players.

An example of this comes from the game Settlers of Catan, designed by Klaus Teuber. In
this game, players acquire resources through random die rolls or trade, and some of the five
game resources are useful in the early game, while others are useful at the end. Three that
are less useful at the beginning are sheep, wheat, and ore; however, together, the three can
be traded for a development card. The most common development card is the soldier card,
which can move the robber token onto any space, allowing the player moving it to steal
from another player. Therefore, a player with an excess of ore, wheat, and sheep at the
beginning of the game will often purchase development cards, and because having played
the largest number of soldier cards can earn the player victory points, the combination of
those resources and that potential goal can influence the player to rob the other players
more often and strongly encourage her play the role of a bully in the game.

103

House Rules
House rules occur when the players themselves intentionally modify the rules. As you saw
in the Bartok game example, even a simple rule change can have drastic effects on the
game. For instance, most players of Monopoly have house rules that omit the auction of
properties (which would normally happen if a player landed on an unowned property and
chose not to buy it) and add collection of all fines to the Free Parking space to be picked up
by any player who lands on that space. The omission of the auction rule removes nearly all
potential strategy from the beginning of Monopoly (converting it into an extremely slow
random property distribution system), and the second rule removes some determinism from
the game (because it could benefit any player, either the one in the lead or in last place).
Though the first house rule in this example makes the game a bit worse, most house rules
are intended to make games considerably more fun.7 In all cases, house rules are an
example of the players beginning to take some ownership of the game, making it a little
more theirs and a little less the designer's. The fantastic thing about house rules is that they
are many people's first experimentation with game design.

Player Intent: Bartle's Types, Cheaters, and Spoilsports
One thing that you have little or no control over is the intent of your players. Though most
players will play your game rationally to win, you might also have to contend with cheaters
and spoilsports. Even within legitimate players of games, we find four distinct personality
types as defined by Richard Bartle, one of the designers of the first MUD (Multi-User
Dungeon, a text-based online ancestor of modern massively multiplayer online role-playing
games). The four types of players that he defined have existed since his early MUD and
carry through all multiplayer online games today. His 1996 article "Hearts, Clubs,
Diamonds, Spades: Players Who Suit MUDs"8 contains fantastic information on how these
types of players interact with each other and the game as well as information about how to
grow your community of players in positive ways.

Bartle's four types (which he identified with the four suits of a deck of cards) are as
follows:

 Achiever (♦ Diamond): Seeks to get the highest score in the game. Wants to dominate
the game.
 Explorer (♠ Spade): Seeks to find all the hidden places in the game. Wants to
understand the game.
 Socializer (♥ Heart): Wants to play the game with friends. Wants to understand the
other players.
 Killer (♣ Club): Wants to provoke other players of the game. Wants to dominate the
other players.

104

These can be understood as belonging to a 2x2 continuum (also from Bartle's article).
Figure 5.2 represents this graphically.

Figure 5.2 Richard Bartle's four players who suit MUDs

Certainly other theories of player motivation and player types exist,9 but Bartle's are the
most widely recognized and understood in the game industry.

Two other player types that you might encounter are cheaters and spoilsports:

 Cheaters: Care about winning but don't care about the integrity of the game. Cheaters
bend or break the rules to win.
 Spoilsports: Don't care about winning or about the game. Spoilsports often break the
game to ruin the other players' experiences.

Neither of these are players that you want in your game, but you need to understand their
motivations. For instance, if a cheater feels that she has a chance of winning legitimately,
she might not feel as driven to cheat. Spoilsports are much more difficult to deal with
because they don't care about the game or winning, but you rarely have to deal with
spoilsports in digital single-player games, as they would have no reason to play the game if
they weren't interested in it in the first place. However, even great players can sometimes
become spoilsports when they encounter terrible game mechanics…often right before they
choose to turn the game off.

105

Outcome
Outcome is the result of playing the game. All games have an outcome. Many traditional
games are zero-sum, meaning that one player wins and the other loses. However, this is not
the only kind of outcome that a game can have. In fact, every individual moment in a game
has its own outcome. Most games have several different levels of outcome:

 Immediate outcome: Each individual action has an outcome. When a player attacks an
enemy, the outcome of that attack is either a miss or a hit and the resultant damage to the
enemy. When a player purchases property in Monopoly, the outcome is that the player
has less money available but now owns the potential to earn more money.
 Quest outcome: Many games send the player on missions or quests and offer some sort
of reward for completing that quest. Missions and quests often have narratives
constructed around them (e.g., a little girl has lost her balloon in Spider-Man 2
[Treyarch, 2004], so Spider-Man must retrieve it for her), and the outcome of the quest
also marks the end of the tiny narrative surrounding it.
 Cumulative outcome: This occurs when the player has been working toward a goal
over time and finally achieves it. One of the most common examples is leveling up in a
game with experience points (XP). Everything that the player does accrues a few
experience points, and when the total number of XP reaches a threshold, the player's in-
game character gains a new level, which grants the character a boost in stats or abilities.
The main difference between this and a quest outcome is that the cumulative outcome
usually doesn't have a narrative wrapped around it, and the player often reaches the
cumulative outcome passively while actively doing something else (e.g., a player of
Dungeons & Dragons 4th Edition actively takes part in a game session and then, while
adding up earned XP at the end of the evening, notices that she has exceeded 10,000 XP
and achieved level 7.)10

 Final outcome: Most games have an outcome that ends the game: A player wins chess
(and the other loses), a player finishes Final Fantasy VII and saves the world from
Sephiroth, and so on. In some games the final outcome doesn't end the game (e.g., in
Skyrim, even when the player has finished the main quest, she can still continue to play
in the world and experience other quests).11 Interestingly, the death of the player
character is very rarely a final outcome in games.
In the few games where death is a final outcome (e.g., the game Rogue [A.I. Design,
1980], where a single loss causes the player to lose all progress in the game), the
individual game session is usually relatively short so that the player doesn't feel a
tremendous loss at the death of the player character. In most games, however, death is
just a temporary setback and in-game checkpoints usually ensure that the player never
loses more than five minutes of progress in the game.

106

Dynamic Aesthetics
Just as with dynamic mechanics, dynamic aesthetics are those that emerge during gameplay.
The two different primary categories are:

 Procedural aesthetics: Aesthetics that are programmatically generated by digital game
code (or via the application of mechanics in a paper game). These include procedural
music and art that emerge directly from inscribed aesthetics and technology.
 Environmental aesthetics: These are the aesthetics of the environment in which the
game is played, and they are largely beyond the control of the game developers.

Procedural Aesthetics
Procedural aesthetics, as we generally think of them in digital games, are created
programmatically by combining technology and inscribed aesthetics.12 They are called
procedural because they arise from procedures (also known as functions) that have been
written as programming code. The cascading waterfall of objects that you create in Chapter
18, "Hello World: Your First Program," could be considered procedural art because it is an
interesting visual that emerges from C# programming code. In professional games, two of
the most common forms of procedural aesthetics are music and visual art.

Procedural Music
Procedural music has become very common in modern videogames, and it is currently
created through three different techniques:

 Horizontal Re-Sequencing (HRS): HRS rearranges the order of several precomposed
sections of music according to the emotional impact that the designers want for the
current moment in the game. An example of this is LucasArts' iMUSE (Interactive MUsic
Streaming Engine), which was used in the X-Wing game series as well as many of
LucasArts adventure games. In X-Wing, the pre-composed music is sections of John
William's score for the Star Wars films. Using iMUSE, designers can play peaceful
music when the player is just flying through space, ominous music when enemy forces
are about to attack, victory music whenever a player destroys an enemy craft or achieves
an objective, and so on. There are also longer sections of music that are meant to loop
and provide a single mood as well as very short stings (sections of music one or two
measures in length) that are used to mask the transition from one mood to the next. This
is currently the most common type of procedural music technology and harkens at least
as far back as Super Mario Bros. (Nintendo, 1985), which played a transitional musical
sting and then switched to a faster version of the background music when the player had
less than 99 seconds left to complete the current level.
 Vertical Re-Orchestration (VRO): VRO includes recordings of various tracks of a

107

single song that can be individually enabled or disabled. This is used very commonly in
rhythm games like PaRappa the Rapper and Frequency. In PaRappa, four different
tracks of music represent four different levels of success for the player. The player's
success is ranked every few measures, and if she either drops or increases in rank, the
background music switches to a worse- or better-sounding track to reflect this. In
Frequency and its sequel Amplitude, the player controls a craft traveling down a tunnel,
the walls of which represent various tracks in a studio recording of a song. When the
player succeeds at the rhythm game on a certain wall, that track of the recording is
enabled.13 VRO like this is nearly ubiquitous in rhythm games—with the fantastic
Japanese rhythm game Osu Tatake Ouendan! and its Western successor Elite Beat
Agents as marked exceptions—and has also become common in other games to give the
player musical feedback on the health of their character, speed of their vehicle, and so
on.
 Procedural Composition (PCO): PCO is the rarest form of procedural music because
it takes the most time and skill to execute. In PCO, rather than rearrange various
precomposed tracks of music or enable and disable precomposed tracks, the computer
program actually composes music from individual notes based on programmed rules of
composition, pacing, and so on. One of the earliest commercial experiments in this
realm was C.P.U. Bach by Sid Meier and Jeff Brigs (1994), a title for the 3DO console.
In C.P.U. Bach, the listener/player was able to select various instruments and
parameters, and the game would craft a Bach-like musical composition based on
procedural rules.
Another fantastic example of procedural composition is the music created by composer
and game designer Vincent Diamante for the game Flower by thatgamecompany (2009).
For the game, Diamante created both precomposed sections of music and rules for
procedural composition. During gameplay, background music is usually playing (some of
which is rearranged based on the situation using HRS) as the player flies over flowers in
a field and opens them by passing near. Each flower that is opened creates a single note
as it blooms, and Diamante's PCO engine chooses a note for that flower that blends
harmoniously with the precomposed music and creates a melody along with other flower
notes. Regardless of when the player passes over a flower, the system chooses a note
that fits well with the current audio soundscape, and passing over several flowers in
sequence procedurally generates pleasing melodies.

Procedural Visual Art
Procedural visual art is created when programming code acts dynamically to create in-
game visuals. You are probably already familiar with a few forms of procedural visuals:

 Particle systems: As the most common form of procedural visuals, particle systems
exist in most games developed in the last decade. The dust cloud that rises when Mario

108

lands a jump in Super Mario Galaxy, the fire effects in Uncharted 3, and the sparks that
appear when cars crash into each other in Burnout are all various versions of particle
effects. Unity has a very fast and robust particle effects engine (see Figure 5.3).

Figure 5.3 Various particle effects created with Unity

 Procedural animation: Procedural animation covers everything from flocking behavior
for groups of creatures to the brilliant procedural character animation engine in Will
Wright's Spore that created walk, run, attack, and other animations for any creature that a
player could design. With normal animation, the animated creatures always follow the
exact paths inscribed by the animator. In procedural animation, the animated creatures
follow procedural rules that emerge into complex motion and behavior. You will get
some experience with the flocking behavior known as "boids" in Chapter 27, "Object-
Oriented Thinking" (see Figure 5.4).

Figure 5.4 Boids, an example of procedural animation from Chapter 27, "Object-Oriented
Thinking"

109

 Procedural environments: The most obvious example of a procedural environment in
games is the world of Minecraft by Mojang (2011). Each time a player starts a new
game of Minecraft, an entire world (billions of square kilometers in size) is created for
her to explore from a single seed number (known as the random seed). Because digital
random number generators are never actually random, this means that anyone who starts
from the same seed will get the same world.

Environmental Aesthetics
The other major kind of dynamic aesthetics are those controlled by the actual, real-life
physical environment in which the game is played. Though these are largely beyond the
control of the game designer, understanding what environmental aesthetics might arise and
accommodating them as much as possible is still the designer's responsibility.

Visual Play Environment
Players will play games in a variety of settings and on a variety of equipment, so as a
designer you need to be aware of the issues that this might cause. You should accommodate
two elements in particular:

 Brightness of the environment: Most game developers tend to work in environments
where the light level is carefully controlled to make the images on their screen as clear
as possible. Players don't always interact with games in environments with perfect
lighting. If your player is on a computer outside, playing on a projector, or playing
anywhere else with imperfect control of lighting, it can be very difficult for them to
clearly see scenes in your game that have a low level of brightness (e.g., a scene taking
place in a dark cave). Remember to make sure that your visual aesthetic either has a lot
of contrast in it between light and dark or allows the player the ability to adjust the
gamma or brightness level of the visuals. This is especially important if designing for a
phone or other mobile device, because these can easily be played outside in direct
sunlight.
 Resolution of the player's screen: If you are developing for a fixed-screen device
such as a specific model of iPad or portable console (like the Nintendo DS), this won't
be an issue. However, if you're designing for a computer or traditional game console,
you have very little control over the resolution or quality of your player's screen,
particularly if it's a console game. You cannot assume that your player will have a 1080p
or even 720p screen. All modern consoles before the PS4 and Xbox One could still
output the standard composite video signal that has existed for standard-definition
television since the 1950s. If you're dealing with a player on a standard-def television,
you must use a much larger font size to make text in your game at all legible. Even AAA
games like the Mass Effect and Assassin's Creed series have failed to accommodate this
well in the past, making it impossible to read critical text in these games on any

110

television made more than 10 years prior to their release. You never know when
someone might be trying to play your game on older equipment, but detecting whether
this is the case and changing the font size to help them out is possible.

Auditory Play Environment
As with the visual play environment, you rarely have control over the audio environment in
which your game is played. Though this is most essential to accommodate when making a
mobile game, it's also important to keep in mind for any game. Things to consider include
the following:

 Noisy environments: Any number of things might be happening at the same time as your
game, so you need to make sure that your player can still play even if they miss or can't
hear some of the audio. You also need to make sure that the game itself doesn't create an
environment so noisy that the player misses critical information. In general, important
dialog and spoken instructions should be the loudest sounds in your game, and the rest of
the mix should be kept a little quieter. You will also want to avoid subtle, quiet audio
cues for anything important in the game.
 Player-controlled game volume: The player might mute your game. This is especially
true with mobile games where you can never count on the player to be listening. For any
game, make sure that you have alternatives to sound. If you have important dialogue,
allow the player to turn on subtitles. If you have sound cues to inform players of where
things are, include visual cues as well.

Player Considerations
Another critical thing to consider about the environment in which your game will be played
is the player herself. Not all players have the same level of sensitivity in their five senses.
A player who is deaf should really be able to play your game with little trouble, especially
if you follow the advice in the last few paragraphs. However, there are two other
considerations in particular that many designers miss:

 Color blindness: In the United States, up to 8% of men and 0.5% of women with
Northern European ancestry have some form of color deficiency.14 Several different
forms of deficiency in color perception exist, the most common of which causes a
person to be unable to differentiate between similar shades of red and green. Because
color blindness is so common, you should be able to find a colorblind friend whom you
can ask to playtest your game and make sure that there isn't key information being
transmitted by color in a way that they can't see. Another fantastic way to check for your
game is to download a smartphone app that can modify what you see through the camera
to simulate various kinds of color blindness.15

111

 Epilepsy and migraine: Both migraines and epileptic seizures can be caused by rapidly
flashing lights, and children with epilepsy are particularly prone to having seizures
triggered by light. In 1997, an episode of the Pokémon television show in Japan
triggered simultaneous seizures in hundreds of viewers because of flickering images in
one scene.16 Nearly all games now ship with a warning that they may cause epileptic
seizures, but the occurrence of that is now very rare because developers have accepted
the responsibility to think about the effect their games might have on their players and
have largely removed rapidly flashing lights from their games.

Dynamic Narrative
There are several ways of looking at narrative from a dynamic perspective. The epitome of
the form is the experience of players and their game master throughout a traditional pen-
and-paper role-playing campaign. Although there have certainly been experiments into
crafting truly interactive digital narratives, after more than 30 years, they still haven't
reached the level of interaction in a well-run game of Dungeons & Dragons (D&D). The
reason that D&D can create such fantastic dynamic narratives is that the dungeon master
(DM: the game master in D&D) constantly considers the desires, fears, and evolving skills
of her players' characters and crafts a story around them. As mentioned earlier in this book,
if the players run into a low-level enemy that (due to random die rolls working in its favor)
is very difficult to fight, the DM can choose to have that enemy escape at the last minute and
then return as a nemesis for the players to fight later. A human DM can adapt the game and
the game narrative to the players in a way that is very difficult for a computer to replicate.

Interactive Narrative Incunabula
In 1997, Janet Murray, a professor at the Georgia Institute of Technology, published the
book Hamlet on the Holodeck17 in which she examined the early history of interactive
narrative in relation to the early history of other forms of narrative media. In her book,
Murray explores the incunabular stage of other media, which is the stage when that medium
was between its initial creation and its mature form. For instance, in the incunabular stage
of film, directors were attempting to shoot 10-minute versions of Hamlet and King Lear
(due to the 10-minute length of a single reel of 16mm film), and incunabular television was
largely just televised versions of popular radio programs. Through comparisons to many
examples from various media, Murray proceeds to talk about the growth of interactive
digital fiction and where it is currently in its incunabular stage. She covers early Infocom
text adventure games like the Zork series and Planetfall and points out two very
compelling aspects that make interactive fiction unique.

Interactive Fiction Happens to the Player
Unlike nearly every other form of narrative, interactive fiction happens directly to the

112

player. The following happens near the beginning of the Infocom game Zork.18 (The lines
preceded by a right angle bracket [e.g., > open trap door] are the commands entered
by the player.)

…With the rug moved, the dusty cover of a closed trap door appears.

> open trap door

The door reluctantly opens to reveal a rickety staircase descendinginto
darkness.

> down

It is pitch dark. You are likely to be eaten by a grue.

> light lamp

The lamp is now on.
You are in a dark and damp cellar with a narrow passageway leading east and
a crawlway to the south. To the west is the bottom of a steep metal ramp
which is unclimbable.
The door crashes shut, and you hear someone barring it.

The key element here is that you hear someone barring it. You are now trapped. Interactive
fiction is the only narrative medium where the player/reader is the character taking actions
and suffering consequences in the narrative.

Relationships Are Developed Through Shared Experiences
Another compelling aspect of interactive fiction is that it allows the player to develop a
relationship with other characters through their shared experiences. Murray cites
Planetfall,19 another Infocom text adventure, as a fantastic example of this. Following the
destruction of the spaceship on which she was a janitor, the player is largely alone for the
first section of Planetfall. Eventually, she comes across a machine to make warrior robots,
but when she engages it, it malfunctions and produces a child-like, mostly useless robot
named Floyd. Floyd follows the player around for the remainder of the game and does little
more than provide comic relief. Much later in the game, the player must retrieve a device
from a bio-lab, but the lab is full of both radiation and vicious aliens. Immediately, Floyd
simply says, "Floyd go get!" and enters the lab to retrieve the item. Floyd soon returns, but
he is leaking oil and barely able to move. He dies in the player's arms as she sings The
Ballad of the Starcrossed Miner to him. Many players reported to the designer of
Planetfall, Steven Meretzky, that they cried when Floyd died, and Murray cites this as one
of the first examples of a tangible emotional connection between a player and an in-game
character.

113

Emergent Narrative
True dynamic narrative emerges when the players and game mechanics contribute to the
story. Several years ago, I was playing in a Dungeons & Dragons 3.5 edition game with
some friends. The game master had us in a pretty tight spot. We had just retrieved an artifact
from some forces of evil in another dimension and were being chased by a large balrog20 as
we fled down a narrow cave on our flying carpet toward the portal back to our dimension.
It was gaining on us quickly, and our weapons were having little effect. However, I
remembered a little-used property of the Rod of Splendor that I possessed. Once per week,
I could use the Rod of Splendor to create a "huge pavilion of silk, 60 feet across, inside of
which were the furnishings and food for a party to entertain 100 people."21 Often, we
would use this capability of the rod to throw a party when we'd finished a mission, but this
time I cast the tent directly behind us in the tunnel. Because the tunnel was only 30 feet
wide, the balrog crashed into the tent and became entangled, allowing us to escape without
anyone dying.

This kind of unexpected story emerges from a combination of the situation created by the
game master, the game's rules, and the creativity of individual players. I have encountered
many similar stories through the role-playing campaigns that I have been part of (as both a
player and game master), and you can do several things to encourage this kind of
collaborative storytelling in roleplaying campaigns that you run. For more information
about role-playing games and how to run a good campaign, see the Role-Playing Games
section of Appendix B, "Useful Concepts."

Dynamic Technology
As with the previous chapter, because other large sections of this book are devoted to both
digital and physical game technologies, they are covered very little in this chapter. The core
concept for you to know at this point is that the game code you author (your inscribed
technology) will be a system that runs as the player experiences the game. As with all
dynamic systems, emergence will occur, and this means that many opportunities exist for
unexpected things to happen, both wonderful and horrible. Dynamic technology covers all
the runtime behavior of your code and the ways in which it affects the player. This could be
anything from a system to simulate physics to artificial intelligence to anything else that is
implemented in your code.

To find information on the dynamic behavior of paper game technologies such as dice,
spinners, cards, and other randomizers, look to Chapter 11, "Math and Game Balance." For
information on digital game technologies, you can look to the latter two parts of the book as
well as Appendix B, "Useful Concepts."

114

Summary
Dynamic mechanics, aesthetics, narrative, and technology all emerge from the act of players
playing a game. Though the elements that emerge can be challenging to predict, designers
have a responsibility to playtest and understand the envelope of that emergence.

The next chapter explores the cultural layer of the Layered Tetrad, the layer beyond
gameplay. In the cultural layer players gain more control over the game than the original
game developers, and the cultural layer is the only layer of the tetrad that is experienced by
members of society who do not ever play the game.

1. Some films, like The Rocky Horror Picture Show, owe a lot of their cult fandom to
presentations in which the audience takes part, and the audience reactions in those films
do alter the viewing experience of the other audience members. However, the film itself
is completely unaffected by the audience. The dynamism in games comes from the
ability of the medium to react to the player.

2. Scott Rogers, Level up!: The Guide to Great Video Game Design (Chichester, UK:
Wiley, 2010) and Scott Rogers, Swipe this! The Guide to Great Tablet Game Design
(Hoboken, NJ: John Wiley & Sons, 2012).

3. Tracy Fullerton, Christopher Swain, and Steven Hoffman, Game Design Workshop: A
Playcentric Approach to Creating Innovative Games (Burlington, MA: Morgan
Kaufmann Publishers, 2008), Chapters 3 and 5.

4. Katie Salen and Eric Zimmerman, Rules of Play: Game Design Fundamentals
(Cambridge, MA: MIT Press, 2003), 34.

5. Kia Gregory, "Chinatown Fair Is Back, Without Chickens Playing Tick-Tack-Toe," New
York Times, June 10, 2012.

6. In this example, I am omitting additional rules of the game for the sake of simplicity.
7. If you're ever playing the game Lunch Money by Atlas Games, try allowing players to

attack another player, heal themselves, and discard any cards they don't want each turn
(rather than having to choose one of the three). It makes the game a lot more frantic!

8. Richard Bartle, "Hearts, Clubs, Diamonds, Spades: Players Who Suit Muds,"
http://www.mud.co.uk/richard/hcds.htm, accessed January 12, 2017.

9. See Nick Yee's "Motivations of Play in MMORPGs: Results from a Factor Analytic
Approach," http://www.nickyee.com/daedalus/motivations.pdf, accessed April 1,
2017.
Another excellent resource is Scott Rigby and Richard Ryan's paper "The Player
Experience of Need Satisfaction (PENS)," http://immersyve.com/white-paper-the-
player-experience-of-need-satisfaction-pens-2007/, accessed April 1, 2017.

10. Rob Heinsoo, Andy Collins, and James Wyatt, Dungeons & Dragons Player's
Handbook: Arcane, Divine, and Martial Heroes: Roleplaying Game Core Rules
(Renton, WA: Wizards of the Coast, 2008).

115

http://www.mud.co.uk/richard/hcds.htm
http://www.nickyee.com/daedalus/motivations.pdf
http://immersyve.com/white-paper-the-player-experience-of-need-satisfaction-pens-2007/

11. Fallout 3 initially ended the game when the player reached the final outcome of
completing the main story but then released DLC (downloadable content) that allowed
players to continue playing after this point.

12. Examples of procedural art in board games include things like the map created by the
progressive laying of tiles in Carcassonne (Klaus-Jürgen Wrede, 2000), but digital
procedural game art is much more common.

13. Amplitude also includes a mode where players can choose which tracks to enable at
any point in the song to use VRO to create their own remix of the tracks included with
the game.

14. Color blindness is much more common in males than females.
https://nei.nih.gov/health/color_blindness/facts_about, accessed April 2, 2017.

15. Two examples of this kind of app are Chromatic Vision Simulator by Kazunori Asada
for iOS and Android and Color DeBlind for iOS by electron software.

16. Sheryl WuDunn, "TV Cartoon's Flashes Send 700 Japanese Into Seizures," New York
Times, December 18, 1997.

17. Janet Horowitz Murray, Hamlet on the Holodeck (New York: Free Press, 1997).
18. Zork was created at the Massachusetts Institute of Technology in 1977–79 by Tim

Anderson, Marc Blank, Bruce Daniels, and Dave Lebling. They formed Infocom in
1979 and released Zork as a commercial product.

19. Planetfall was designed by Steve Meretzky and published by Infocom in 1983.
20. A balrog is the giant winged demon of fire and smoke that faced Gandalf in the "you

shall not pass" scene of The Fellowship of the Ring by J. R. R. Tolkien.
21. The Dungeons & Dragons 3.5e System Reference Document entry for the Rod of

Splendor is at http://www.d20srd.org/srd/magicItems/rods.htm#splendor, accessed
April 2, 2017.

116

https://nei.nih.gov/health/color_blindness/facts_about
http://www.d20srd.org/srd/magicItems/rods.htm#splendor

CHAPTER 6

THE CULTURAL LAYER

As the final layer in the Layered Tetrad, the cultural layer is the furthest from
the designer's hand, yet it is still critical to a holistic understanding of game
design and the implications of game development.

This chapter explores the cultural layer, the space where the player and society
take control of the game and make it their own.

Beyond Play
The inscribed and dynamic layers are obvious to all game designers, because they are both
integral to the concept of interactive experiences. The cultural layer, however, is a little
less obvious. The cultural layer exists at the intersection of the game and society. Players of
a game become a community united by their shared experience of play, and that community
takes the concepts and intellectual property of the game out into the world. The cultural
layer of the game is seen from one side by the community of players who have intimate
knowledge of the game and from the other by the members of general society, who have no
knowledge of the game at all and first encounter it not through play but through the artifacts
created by this community of players (see Figure 6.1).

117

Figure 6.1 The cultural layer, created by the community of game players and witnessed by
society

As Constance Steinkuehler points out in her paper "The Mangle of Play,"1 the dynamic play
of a game—particularly a massively multiplayer game—is an "interactively stabilized
mangle of practice." In saying so, she points out that, as discussed in the preceding chapter,
the dynamic layer of a game is composed not only of the intents of the game developers but
also of the intents of the players, and the overall responsibility for and control over the
experience is shared between players and developers. Extending this concept, in the
cultural layer the players (and society in general) have more control and agency than the
original developers. The cultural layer is where player communities actually change the
inscribed game through game mods (that is, modifications to the game through software that
changes the inscribed game elements), it is where player communities seize ownership of
the game narrative by writing their own fan fiction, and it is where players create their own
game-related aesthetics through fan art and music.

Unlike the inscribed layer, where the four elements (mechanics, aesthetics, narrative, and
technology) are distinctly assigned to different members of the development team, there is
much more overlap and fuzziness of borders between elements when they are examined
through the lens of the cultural layer. Fan-made game mods—which feature prominently in
the cultural layer—are often combinations of all four elements with the responsibility for
each element within the mod often shared by the players and communities who make them.2

In the sections that follow, the four elemental divisions are maintained to provide

118

consistency with the preceding chapters and to encourage you to look at the examples listed
through the lens of that particular element. However, many of the examples under one
cultural element could also have been listed under another.

Cultural Mechanics
Cultural mechanics occur when players take the mechanics of the game into their own
hands, sometimes even crafting a new experience out of the game. The most common
examples of this include the following:

 Game mods: Players repurpose the game to accommodate their own mechanics. This is
most extensive in games for Windows-based personal computers. Players modded
Quake 2 by Id to make dozens if not hundreds of new games that all used the technology
of Quake 2 but replaced the mechanics with gameplay and levels of their own (often
also replacing the aesthetics and dramatics).
Several fantastic game mods have become commercial products in their own right.
Counter Strike started as a mod for Half-Life and was subsequently purchased by Valve,
the Half-Life developers.3 Similarly, Defense of the Ancients (DotA) started as a fan
mod for Blizzard's game Warcraft III and eventually popularized the entire genre of
multi-user online battle arenas (MOBAs).4

In addition, many companies have released editors for their games that encourage and
allow players to create custom content for the game. For example, Bethesda Softworks
has released Creation Kit™ for its game The Elder Scrolls V: Skyrim. Creation Kit
allows players to create their own levels, quests, NPCs (nonplayer characters), and so
forth. Bethesda has also done this before for other games, including Fallout 3 and
earlier games in the Elder Scrolls series.
 Custom game levels: Even without changing the other mechanics, some games
accommodate player-made levels. In fact, some games rely on players to make levels for
the game. Little Big Planet by Media Molecule and Sound Shapes by Queasy Games
both included simple level-editor tools and expected some of their players to create
levels for the game. Both games also had systems for players to distribute the levels they
had created and to rate levels created by other players. The game editors and mod
creation kits like those released for Skyrim and Fallout 3 also include level editors, and
the level editing community for Epic's first-person shooter Unreal is one of the broadest
and most mature in modern gaming.

The major aspect that differentiates cultural mechanics like game mods from house rules (a
dynamic mechanic) is how drastically the inscribed mechanics of the game are actually
changed. If the inscribed mechanics largely remain the same but players choose to apply
their own goals to the game (e.g., players choosing to do a "speed run" and finish the game
as quickly as possible or attempting to play through a usually violent game like Skyrim

119

without directly killing any enemies), that behavior still fits within the realm of dynamic
mechanics. It is only when players take control from the designers by modifying the
inscribed elements of the game that the behavior moves into the cultural layer.

Cultural Aesthetics
Cultural aesthetics occur when the community of players creates their own aesthetics that
relate to the game. This is often in the form of their own versions of the character art,
music, or other aesthetics of the game but can also take the form of the community using the
game engine to achieve their own aesthetic purposes:

 Fan art: Many artists take games and game characters as inspiration for their work and
create new art that depicts those characters.
 Cosplay: Similar to fan art, cosplay (a portmanteau of costume and play) is the practice
of a fan of a game (or comic, anime, manga, or film) dressing up as one of the characters
from the game. The cosplayer takes on the role and personality of the game character in
the real world, just as she did in the virtual world of the game. Cosplay is most
commonly seen at game, anime, and comic fan conventions.
 Gameplay as art: In Keith Burgun's book Game Design Theory, he proposes that some
game developers should be seen in much the same way as those who make musical
instruments: artisans who craft tools that performers can use to make art. According to
him, there is an art not only to crafting games but also to gameplay itself, and the
elegance with which some highly skilled players can play a game should be regarded as
an aesthetic in and of itself. Games with broad vocabularies of movement or player
actions can evoke this kind of artistic play. Examples include complex fighting games
like Street Fighter and creative traversal games like Tony Hawk's Pro Skater.

Cultural Narrative
Sometimes, the community of players of a game will use the game or the world of the game
to tell their own stories and create their own narratives. With pen-and-paper roleplaying
games such as Dungeons & Dragons, this is a necessary part of the dynamics of play.
However, there are also examples of players doing this far outside of the standard or
expected dynamics of gameplay:

 Fan fiction: Just as with film, television, or any other form of narrative media, some
fans of games write their own stories about the game's characters or world.
 Narrative game mods: Some games like Skyrim and Neverwinter Nights allow the
players to use authorized tools to create their own interactive narratives within the game
world. This allows players to tell their own stories with the game's characters, and
because they are built with tools similar to those used by the game developers, these

120

stories can have the same depth and branching as the narratives originally inscribed in
the game.
One particularly inspiring narrative game mod was a simple change made by Mike
Hoye, a father and fan of The Legend of Zelda: The Windwaker. Hoye had been playing
the game with his daughter, Maya, and she absolutely loved it, but he was bothered by
the game constantly referring to Link (as played by Maya) as a boy. Mike hacked the
game to create a version that referred to Link as a girl. In Hoye's words, "As you might
imagine, I'm not having my daughter growing up thinking girls don't get to be the hero and
rescue their little brothers." This small change by a player of the game allowed his
daughter to feel empowered as the hero of the story in a way she couldn't have playing
the original, boy-focused game.5

 Machinima: Another interesting example of dramatics in the cultural layers is
machinima, which are linear videos made by capturing in-game footage. One of the most
famous of these is the Red vs. Blue (RvB), a comedy series by Rooster Teeth Productions
that takes place entirely within the world of Bungie's first-person shooter, Halo. In its
original incarnation, the videos were all asymmetrically letterboxed with a thin bar at
the top and a thick black bar at the bottom. The bottom bar was there to cover the gun
that would have been in the scene because the creators of Red vs. Blue originally used
footage exactly as seen by players in the game. In those early videos, you can still see
the aiming reticle of the gun.
Red vs. Blue began in April 2003 and has become much more successful and polished
over the years, eventually even receiving direct support from the Bungie team. A bug in
the original version of Halo caused a character's head to pop back up to looking straight
forward when the character's gun was aimed all the way down. This was used by
Rooster Teeth to make it look like the characters were nodding their heads while talking
(without their guns pointing at each other). In Halo 2, Bungie fixed this bug but enabled a
non-aiming posture for characters to make machinima like RvB easier to make.
Other game engines have also embraced machinima. Quake was one of the earliest
heavily used machinima engines. Uncharted 2: Drake's Deception by Naughty Dog had
a multiplayer online Machinima Mode that encouraged players to make machinima with
the game engine and enabled several changes to camera angles, animation, and more.

Cultural Technology
As mentioned earlier in this chapter, a lot of fuzziness exists between the four elements in
the cultural layer, and therefore, most of the examples of cultural technology have already
been listed under the other three elements (e.g., game mods, which are listed under cultural
mechanics but also require technology for their implementation). As with the other three
elements, the core of cultural technology is twofold; it covers both the effect that the
technology of the game has on the lives of players outside of the time that they are playing
and the technology that player communities develop to alter the inscribed elements of the

121

game or the dynamic game experience:

 Game technology beyond games: Over the past few decades, game technology has
expanded by leaps and bounds. The increasing resolution of displays (e.g., the transition
of television from 480i to 1080p and 4K) and the appetite of players for progressively
better-looking games have driven developers to constantly improve their techniques for
rendering high-quality graphics quickly. These real-time techniques, developed for
games, have found their way into everything from medical imaging to previsualization of
films (the practice of using game-like animations and real-time graphics to carefully
plan complicated shots).
 Player-made external tools: External tools, created by players, that can change a
player's game experience but don't count as game mods because they don't alter any of
the inscribed mechanics of the game are part of the technical layer. Examples include the
following:

 Map applications for Minecraft that enable players to see a large-area map of their
game, giving them the capability to search for specific geographic features or minerals
 Damage per second (DPS) calculators for massively multiplayer online games
(MMOGs) like World of Warcraft that can help players determine the best ways to
level their characters and the best equipment to obtain to do the most average damage
per second of combat
 Any of several tools for the MMOG Eve Online that are available on mobile devices,
including tools to manage skill training, assets, in-game mail, and so on6

 Fan-made game guides like those available at http://gamefaqs.com that help players
understand the game better and can improve a player's ability to play a game well but
don't actually modify the inscribed game

Authorized Transmedia Are Not Part of the Cultural Layer
The word transmedia refers to narrative or intellectual property that exists across more
than one medium. An excellent example of this is Pokémon, which since its creation in
1996 has been extremely successful as a television show, a card game, a series of handheld
games for portable Nintendo consoles and mobile phones, and a manga series. Many other
examples of transmedia exist, including the video games made to accompany the release of
nearly every new Disney film and the movies that have been made from famous games like
Resident Evil and Tomb Raider.

Transmedia can be an important part of the brand of a game and can be a strategy to
increase market penetration and duration of that brand. However, it is important to draw a
distinction between authorized transmedia (like the Pokémon example) and unauthorized
fan-made transmedia. The latter belongs in the cultural layer, but the former does not (see
Figure 6.2).

122

http://gamefaqs.com

Figure 6.2 The location of authorized transmedia relative to the Layered Tetrad

The inscribed, dynamic, and cultural layers of the Layered Tetrad are separated based on
the progression from the elements inscribed by the game's creators through the dynamic
play of the game by players and out to the cultural impact that playing the game has on the
players and society. In contrast, authorized transmedia are the re-inscribing of the game's
brand into something else by the owners of that brand and intellectual property. This places
authorized transmedia firmly on the inscribed layer, just as a new game in the same series
would be. Each individual transmedia property is another product on the inscribed layer
that has the possibility of its own dynamic and cultural layers. The important distinction is
one of who has control. In both the inscribed layer of a game and an authorized transmedia
companion product to a game, the control is held by the company that develops the game.
When the game moves into the dynamic layer, the control is shared between technologies
and mechanics put in place by the developers and the actual actions, procedures, strategies,
and such executed by the players. In the cultural layer, the control has shifted completely
from the developers of the game to the community of players of the game. For this reason,
fan fiction, cosplay, game mods, and fan-made transmedia all belong in the cultural layer,
but authorized transmedia products do not.

To learn more about transmedia, I recommend reading Professor Henry Jenkins' books and
papers on the topic.

The Cultural Impact of a Game
So far, we've looked at the cultural layer as the way in which players take ownership of a

123

game and move it out into the culture at large. Another very different way of looking at this
is to consider the impact that gameplay has on players. Disappointingly, the game industry
over the past several decades has been quick to acknowledge and promote psychological
studies that found evidence of the positive effects of game playing (e.g., improved
multitasking skills, improved situational awareness), while simultaneously denying studies
that found evidence of the negative impact of gaming (e.g., addiction to games and the
negative effects of violence in video games).7 In the case of violent video games in
particular, it's probable that this was largely defensive. Nearly every company that belongs
to the Entertainment Software Association (the lobbying group for video game companies)
has made games where the core mechanic is some type of violence, and it seems that
"violent video games" are a common culprit that journalists tend to blame when people
commit horrible acts.8 However, in 2011, the landscape for this discussion changed in a
critical way when the Supreme Court of the United States decided in Edmund G. Brown,
Jr., Governor of California, et al., Petitioners v. Entertainment Merchants Association et
al., 564 U.S. (2011), that games are art and are therefore protected by the First Amendment
to the United States Constitution. Up to this point, members of the ESA and other game
developers had good reason to fear government action to ban violent games. Now, just like
most other forms of media, games are protected as art, and developers can make games
about whatever they want without fear of government bans.

Examples of Negative Cultural Impact
Of course, with this liberty also comes a responsibility to acknowledge the effects that the
games we make have upon society, and this isn't limited exclusively to the violence in
games. In the 2011 class-action suit Meguerian v. Apple Inc.,9 Apple paid more than $100
million in settlement because games developed by third-party companies and approved by
Apple had been designed with mechanics that encouraged children to pay hundreds of
dollars for in-app purchases as part of gameplay. Though Apple settled the suit and thereby
avoided a judgment, the complaint was that the games had been designed to prey on
children's underdeveloped understanding of real money, and some children had charged
over $1,000 in less than a month without their parents' knowledge or approval. It has also
been shown that the peak time that people play casual social network games (e.g.,
Facebook games) is during work hours, and many of these games are designed with
"energy" and "spoilage" mechanics that encourage players to return to the game every
fifteen minutes, which one could assume has a negative effect on workplace productivity.

Messages that Our Games—and Fans—Send
The first time that anything video game related made the front page of the New York Times
was an article on October 15, 2014 titled "Feminist Critics of Video Games Facing Threats
in 'GamerGate' Campaign."10 GamerGate was a small, very vocal, misogynistic movement

124

that purported concern for ethics in video game journalism but in practice was a gathering
place for men who feared that games were falling under the control of women, liberals, and
other "social justice warriors."

The article was written in response to the cancellation of an appearance by feminist
cultural critic, Anita Sarkeesian, at Utah State University. Leading up to the cancellation,
Sarkeesian had been receiving death and rape threats for months in response to her
Feminist Frequency YouTube series of insightful analyses of the latent misogyny that has
pervaded many games over the past decades. However, in this instance, someone
threatened a mass shooting at her talk, and USU refused to ban weapons at the talk, so she
canceled.

Let me be very clear: GamerGate was the wolf of misogyny dressed in the sheep's clothing
of complaints about ethics in video game journalism. I spoke with many game developers
about GamerGate, and the overwhelming majority of them were deeply disturbed by the
hatred that GamerGate stood for. However, as the game development community, I believe
that we must own the fact that through our actions, we created GamerGate. By objectifying
women in games and in game advertisements, by presenting straight, white men as heroes
and women as objects to be rescued and trophies to be won, we created an audience who
believed that this was true and felt threatened when people like Sarkeesian pointed this out.
In the latest Mario game, Super Mario Odyssey, Mario walks around a realistic New York
City and converses with talking forks, but after over 30 years, the plot is still that of him
fighting Bowser to save an entirely passive Princess Peach whose only role in the entire
series has been to be kidnapped and serve as a prize for Mario to win.11 Of course,
misogyny is not the only issue we face in terms of representation of women in games; the
vast majority of main characters in games are still cis white males. This has been slowly
improving in commercial games, but it is still a real problem.

Additionally, I believe that we need to be careful of the messages embedded in the
mechanics of our games. Minecraft—a truly excellent game that encourages creativity and
exploration—also includes the embedded concept that the entire world is simply a mine of
resources to be consumed by the players. 2b2t.org is one of the oldest existing continually
running Minecraft servers, and entering into the world for the first time, players find
themselves in a barren hellscape completely devoid of any resources. All the resources in
the world have been consumed for kilometers in any direction, and what is left is an empty
husk of stone bridges left behind, floating in the air, on which players can walk for hours to
reach parts of the game where resources remain. One seasoned player stated "The million
[brick] mark…that's where all the cool stuff is."12 At standard walking speed of about
5m/s, it would take a player over 2.3 days of real-time walking (about 166 Minecraft days)
to travel the 1,000 kilometers necessary to reach that million brick mark (and that's
assuming there were no obstacles, gaps, traps, or other players trying to kill you along the
way). Though this is certainly an unusual experience in Minecraft, it is also an ultimate

125

expression of the core mechanic of the game: that of mining the earth to take what you want
and create what you desire with little regard for what you leave behind.

Like all forms of media, games have impact, and they contribute to the actions and world
views of those who play them. Games absolutely aren't going to cause someone to choose
to perpetrate a mass shooting, but games and many police procedural shows do normalize
violence by showing police officers using their guns on a nearly daily basis. To contrast
that with reality, only 1/850 officers in New York City fired a weapon at a suspect in 2013;
that's an average of a 0.00032% chance of an individual officer firing a weapon at a
suspect on any given day (or 1/310,250). I believe that we as designers and media creators
have a responsibility for the games that we make and the messages that they send into the
world.

Just as game mechanics can normalize consumption or violence, by the same token, they can
also promote pro-social or pro-ecological behavior. A version of Minecraft could be made
with a much smaller world size that required things like crop rotation and responsible use
of limited water resources to sustain the world and feed the players on a server. A social
network game could be created where the resources a player owned would spoil over time
and she would gain points for giving those resources to others in need, perhaps in trade for
other resources that she couldn't acquire on her own. If pervasive in games and other
media, mechanics like these could normalize sustainable practices and altruism.

Summary
The inscribed and dynamic layers of the Layered Tetrad have been discussed in several
books prior to this one, but the cultural layer has received far less attention. In fact, even in
my personal practice as a game designer and game design professor, though I think very
concretely about the inscribed and dynamic layers on a daily basis, I spend much less time
than I should considering the cultural impact of my work and the changes that players might
make to my games.

Covering game design ethics in meaningful detail is largely beyond the scope of this book,
but it is important that designers think about the consequences of the games they create,
particularly because after a player finishes playing a game and sets it aside, the cultural
layer is all that remains.

1. Constance Steinkuehler. "The Mangle of Play." Games and Culture 1, no. 3 (2006):
199–213.

2. I definitely do not mean to disparage the developers of game mods by continuing to
refer to them throughout this chapter as players. By doing so, I am only attempting to be
clear so that there is no confusion between the developers (i.e., developers of the
inscribed content) and players (i.e., those who played the game and who might develop

126

game mods). Many fantastic game designers and developers have started by making
game mods, and doing so is a fantastic way to practice the craft.

3. http://www.ign.com/articles/2000/11/23/counter-strike-2 and
http://en.wikipedia.org/wiki/Counter-Strike

4. According to http://en.wikipedia.org/wiki/Multiplayer_online_battle_arena and
http://themittani.com/features/dota-2-history-lesson, DotA was actually a Warcraft III
remake of a mod for Starcraft known as Aeon of Strife.

5. You can read Mike Hoye's original blog post about this and download the custom patch
that he made at http://exple.tive.org/blarg/2012/11/07/flip-all-the-pronouns/.

6. In Eve Online, skills are trained in real time regardless of whether the player is
currently logged in; so, having an alarm to tell the player that a skill is done and she can
now select a new one to train is very useful (information from http://pozniak.pl/wp/?
p=4882 and https://itunes.apple.com/us/app/neocom/id418895101).

7. Even a cursory perusal of the Entertainment Software Association's (ESA's) archive of
noteworthy news (at http://www.theesa.com/category/around-the-industry/, accessed
January 19, 2017) reveals a plethora of articles about the positive benefits of gameplay
and almost none about the potential negative effects.

8. Dave Moore and Bill Manville. "What role might video game addiction have played in
the Columbine shootings?" New York Daily News, April 23, 2009.
Kevin Simpson and Jason Blevins. "Did Harris preview massacre on Doom?" Denver
Post, May 4, 1999.

9. Meguerian v. Apple Inc., case number 5:11-cv-01758, in the U.S. District Court for the
Northern District of California.

10. You can find the article at http://nyti.ms/1wHspJH, accessed January 19, 2017.
11. Princess Peach was an active player character in the U.S. release of Super Mario Bros.

2 for the NES; however, that game was just a reskinned and improved version of the
Japanese game Yume Kōjō: Doki Doki Panic (Dream Factory: Heart-Pounding Panic,
also designed by Shigeru Miyamoto), and not a true Super Mario game. Peach has also
been an active player character in many of the Mario offshoot games (e.g., Mario Kart,
Mario Party, Mario Tennis), but she is still treated as an object in the core Mario
games. Reference: http://www.ign.com/articles/2010/09/14/ign-presents-the-history-
of-super-mario-bros—accessed January 19, 2017.

12. http://www.newsweek.com/2016/09/23/minecraft-anarchy-server-2b2t-will-kill-you-
498946.html – accessed January 19, 2017.

127

http://www.ign.com/articles/2000/11/23/counter-strike-2
http://en.wikipedia.org/wiki/Counter-Strike
http://en.wikipedia.org/wiki/Multiplayer_online_battle_arena
http://themittani.com/features/dota-2-history-lesson
http://exple.tive.org/blarg/2012/11/07/flip-all-the-pronouns/
http://pozniak.pl/wp/?p=4882
https://itunes.apple.com/us/app/neocom/id418895101
http://www.theesa.com/category/around-the-industry/
http://nyti.ms/1wHspJH
http://www.ign.com/articles/2010/09/14/ign-presents-the-history-of-super-mario-bros
http://www.newsweek.com/2016/09/23/minecraft-anarchy-server-2b2t-will-kill-you-498946.html

CHAPTER 7

ACTING LIKE A DESIGNER

Now that you've learned something about how to take a designer's approach to
thinking about and analyzing games, it's time to look at how game designers go
about crafting interactive experiences.

As mentioned in previous chapters, game design is a practice, and therefore, the
more design you do, the better you will get at it. However, you also need to make
sure that you're starting with the kinds of effective practices that will yield you
the greatest gains over time. That is the purpose of this chapter.

Iterative Design
"Game design is 1% inspiration and 99% iteration." —Chris Swain

Remember this saying from the first chapter? In this section, we explore it further.

The number one key to good design—in fact, the most important thing that you can learn
from this book—is the process of iterative design shown in Figure 7.1. I have seen iterative
design take some games that were initially terrible and make them great, and I've seen it at
work across all forms of design from furniture to illustration to game design.

128

Figure 7.1 The iterative process of design1

The four phases of the iterative process of design are:

 Analysis: The analysis phase is all about understanding where you are and what you
want to accomplish. You must clearly understand the problem that you're trying to solve
(or opportunity that you're trying to take advantage of) with your design. You must also
understand the resources that you can bring to bear on the project and the amount of time
you have in which to implement your design.
 Design: Now that you have a clear idea where you are and what you're trying to
accomplish with your design, create a design that will solve the problem/opportunity
with the resources you have available to you. This phase starts with brainstorming and
ends with a concrete plan for implementation.
 Implementation: You have the design in hand; now execute it. There's an old adage: "A
game is not a game until people are playing it." The implementation phase is about
getting from game design idea to playable prototype as quickly as possible. As you'll see
in the digital game tutorials later in this book, the earliest implementations are
sometimes just moving a character around the screen—with no enemies or objectives—
and seeing whether the movement feels responsive and natural. Implementing just a
small part of the game before testing is perfectly fine; a test of just a portion of the game
can often be more focused than a large-scale implementation could be. At the end of
implementation, you're ready to run a playtest.
 Testing: Put people in front of your game and get their reactions. As your experience as
a designer grows, you will get better at knowing how the various game mechanics you

129

design will play out when the game is being tested, but even with years of experience,
you will never know for sure. Testing will tell you. You always need to test early, when
it is still possible to make changes to the game and get it on the right track. You must test
frequently so that you can best understand the causes of the changes in player feedback
that you witness. If you've changed too many things between two test cycles, it can be
difficult to know which one caused a change in player feedback.

Let's look at each phase in more detail.

Analysis
Every design seeks to solve a problem or take advantage of an opportunity, and before you
can start to design, you need to have a clear idea of what that problem or opportunity is.
You might be saying to yourself "I just want to make a great game," which is true of most of
us, but even with that as your initial statement, you can dig deeper and analyze your
problem further.

To start, try asking yourself these questions:

1. For whom am I designing the game? Knowledge of your target audience can dictate
many other elements of design. If you're creating a game for children, it is more likely
that their parents would let them use a mobile device than a computer connected to the
Internet. If you're designing a game for people who like strategy games, they will most
likely be used to playing on a PC. If you're designing a game for men, be aware that
nearly 10% of white men are colorblind.
One thing to always be aware of is the danger of designing a game for yourself. If you
just make a game for you, a legitimate possibility exists that only you will want to play
it. Researching your intended audience and understanding what makes them tick can tell
you a tremendous amount about where your game design should go and help you to make
your game better.
It's also important to realize that what players think they want and what they will actually
enjoy are sometimes two different things. In your research, it is important to differentiate
between your audience's stated desires and the things that actually motivate and engage
them.

2. What are my resources? Most of us don't have a budget of tens of millions of dollars
with which to employ a studio of 200 people to make a game over the span of two
years. But you probably do have some time and talent and maybe even a group of
talented friends as well. Being honest with yourself about your resources, strengths, and
weaknesses can help shape your design. As an independent developer, your primary
resources are talent and time. Money can help you purchase either of these through
hiring contractors or purchasing assets, but especially if you're working on a small indie

130

game team, you want to make sure that the game you're developing makes the best use of
the resources on your team. When working on a game, treat your time and that of your
team members as a precious resource; be sure not to waste it.

3. What prior art exists? This is the single question that is most often ignored by my
students (often to their detriment). Prior art is the term used to describe existing games
and other media that are related to yours in some way. No game comes from a vacuum,
and as a designer, it is up to you to know not only the other games that have inspired you
(which, of course, you know), but also what other games exist in the same space that
came before or after your primary inspirations.
For instance, if you were to design a first-person shooter for console, of course you
would look at Destiny, Titanfall, and the Call of Duty series, but you would also need
to be familiar with Halo (the earliest first-person shooter [FPS] that worked well on a
console when conventional wisdom held that it was impossible to do so), Marathon
(Bungie's game prior to Halo, which forms the basis for a lot of the design decisions and
mythology in Halo), and the other FPSs that were precursors for Marathon.
Prior art research is necessary because you must understand everything you can about the
ways that other people have tried to approach the design problem that you're tackling.
Even if others had the exact same idea as you, they almost certainly approached it in a
different way, and understanding both their successes and failures will better equip you
to make your game better.

4. What is the fastest path to a playable game that demonstrates what I want to test?
Though often overlooked, this question is critical for obvious reasons. You only have 24
hours available to you each day, and if you're at all like me, only a small fraction of
them can be devoted to game development. Knowing this, it is critical that your time is
used as efficiently as possible if you want to get your game made. Think about the core
mechanic of the game you want to create—the thing that the player does most throughout
the game (for example, in Super Mario Bros., the core mechanic is jumping)—and make
sure that you design and test that first. By developing and playtesting that, you'll know
whether making more of the game is worth it. Art, music, and all other aesthetic
elements are certainly important to your final game, but at this point, you must focus on
the mechanics—on gameplay—and get that working first. That is your goal as a game
designer.

Of course, you'll have many more questions of your own to add to these, but regardless of
the game you're making, these four are critical to keep in mind during the analysis phase.

Design
A large portion of this book is about design, but in this section, I focus on the attitude of a
professional designer. (Chapter 15, "The Digital Game Industry," covers the industry itself
in more detail.)

131

Design isn't about getting your way, it's not about being a great genius or auteur who is
followed by everyone else on the team, and it's not even about doing a great job of
communicating your vision to the rest of the team. Design isn't about you—it is about the
project. Working as a game designer is about collaborating with the rest of the team,
compromising, and above all, listening.

In the first few pages of his book The Art of Game Design, Jesse Schell states that listening
is the most important skill that a game designer can have, and I emphatically agree. Schell
lists five kinds of listening that you need to develop:2

 Listen to your audience: Whom do you want to play your game? Whom do you want to
buy your game? As mentioned earlier, these are critical questions that you must answer,
and after you have answered them, you need to listen to the kinds of experiences that
your audience wants to have. The whole purpose of the iterative process of design is to
make something, throw it out to playtesters, and get their feedback. Make sure you listen
to that feedback when they give it, even (especially!) if it's not what you expected or
wanted to hear.
 Listen to your team: On most game projects, you'll work with a team of other talented
people. Your job as the designer is to listen to all of their thoughts and ideas and work
with them to unearth the ideas that will create the best game for your audience.
Surrounding yourself with people who are willing to speak up when they disagree with
you will result in a better game. Your team should not be contentious; rather, it should be
a team of creative individuals who all care passionately about both the game and each
other.
 Listen to your client: A lot of the time, as a professional game designer, you'll be
working for a client (boss, committee, etc.), and you must listen to their input. They
aren't usually going to be expert game designers—that's why they hired you—but they
will have specific needs that you must meet. At the end of the day, your job is to listen to
them at several levels: what they tell you they want, what they think they want but don't
say out loud, and even what they really want deep down but might not even admit to
themselves. With clients, listening carefully can help you leave them with not only an
excellent game but also an excellent impression of working with you.
 Listen to your game: Sometimes certain elements of a game design fit together like a
hand in a glove, and sometimes, it's more like a wolverine in a paper bag (p.s.: bad
idea). As the designer, you'll be the team member closest to the gameplay, and
understanding the game from a gestalt (i.e., holistic) perspective is up to you. Even if a
certain aspect of a game is brilliant design, it might not fit well with the rest. Don't
worry; if it is a great bit of design, there is a good chance that you can find a place for it
in another game. You'll have numerous chances across the many games you'll make in
your career.

132

 Listen to yourself: Important aspects of listening to yourself include the following:
 Listen to your gut: Sometimes you'll get a gut feeling about something, and
sometimes these will be wrong, but other times they'll be very right. When your gut
tells you something about a design, give it a try. It might be that some part of your mind
figured out the answer before your conscious mind had a chance to.
 Listen to your health: Take care of yourself and stay healthy. Seriously. A
tremendous amount of research out there shows that pulling all-nighters, being
stressed, and not exercising have a real and tremendously negative effect on your
ability to do creative work. To be the best designer you can be, you need to be healthy
and well rested. Don't let yourself get caught in a cycle of one crisis after another that
you try to solve by working crazy hours into the night.
 Listen to how you sound to other people: When you say things to your colleagues,
peers, friends, family, and acquaintances, take a moment every once in a while to
really listen to how you sound. I don't want you to get a complex about it or anything,
but I do want you to listen to yourself and ask these questions:

Do I sound respectful?
Do I sound like I care about the other person?
Do I sound like I care about the project?

All other things being equal, the people who do best in life are those who consistently
demonstrate respect and care for others. I've known some really talented people who
didn't get this; they did all right initially, but without fail, their careers sputtered and
failed as fewer and fewer people wanted to work with them. Game design is a
community of shared respect.

There are, of course, many more aspects to acting like a professional designer than just
listening, but Schell and I agree that it is one of the most important. The rest of this book
covers more nuts-and-bolts aspects of being a designer, but you must approach all of it with
a humble, healthy, collaborative, and creative attitude.

Implementation
The latter two-thirds of this book are about digital implementation, but it's important to
realize that the key to effective implementation in the process of iterative design is to get
from design to playtest in the most efficient way possible. If you're testing the jump of a
character in a platform game like Super Mario Bros. or Mega Man, you must make a
digital prototype. However, if you're testing a graphical user interface (GUI) menu system,
you don't need to build a fully working digital version; printing out images of the various
states of the menu and asking testers to navigate through them with you acting as the
computer (and swapping the printed images by hand) is perfectly fine (see the "Paper
Prototyping for Interfaces" section in Chapter 9, "Paper Prototyping").

133

A paper prototype can enable you to quickly test ideas and generate feedback. They usually
take drastically less time to implement than digital prototypes and can give you the unique
ability to change the game rules in the middle of a play session if the initial rules aren't
working. Chapter 9, "Paper Prototyping," includes in-depth information about paper
prototyping techniques and both good and bad uses for paper prototypes.

Another important way that you can shorten your implementation time is to realize that you
don't have to do everything yourself. Many of my new students approach game development
with a desire to learn it all: they want to design the game; write all the code; model, texture,
rig, and animate game characters; build environments; write the story; create game code;
and sometimes even want to write their own game engine. If you were a multimillion-dollar
studio with years of time, this might be an okay idea, but as an independent designer, it's
ludicrous. Even indie developers like Notch (the creator of Minecraft), who are often seen
as solitary geniuses, have stood on the shoulders of many giants. Minecraft was initially
based on an open-source project created by many other people. If you wanted to make a
computer game, you could start by building a computer from individual transistors, but that
would be ludicrous. It's nearly as ridiculous to think that you would want to write your own
game engine. I chose Unity as the game engine for this book because hundreds of people
are working at Unity Technologies every day to make our job as game developers easier.
By trusting them to do their job well, I enable myself to focus on the interesting work of
game design and development that I would much rather do than write my own game engine.3

Similarly, the Unity Asset Store is a fantastic place to trade money for time. The Asset
Store enables you to purchase thousands of time-saving assets, including models,
animations, and code libraries for everything from controller input to better text rendering,
to gorgeous physically based rendering libraries.4 It also includes several free assets that
you can easily use as placeholders in your prototypes. Any time you're thinking about taking
the time to write a robust, reusable piece of code for one of your prototypes, I recommend
checking on the Asset Store to see whether someone else has already done it for you.
Kicking that person a few bucks could save you dozens of hours of development time.

Testing
After you have the barest minimum of a prototype working, it's time to test it. The key thing
to keep in mind now is that regardless of what you think about your game, you won't really
know anything until a player who is not you has tested it and given you feedback. The more
people who play your game, the more accurate that feedback will be.

In my Game Design Workshop class at the University of Southern California, each of our
board game projects took place over four weeks of labs. In the first lab, the students were
placed in teams and given time to brainstorm their game ideas. Every subsequent lab was
devoted entirely to playtesting the latest prototypes of their games. By the end of a four-

134

week project, each student team had completed nearly six hours of in-class playtesting and
had drastically improved their designs as a result. The best thing you can do for your
designs is to have people playing them and giving you feedback as often as possible. And,
for the sake of all that is good, please write down what your playtesters tell you. If you
forget what they said, the playtest is a waste.

Making sure that your playtesters are giving you honest feedback is also important.
Playtesters sometimes will give you overly positive feedback because they don't want to
hurt your feelings. In The Art of Game Design, Jesse Schell recommends telling your
testers something like the following to encourage them to be honest with you about flaws
they see in the game:

"I need your help. This game has some real problems, but we're not sure what they
are. Please, if there is anything at all you don't like about this game, it will be a
great help to me if you let me know"5

Chapter 10, "Game Testing," covers several different aspects of testing in much more
detail.

Iterate, Iterate, Iterate, Iterate, Iterate!
After you have run your playtest, you should have a lot of feedback written down from your
testers. Now it's time to analyze again. What did the players like? What didn't they like?
Were there places in the game that were overly easy or difficult? Was it interesting and
engaging?

From all of these questions, you will be able to determine a new problem to solve with
your design. Try to take time to interpret and synthesize player feedback (see the sidebar in
Chapter 10 about this). After doing so, try to pick a specific, achievable design goal for
your next iteration. For instance, you might decide that you need to make the second half of
the first level more exciting or instead decide to reduce the amount of randomness in the
game.

Each subsequent iteration of your game should include some changes, but don't try to change
too many things or solve too many problems all at the same time. The most important thing
is to get to the next playtest quickly and determine whether the solutions that you have
implemented solved the problems they were meant to solve.

Innovation
In his book The Medici Effect,6 author Frans Johansson writes about two kinds of
innovation: incremental and intersectional.

135

 Incremental innovation is making something a little better in a predictable way. The
progressive improvement of Pentium processors by Intel throughout the 1990s was
incremental innovation; each year, a new Pentium processor was released that was
larger and had more transistors than the previous generation. Incremental innovation is
reliable and predictable, and if you're looking for investment capital, it's easy to
convince investors that it will work. However, as its name suggests, incremental
innovation can never make great leaps forward precisely because it is exactly what
everyone expects.
 Intersectional innovation occurs at the collision of two disparate ideas, and it is where
a lot of the greatest ideas can come from. However, because the results of intersectional
innovation are novel and often unpredictable, it is often more difficult to convince others
of the merit of these ideas.

In 1991, Richard Garfield was trying to find a publisher for his game RoboRally. One of
the people he approached was Peter Adkison, founder and CEO of Wizards of the Coast.
Though Adkison liked the game, he didn't feel that Wizards had enough resources to publish
a game like RoboRally that had so many different pieces, but he mentioned to Richard that
they had been looking for a new game that could be played with very little equipment and
resolve in 15 minutes.

Richard intersected this idea of a fast-play, low-equipment card game with another idea
that had been kicking around in his head for a while—that of playing a card game with
cards that were collected like baseball cards—and in 1993, Wizards of the Coast released
Magic: The Gathering, which started the entire genre of collectible card games (CCGs).

Though Garfield had been thinking about a card game that was collectible for a little while
before his meeting with Adkison, it was the intersection of that idea with Adkison's specific
needs for a fast-play game that gave birth to the collectible card game genre, and nearly all
CCGs that have come since have the same basic formula: a basic rule set, cards that have
printed rules on them that override the basic rules, deck construction, and fast play.

The brainstorming procedure described next takes advantage of both kinds of innovation to
help you create better ideas.

Brainstorming and Ideation
"The best way to have a good idea is to have a lot of ideas and throw out all the bad ones."
—Linus Pauling, solo winner of both the Nobel Prize in Chemistry and the Nobel Peace
Prize

Just like anyone else, not all of your ideas are going to be great ones, so the best you can do
is to generate a lot of ideas and then sift through them later to find the good ones. This is the

136

whole concept behind brainstorming. This section covers a specific brainstorming process
that I have seen work very well for many people, especially in groups of creative
individuals.

For this process, you need a whiteboard, a stack of 3x5 note cards (or just a bunch of slips
of paper), a notebook for jotting down ideas, and various whiteboard markers, pens,
pencils, and so on. The process works best with five to ten people, but you can alter it to
work for fewer people by repeating tasks, and I've modified it in the past to work for a
classroom of 65 students. (For instance, if you're by yourself, and it says that each person
should do something once, just do it yourself multiple times until you're satisfied.)

Step 1: Expansion Phase
Let's say that you are just starting a 48-hour game jam with a few friends. The theme of the
game jam is uroboros (the snake eating its own tail symbol that was the theme of the Global
Game Jam in 2012). Not much to go on, right? So, you start with the kind of brainstorming
that you learned in grade school. Draw an uroboros in the middle of a whiteboard, draw a
circle around it, and start free-associating. Don't worry about what you're writing at this
point—don't censor anything—just write whatever comes to mind as you go. Figure 7.2
shows an example.

Figure 7.2 The expansion phase of brainstorming a game for uroboros

Warning
BEWARE THE TYRANNY OF THE MARKER If you have more people
taking part in the brainstorm than you have whiteboard markers, always be
careful to make sure that everyone is being heard. Creative people come in all

137

types, and the most introverted person on your team might have some of the best
ideas. If you're managing a creative team, try to make sure that the more
introverted members of your team are the ones holding the whiteboard markers.
They might be willing to write something on the board that they aren't willing to
say out loud.

When you're done, take a picture of the whiteboard. I have hundreds of pictures of
whiteboards in my phone, and I've never regretted taking one. After capturing it, email it out
to everyone in the group.

Step 2: Collection Phase
Collect all the nodes of the brainstorming expansion phase and write them each down on
one 3 x 5 note card. These are called idea cards (see Figure 7.3), and they'll be used in the
next phase.

Figure 7.3 Uroboros idea cards

A QUICK ASIDE AND A BAD JOKE OR TWO
Let's start with a bad joke:

There are two lithium atoms walking along, and one says to the other,
"Phil, I think I lost an electron back there." So Phil says, "Really Jason,
are you sure?" And Jason replies, "Yeah, I'm positive!"

Here's another:

Did you hear about the fire at the circus?

It was intense!

138

Sorry, I know. They're terrible.

You may be wondering why I'm subjecting you to these bad jokes. I'm doing so
because jokes like these work on the same principle as intersectional innovation.
Humans are creatures who love to think and combine weird ideas. Jokes are funny
because they lead our minds down one track and then throw a completely different
concept into the mix. Your mind makes the link between the two disparate,
seemingly unrelated concepts, and the joy that causes comes across as humor.

The same thing happens when you intersect two ideas, and this is why getting the
eureka moment of intersecting two common ideas into a new uncommon one is so
pleasurable for us.

Step 3: Collision Phase
Here's where the fun begins. Shuffle together all the idea cards and deal two to each person
in the group. Each person takes their two cards up to the whiteboard and reveals them to
everyone. Then the group collectively comes up with three different game ideas inspired by
the collision of the two cards. (If the two cards either are too closely paired or just don't
work together at all, it's okay to skip them.) Figure 7.4 presents a couple of examples.

Figure 7.4 Uroboros idea collisions

Now, the examples in Figure 7.4 are just the first ideas that came to me, as they should be
for you. We're still not doing a lot of filtering in this phase. Write down all the different
ideas that you come up with in this phase.

Step 4: Rating Phase
Now that you have a lot of ideas, it's time to start culling them. Each person should write on
the whiteboard the two ideas from Step 3 that she thinks have the most merit.

139

After everyone does this, then everyone should simultaneously put a mark next to the three
ideas written on the board that they like the most. You should end up with some ideas with
lots of marks and some with very few.

Step 5: Discussion
Continue the culling process by modifying and combining several of the ideas with the
highest rating. With dozens of different crazy ideas to choose from, you should be able to
find a couple that sound really good and to combine them into a great starting point for your
design.

Changing Your Mind
Changing your mind is a key part of the iterative design process. As you work through the
different iterations of your game, you will inevitably make changes to your design.

As shown in Figure 7.5, no one ever has an idea and turns it directly into a game with no
changes at all (as shown in the top part of the figure), or if anyone ever does, it's almost
certain to be a terrible game. In reality, what happens is a lot more like the bottom part of
the figure. You have an idea and make an initial prototype. The results of that prototype give
you some ideas, and you make another prototype. Maybe that one didn't work out so well,
so you backtrack and make another. You continue this process until you've forged your idea
over time into a great game, and if you stick to the process and engage in listening and
creative collaboration, it'll be a much better game than the original one you set out to make.

140

Figure 7.5 The reality of game design

As the Project Progresses, You're More Locked In
The process just described is fantastic for small projects or the preproduction phase of any
project, but after you have a lot of people who have put a lot of time into something,
changing your mind becomes much more difficult and expensive. A standard professional
game is developed in several distinct phases:

 Preproduction: This is the phase covered by most of this book. In the preproduction
phase, you experiment with different prototypes and try to find something that is
demonstrably enjoyable and engaging. During preproduction, changing your mind about
things is perfectly fine. On a large industry project, there would be between 4 and 16
people on the project during preproduction, and at the end of this phase, you typically
would want to have created a vertical slice, which is a short, five-minute section of
your game at the same level of quality as the final game. This is like a demo level for the
executives and other decision-makers to play and decide whether or not to move the
game into production. Other sections of your game should be designed at this point, but
for the most part, they won't be implemented.
 Production: In the industry, when you enter the production phase of a game, your team
will grow considerably in size. On a large game title, there could be well over 100
people working on the game at this point, many of whom might not be in the same city or
even country as you. During production, all the systems design (i.e., the game
mechanics) must be locked down very early, and other design aspects (like level design,
tuning character abilities, and such) will be progressively locked down throughout

141

production as the team finalizes them. From an aesthetics side, the production phase is
when all the modeling, texturing, animation, and other implementation of aesthetic
elements take place. The production phase expands the high quality of the vertical slice
out across the rest of the project.
 Alpha: When you reach the alpha phase of your game, all the functionality and game
mechanics should be 100% locked down. At this point, there are no more changes to the
systems design of the game, and the only changes you should make to things like level
design will be in response to specific problems discovered through playtesting. This
phase is where the playtesting transitions to quality assurance (QA) testing in an effort to
find problems and bugs (see Chapter 10 for more information). When you start alpha, the
game might still have some bugs (i.e., errors in programming), but you should have
identified all of them and know how to reproduce them.
 Beta: When you reach beta, the game should be effectively done. At beta, you should
have fixed any bugs that had the potential to crash your game, and the only remaining
bugs should be minor. The purpose of the beta period is to find and fix the last of the
bugs in your game. From the art side, this means making sure that every texture is
mapped properly, that every bit of text is spelled properly, etc. You do not make any new
changes in the beta phase, just fix any last problems that you can find.
 Gold: When your project goes gold, it is ready to ship. This name is a holdover from
the days of CD-ROM production when the master for all the CDs was actually a disc
made of gold that the foil layer of each CD was physically pressed onto. Now that even
disc-based console games have updates delivered online, the gold phase has lost some
of its finality, but gold is still the name for the game being ship-ready.
 Post-release: With the ubiquity of the Internet today, all games that aren't on cartridges
(e.g., Nintendo DS games and some 3DS games are delivered on cartridges) can be
tuned7 after they're released. The post-release period can also be used for development
of downloadable content (DLC). Because DLC is often composed of new missions and
levels, each DLC release goes through the same phases of development as the larger
game (though on a much smaller scale): preproduction, production, alpha, beta, and
gold.

Even though your initial projects will usually be much smaller than the professional ones
just described, it is still imperative that you lock into design decisions as early as is
reasonable. On a professional team, a major design change in the production phase can cost
millions of dollars, but on an indie team, it can easily push the release of the game back
months, years, or forever. As you move forward in your career, no one will care about your
half-finished games or unimplemented game ideas, but everyone will care about the games
you have finished and shipped. Shipping games builds a reputation for effectiveness, and
that's what people are looking for in a game developer.

142

Scoping
One critical concept you must understand to act like a game designer is how to scope your
work. Scoping is the process of limiting the design to what can reasonably be
accomplished with the time and resources that you have available. Overscoping is the
number one killer of amateur game projects.

I'll say that again: Overscoping is the number one killer of game projects.

Most of the games you see and play took dozens of people months and months of full-time
work to create. Some large console games cost nearly $500 million to develop. The teams
on these projects are all composed of fantastic people who have been doing their jobs well
for years.

I'm not trying to discourage you, but I am trying to convince you to think small. For your
own sake, don't try to make the next Titanfall or World of Warcraft or any other large,
famous game you can think of. Instead find a small, really cool core mechanic and explore
it deeply in a small game.

If you want some fantastic inspiration, check out the games that are nominated each year at
the IndieCade Game Festival. IndieCade is the premier festival for independent games of
various sizes, and I think it represents the vanguard of where independent games are going.8
If you take a look at their website (http://indiecade.com), you can see tons of fantastic
games, each of which pushes the boundaries of gaming in a cool new way. Each of these
was someone's passion project, and many of them took hundreds or thousands of hours of
effort for a small team or an individual to create.

As you look at them, you might be surprised by how small in scale some of them are. That's
okay. Even though the scope of these games is pretty small, they are still fantastic enough to
be considered for an IndieCade award.

As you progress in your career, you might go on to make massive games like Starcraft or
Grand Theft Auto, but remember that everyone got their start somewhere. Before George
Lucas made Star Wars, he was just a talented kid in the film program at the University of
Southern California. In fact, even when he made Star Wars, he scoped it down so perfectly
that he was able to make one of the highest-grossing movies of all time for only $11
million. (It went on to make over $775 million at the box office and many, many times that
in toy sales, home movie sales, and so on.)

So for now, think small. Come up with something that you know you can make in a short
amount of time, work on it efficiently, and above all, finish it. If you make something great,
you can always add on to it later.

143

http://indiecade.com

Summary
The tools and theories you've read in this chapter are the kinds of things that I teach to my
students and use in my personal design. I have seen the brainstorming strategies that I listed
work in both big and small groups to create interesting, off-the-wall, yet implementable
ideas, and every experience that I have had in the industry and academia has led me to feel
that iterative design, rapid prototyping, and proper scoping are the key processes that you
can implement to improve your designs. I cannot more highly recommend them to you.

1. Based on Tracy Fullerton, Christopher Swain, and Steven Hoffman, Game Design
Workshop: A Playcentric Approach to Creating Innovative Games (Burlington, MA:
Morgan Kaufmann Publishers, 2008), 36.

2. Jesse Schell, The Art of Game Design: A Book of Lenses (Boca Raton, FL: CRC Press,
2008), 4–6.

3. If you do really want to write your own game engine, my friend Jason Gregory has
written a fantastic book on the subject: Jason Gregory, Game Engine Architecture, 2nd
Edition (Boca Raton, FL: CRC Press 2014).

4. For these three things, I recommend Controller Input—InControl by Gallant Games,
Better Text Rendering—TextMeshPro by Digital Native Studios, Physically Based
Rendering—Alloy by RUST, LTD.

5. Jesse Schell, The Art of Game Design: A Book of Lenses (Boca Raton, FL: CRC Press,
2008), 401.

6. Frans Johansson, The Medici Effect: What Elephants and Epidemics Can Teach Us
about Innovation (Boston, MA: Harvard Business School Press, 2006).

7. Tuning is the term for the final stages of adjustments to game mechanics where only tiny
changes are made. Even though many Nintendo Switch games ship on cartridges, they
can still be tuned via downloadable updates.

8. For purposes of full disclosure, since 2013, I have served as IndieCade's Chair for
Education and Advancement, and I am very proud to belong to such a great
organization.

144

CHAPTER 8

DESIGN GOALS

This chapter explores several important goals that you might have for your
games. We cover everything from the deceptively complex goal of fun to the goal
of experiential understanding, which might be unique to interactive experiences.

As you read this chapter, think about which of these goals matter to you. The
relative importance of these goals to each other will shift as you move from
project to project and often even shift as you move through the various phases of
development. However, always be aware of all of them, and even if one is not
important to you, that should be due to deliberate choice rather than
unintentional omission.

Design Goals: An Incomplete List
You could have any number of goals in mind when designing a game or interactive
experience, and I'm sure that each of you has one that won't be covered in this chapter.
However, I try to cover most of the goals that I see in my personal work as a designer and
in the design work of my students and friends.

Designer-Centric Goals
Designer-centric goals focus on you as the designer. What do you personally want to get out
of designing this game?

 Fortune: You want to make money.
 Fame: You want people to know who you are.
 Community: You want to be part of something.
 Personal expression: You want to communicate with others through games.
 Greater good: You want to make the world better in some way.
 Becoming a better designer: You simply want to make games and improve your craft.

Player-Centric Goals
145

Player-centric goals focus on what you want for the players of your game:

 Fun: You want players to enjoy your game.
 Lusory attitude: You want players to take part in the fantasy of your game.
 Flow: You want players to be optimally challenged.
 Structured conflict: You want to give players a way to combat others or challenge your
game systems.
 Empowerment: You want players to feel powerful both in the game and in the
metagame.
 Interest / attention / involvement: You want players to be engaged by your game.
 Meaningful decisions: You want players' choices to have meaning to them and the
game.
 Experiential understanding: You want players to gain understanding through play.

Now let's explore each in detail.

Designer-Centric Goals
As a game designer and developer, you have some goals for your life that you hope the
games you make might help you achieve.

Fortune
My friend John "Chow" Chowanec has been in the game industry for years. The first time I
met him, he gave me some advice about making money in the game industry. He said:

"You can literally make hundreds of…

dollars in the game industry."

As he hinted through this joke, there are many faster, better ways to make money than the
game industry. I tell my programming students that if they want to make money, they should
go work for a bank; banks have lots of money and are very interested in paying someone to
help them keep it. However, the game industry is just like every other entertainment industry
job: Fewer jobs are available than people who want them, and people generally enjoy
doing the work; so, game companies can pay less than other companies for the same kind of
employees. There are certainly people in the game industry who make a lot of money, but
they are few and far between.

It is absolutely possible—particularly if you're a single person without kids—to make a
decent living working in the game industry. This is especially true if you're working for a

146

larger game company where they tend to have good salaries and benefits. Working for a
smaller company (or starting your own small company) is generally a lot riskier and usually
pays worse, but you might have a chance to earn a percentage ownership in the company,
which could have a small chance of eventually paying out very nicely.

Fame
I'll be honest: Very, very few people become famous for game design. Becoming a game
designer because you want to be famous is a little like becoming a special effects artist in
film because you want to be famous. Usually with games, even if millions of people see
your work, very few will know who you are.

Of course, there are some famous names like Sid Meier, Will Wright, and John Romero, but
all of those people have been making games for years and have been famous for it for
equally long. There are also some newer people whom you might know, like Jenova Chen,
Jonathan Blow, and Markus "Notch" Persson; but even then, many more people are familiar
with their games (Flow/Flower/Journey, Braid/The Witness, and Minecraft, respectively)
than with them.

However, what I personally find to be far better than fame is community, and the game
industry has that in spades. The game industry is smaller than anyone on the outside would
ever expect, and it's a great community. In particular, I have always been impressed by the
acceptance and openness of the independent game community and the IndieCade game
conference.

Community
There are, of course, many different communities within the game industry, but on the
whole, I have found it to be a pretty fantastic place filled with great people. Many of my
closest friends are people whom I met through working in the game industry or in games
education. Though a sad number of high-budget, AAA games appear sexist and violent, in
my experience, most of the people working on games are genuinely good people. There is
also a large and vibrant community of developers, designers, and artists who work to make
games that are more progressive and created from more varied perspectives. Over the past
several years of the IndieCade independent game conference, there have been very well-
attended panels on diversity in both the games we make and the development teams who are
making those games. The independent game community in particular is a meritocracy; if you
make great work, the indie community will welcome and respect you regardless of your
race, gender, sexual orientation, religion, or any other ridiculous thing people might use to
discriminate against someone. Certainly room still exists to improve the openness of the
game development community—and some jerks always appear in any group—but the game
development community is full of people who want to make it a welcoming place for

147

everyone.

Personal Expression and Communication
This goal is the flip side of the player-centric goal of experiential understanding that
you'll find later in this chapter. However, personal expression and communication can take
many more forms than experiential understanding (which is the exclusive domain of
interactive media). Designers and artists have been expressing themselves in all forms of
media for thousands of years. If you have something that you want to express, you must ask
yourself two important questions:

What form of media could best express this concept?

What forms of media am I adept at using?

Somewhere between these two questions you'll find the answer of whether an interactive
piece is the best way for you to express yourself. The good news is that there is a very
eager audience seeking new personal expressions in the interactive realm. Very personal
interactive pieces like Papo y Yo, Mainichi, and That Dragon, Cancer have received a lot
of attention and critical acclaim recently, signaling the growing maturity of interactive
experiences as a conduit for personal expression.1

Greater Good
A number of people make games because they want to make the world a better place. These
games are often called serious games or games for change and are the subject of several
developer's conferences, including the Meaningful Play conference at Michigan State
University. This genre of games can also be a great way for a small studio to get off the
ground and do some good in the world; a number of government agencies, companies, and
nonprofit organizations offer grants and contracts for developers interested in making
serious games.

Many names are used to describe games for the greater good. Three of the biggest are:

 Serious games: This is one of the oldest and most general names for games of this type.
These games can of course still be fun; the "serious" moniker is just to note that there is
a purpose behind the game that is more than just playful. One common example of this
category is educational games.
 Games for social change: This category of games for good is typically used to
encompass games that are meant to influence people or change their minds about a topic.
Games about things like global warming, government budget deficits, or the virtues or
vices of various political candidates fall into this category.
 Games for behavioral change: The intent of these games is not to change the mind or

148

opinion of the player (as in games for social change) but instead to change a player's
behavior outside of the game. For example, many games have been created in the
medical field to discourage childhood obesity, improve attention spans, combat
depression, and detect things such as childhood amblyopia. A large and growing body of
research demonstrates that games and game play can have significant effects (both
positive and negative) on mental and physical health.

Becoming a Better Designer
The number one thing you can do to become a great game designer is make games…or more
accurately, make a lot of games. The purpose of this book is to help you get started doing
this, and it's one of the reasons that the tutorials at the end of the book cover several
different games rather than having just one monolithic tutorial that meanders through various
game development topics. Each tutorial focuses on making a prototype for a specific kind
of game, and each covers a few specific topics. The prototypes you make in these chapters
are meant to serve not only as learning tools but also as foundations upon which you can
build your own games in the future.

Player-Centric Goals
As a game designer and developer, some goals for your game center on the effects that you
want the game to have on your player.

Fun
Many people regard fun as the only goal of games, although as a reader of this book, you
should know by now that this is not true. As discussed later in this chapter, players are
willing to play something that isn't fun as long as it grabs and holds their attention in some
way. This is true with all forms of art; I am glad to have watched the movies Schindler's
List, Life is Beautiful, and What Dreams May Come, but none of them were at all "fun" to
watch. Even though it is not the only goal of games, the elusive concept of fun is still
critically important to game designers.

In his book Game Design Theory, Keith Burgun proposes three aspects that make a game
fun. According to him, it must be enjoyable, engaging, and fulfilling:

 Enjoyable: Something can be enjoyable in many ways, and enjoyment in one form or
another is what most players are seeking when they approach a game. In his 1958 book
Les Jeux et Les Hommes,2 Roger Caillois identified four different kinds of play:

 Agon: Competitive play (e.g., chess, baseball, the Uncharted series)
 Alea: Chance-based play (e.g., gambling and rock, paper, scissors)

149

 Ilinx: Vertiginous play (e.g., roller coasters, children spinning around until they're
dizzy, and other play that makes the player feel vertigo)
 Mimicry: Play centered on make-believe and simulation (e.g., playing house, playing
with action figures, role-playing games)

Each of these kinds of play is enjoyable in its own way, though in all of them, that fun
depends on having a lusory attitude (i.e., an attitude of play, as discussed in the next
section). As Chris Bateman points out in his book Imaginary Games, a fine line exists
between excitement and fear in games of ilinx, the only difference being the lusory
attitude of the player.3 The Tower of Terror attraction at Disney theme parks is a fun
simulation of an out-of-control elevator, but actually being in an out-of-control elevator
is not fun at all.
 Engaging: The game must grab and hold the player's attention. In his 2012 talk,
"Attention, Not Immersion," at the Game Developers Conference in San Francisco,
Richard Lemarchand, co-lead game designer of the first three Uncharted games,
referred to this as "attention," and it's a very important aspect of game design. I discuss
his talk in greater detail later in this chapter.
 Fulfilling: Playing the game must fill some need or desire of the player. As humans, we
have many needs that can be met through play in both real and virtual ways. The need for
socialization and community, for instance, can be met both through playing a board game
with friends or experiencing the day-to-day life of Animal Crossing with the virtual
friends who live in your town. The feeling of fiero (the Italian word for personal
triumph over adversity)4 can be achieved by helping your team win a soccer match,
defeating a friend in a fighting game such as Tekken,5 or by eventually defeating the final
level in a difficult rhythm game such as Osu! Tatake! Ouendan. Different players have
different needs, and the same player can have drastically different needs from day to
day.

Lusory Attitude
In The Grasshopper, Bernard Suits talks at length about the lusory attitude: the attitude one
must have to take part in a game. When in the lusory attitude, players happily follow the
rules of the game for the joy of eventually winning via the rules (and not by avoiding them).
As Suits points out, neither cheaters nor spoilsports have a lusory attitude; cheaters want to
win but not to follow the rules, while spoilsports have no interest in winning the game and
might or might not follow the rules (they mostly want to stop other players from having fun).

As a designer, you should work toward games that encourage players to maintain this lusory
attitude. In large part, I believe that this means you must show respect for your players and
not take advantage of them. In 2008, my colleague Bryan Cash and I gave two talks at the
Game Developers Conference about what we termed sporadic-play games,6 games that the

150

player plays sporadically throughout her day. Both talks were based on our experience
designing Skyrates7 (rhymes with pirates), a graduate school project for which our team
won some design awards in 2008. In designing Skyrates we sought to make a persistent
online game (like the massively multiplayer online games [MMOs] of the time; e.g.,
Blizzard's World of Warcraft) that could easily be played by busy people. Skyrates set
players in the role of privateers of the skies, flying from skyland (floating island) to skyland
trading goods and battling pirates. The sporadic aspect of the game was that each player
was able to check in for a few minutes at a time throughout her day, set orders for her
skyrate character, fight a few pirate battles, upgrade her ship or character, and then let her
skyrate play out the orders while the player herself went about her day. At various times
during the day, she might receive a text message on her phone letting her know that her
skyrate was under attack, but it was her choice whether to jump into combat or to let her
skyrate handle it on their own.

As designers in the industry at the time, we were witnessing the rise of social media games
like FarmVille and the like that seemed to have little or no respect for their players' time. It
was commonplace for games on social networks to demand (through their mechanics) that
players log in to the game continually throughout the day, and players were punished for not
returning to the game on time. This was accomplished through a few nefarious mechanics,
the chief of which were energy and spoilage.

In social network games with energy as a resource, the player's energy level built slowly
over time regardless of whether she was playing or not, but there was a cap on the energy
that could be earned by waiting, and that cap was often considerably less than the amount
that could be accrued in a day and less than the amount needed to accomplish the optimal
player actions each day. The result was that players were required to log in several times
throughout the day to spend the energy that had accrued and not waste potential accrual time
on capped-out energy. Of course, players were also able to purchase additional energy that
was not capped and did not expire, and this drove a large amount of the sales in these
games.

The spoilage mechanic is best explained through FarmVille, in which players could plant
crops and were required to harvest them later. However, if a crop was left unharvested for
too long, it would spoil, and the player would lose her investment in both the seeds and the
time spent to grow and nurture the crop. For higher-value crops, the delay before spoilage
was drastically less than that of low-value, beginner-level crops, so habitual players found
themselves required to return to the game within increasingly small windows of time to get
the most out of their investments.

Bryan and I hoped through our GDC talks to counter these trends or at least offer some
alternatives. The idea of a sporadic-play game is to give the player the most agency (ability
to make choices) in the least amount of time. Our professor, Jesse Schell, once commented

151

that Skyrates was like a friend who reminded him to take a break from work every once in
a while, but after several minutes of play also reminded him to get back to work. This kind
of respect caused our game to have a conversion rate of more than 90%, meaning that in
2007, more than 90% of the players who initially tried the game became regular players.

Respecting your players helps keep them in the lusory attitude, and a lusory attitude is what
allows the magic circle to exist.

The Magic Circle
As was mentioned briefly in Chapter 2, "Game Analysis Frameworks," in his 1938 book
Homo Ludens, Johan Huizinga proposed an idea that has come to be known as the magic
circle. The magic circle is the space in which a game takes place, and it can be mental,
physical, or some combination of the two. Within the magic circle, the rules hold sway over
the players, and the amount that certain actions are encouraged or discouraged is different
from the world of everyday life.

For example, when two friends are playing poker against each other, they will often bluff
(or lie) about the cards that they have and how certain they are that they will win the pot.
However, outside of the game, these same friends would consider lying to each other to be
a violation of their friendship. Similarly, on the ice in the game of hockey, players routinely
shove and slam into each other (within specific rules, of course); however, these players
will still shake hands and sometimes be close friends outside of the boundaries of the game.

As Ian Bogost and many other game theorists have pointed out, the magic circle is a porous
and temporary thing. Even children recognize this and will sometimes call "time out" during
make-believe play. Time out in this sense denotes a suspension of the rules and a temporary
cessation of the magic circle, which is often done so that the players can discuss how the
rules should be shaped for the remainder of the game. When the discussion is complete,
"time in" is called, and both play and the magic circle continue where they left off.

Though pausing and resuming the magic circle is possible, maintaining the integrity of the
magic circle through those pauses is sometimes difficult. During long delays of football
games (for example, if the game is delayed 30 minutes for weather in the middle of the
second quarter), commentators will often discuss how difficult it is for players to either
maintain the game mindset through the delay or get back into the game mindset after play
resumes.

Flow
As described by psychologist Mihaly Csíkszentmihályi (pronounced chick-sent-me-high),
flow is the state of optimal challenge, and it has been discussed frequently at the Game

152

Developers Conference because it relates so closely to what many game designers are
trying to create within their games. In a flow state, a player is focused intently on the
challenge before her and often loses awareness of things that are outside of the flow
experience. You have probably felt this at times when you have played or worked so
intently on something that time seems distorted, seeming to pass either more quickly or
more slowly than normal.

Flow in this sense was the subject of Jenova Chen's MFA thesis paper at the University of
Southern California as well as the subject of his thesis game, appropriately titled Flow.8
Jenova also spoke about this concept in a couple of talks at GDC.

As you can see in Figure 8.1, the flow state exists between boredom and frustration. If the
game is too challenging for the player's skill level, she will feel frustrated; conversely, if
the player is too skilled for the game, she will feel bored.

Figure 8.1 Flow as described by Csíkszentmihályi

According to the 2002 article, "The Concept of Flow," by Jeanne Nakamura and Mihaly
Csíkszentmihályi, the experience of flow is the same across cultures, genders, ages, and
various kinds of activity, and it relies on two conditions:9

153

 Perceived challenges, or opportunities for action, that stretch (neither overmatching nor
underutilizing) existing skills; a sense that one is engaging challenges at a level
appropriate to one's capacities
 Clear proximal goals and immediate feedback about the progress that is being made

This is what much of the discussion of flow has centered on in the realm of game design.
Both of these conditions are concrete enough for designers to understand how to implement
them in their games, and through careful testing and player interviews, measuring whether
your game is doing so is easy.

Since 1990, when Csíkszentmihályi published his book Flow: The Psychology of Optimal
Experience, additional research has expanded our understanding of flow as it relates to
games in one very important way: Designers now realize that flow is exhausting for players
to maintain. While players enjoy flow—and moments of flow are some of the most
memorable of your games—maintaining flow for more than 15 or 20 minutes is tiring. In
addition, if the player is always kept in a perfect state of flow, she might never have an
opportunity to realize that her skill is improving. So, for many players, you actually want a
flow diagram like the one shown in Figure 8.2.

Figure 8.2 Updated flow

154

A border exists between flow and boredom where players feel powerful and skillful (i.e.,
they feel awesome!), and players actually need that. Although the flow state is often fun for
players, letting your players out of the flow state so that they can reflect on what they
accomplished while experiencing flow is also important. Think about the best boss fight
you've ever had in a game. When in a flow state, by definition, you lose track of everything
outside of the moment because flow requires total attention. If you are like me, it wasn't
until you had actually defeated the boss that you had a moment to breathe and realize how
amazing the fight had been. Players need not only flow moments but also moments to revel
in their increased skill.

Like many other games, the original God of War game did this very well. It consistently
introduced the player to a single opponent of a new type, and this often felt like a mini boss
fight because the player hadn't yet figured out the strategies for defeating that type of enemy.
The player eventually learned the strategy for that particular enemy and over several
encounters with single enemies of this type perfected her skill. Then, several minutes later,
the player was required to fight more than one of this enemy type simultaneously, though
because she had increased in skill, this was actually less of a challenge than the single
opponent had been originally. Her ability to easily dispatch several copies of the enemy
that had earlier given her trouble singly demonstrated to her that she had increased in skill
and made her feel awesome.

As you design your games, remember that great game design is not just about giving the
player an optimal challenge, it's also about giving her the understanding that she is getting
better and granting her time to be awesome. After a difficult fight, give the player some time
to just be powerful. This encourages feelings of empowerment.

Structured Conflict
As you saw in Chapter 1, "Thinking Like a Designer," structured conflict is one of the
human needs that games can fulfill. One of the primary differences between play and game
is that a game always involves struggle or conflict, which can be conflict against other
players or conflict against the systems of the game (see the section Player Relationships
section in Chapter 4, "The Inscribed Layer"). This conflict gives players a chance to test
their skill (or that of their team) against others, systems, chance, or themselves.

This desire for structured conflict is also evident in the play of animals. As Chris Bateman
points out in Imaginary Games:

When our puppy plays with other dogs, there are clear limits as to what is
acceptable behavior. When play fighting with another puppy, there is much gentle
biting, climbing upon one another and general rolling around in frenzied mock
violence; there are rules of a kind here.10

155

Even some actual wars have had game-like rules. In the memoir of his life, Chief Plenty
Coups (Alaxchiiaahush) of the Crow tribe in North America relates some of the rules of
counting coup in battle. Coup was counted for getting away with dangerous actions on the
battlefield. Striking an armed and able enemy warrior with a coup-stick, quirt (short riding
whip), or bow before otherwise harming him; stealing an enemy's weapons while he was
still alive; stealing horses or weapons from an enemy camp; and striking the first enemy to
fall in battle (before he was killed) all counted for coup. Doing so while avoiding injury to
oneself counted more. Plenty Coups also spoke of rules regarding the two symbolic sticks
of tribal communities.

One of these sticks in each society was straight and bore one eagle's feather on its
smaller end. If in battle its carrier stuck this stick into the ground, he must not
retreat or leave the stick. He must drop his robe [die] there unless relieved by a
brother member of his society riding between him and the enemy. He might then
move the stick with honor, but while it was sticking in the ground it represented the
Crow country. The bearers of the crooked sticks, each having two feathers, might at
their discretion move them to better stands after sticking them to mark a position.
But they must die in losing them to the enemy. By striking coup with any of these
society coup-sticks, the bearers counted double, two for one, since their lives were
in greater danger while carrying them.11

After the battle, coup was counted, as each warrior related the tales of his exploits during
the battle. For successfully performing a coup and escaping without being harmed, the
warrior would receive an eagle feather that could be worn in the hair or attached to a coup-
stick. If he had been injured, the feather was painted red.

The activity of counting coup among the Plains tribes of the Americas lent additional
meaning to the wars between nations and provided a structured way for acts of bravery on
the battlefield to translate into increased respect after the battle was complete.

Many of today's most popular games provide for structured conflict between teams of
players, including all traditional team sports (soccer, cricket, and basketball being some of
the most popular worldwide) as well as online team competitions like League of Legends,
Team Fortress 2, and Overwatch. But even without teams, games as a whole provide ways
for players to engage in conflict and triumph over adversity.

Empowerment
The earlier section on flow covered one kind of empowerment (giving the player the
feeling that she is powerful in the game world). This section covers another kind of
empowerment: giving the player power over what she chooses to do in the game. I mean
this in two senses: autotelic and performative.

156

Autotelic
The term autotelic comes from the Latin words for self (auto) and goal (telos). A person is
autotelic when she is determining her own goals for herself. When Csíkszentmihályi
initially started developing his theory of flow, he knew that autotelisis would have a major
role in it. According to his research, autotelic individuals get the most pleasure out of flow
situations, whereas nonautotelic individuals (that is, those who don't enjoy setting their own
goals) tend to get more pleasure out of easy situations where they perceive their skill level
to be much higher than the difficulty level of the challenge.12 Csíkszentmihályi believes that
an autotelic personality is what enables a person to find happiness in life regardless of
situation.13

So, what kinds of games encourage autotelic behavior? One fantastic example is Minecraft.
In this game, the player is dropped into a randomly generated world where her only real
goal is survival. (Zombies and other monsters will attack the player at night.) However, she
is also given the ability to mine the environment for resources and then use those resources
to make both tools and structures. Players of Minecraft have not only built castles, bridges,
and a full-scale model of the Star Trek Enterprise NCC-1701D but also roller coasters that
run for many kilometers and even simple working computers with RAM.14 This is the true
genius of Minecraft: it gives players the opportunity to choose their own path as players
and provides them with flexible game systems that enable that choice.

Although most games are less flexible than Minecraft, allowing the player multiple ways to
approach a problem is still possible. One of the reasons for the loss in popularity of both
text-based adventures (e.g., Zork, Planetfall, and The Hitchhiker's Guide to the Galaxy by
Infocom) and the point-and-click adventure games that followed them (e.g., the early King's
Quest and Space Quest series by Sierra OnLine) is that they often only allowed a single
(often obtuse) approach to most problems. In Space Quest II, if you didn't grab a jockstrap
from a random locker at the very beginning of the game, you couldn't use it as a sling much
later in the game, and you would have to restart the game from the beginning. In Infocom's
game version of The Hitchhiker's Guide to the Galaxy when a bulldozer approached your
house, you had to lie down in the mud in front of it and then "wait" three times. If you didn't
do this exactly, you would die and have to restart the game.15 Contrast this with more
modern games like Dishonored, where nearly every problem has at least one violent and
one nonviolent solution. Giving the player choice over how she will accomplish her goals
builds player interest in the game and player ownership over successes.16

Performative
The other kind of empowerment that is important to games is performative empowerment.
In Game Design Theory, Keith Burgun states that not only are game designers creating art,
they're creating the ability for players to make art. The creators of passive media can be

157

thought of as composers; they create something to be consumed by the audience. However,
as a game designer, you're actually somewhere between a composer and an instrument
maker. Instead of just creating the notes that others will play, you're also creating the
instrument that they can use to make art. One excellent example of this kind of game is Tony
Hawk's Pro Skater, where the player has a large vocabulary of moves to draw from and
must choose how to string them together in harmony with the environment to get a high
score. Just as the cellist Yo-Yo Ma is an artist, a game player can be an artist when
empowered by a game designer who crafts a game for her that she can play artistically. We
can also see this in other games with large vocabularies of moves or strategies such as
fighting and real-time strategy games.

Attention and Involvement
As mentioned earlier in this chapter, the fantastic game designer Richard Lemarchand spoke
about attention in his GDC 2012 talk, "Attention, Not Immersion: Making Your Games
Better with Psychology and Playtesting, the Uncharted Way." The purpose of his talk was to
expose confusion about the use of the word immersion in game design and to demonstrate
that talking about getting and holding an audience's attention was a much clearer way of
describing what game designers usually seek to do.

Prior to Lemarchand's talk, many designers sought to increase immersion in their games.
This led to things like the reduction or removal of the HUD (the onscreen Heads-Up
Display) and the minimization of elements that could pull the player out of the experience of
the game. But as Lemarchand pointed out in his talk, gamers never truly achieve immersion,
nor would they want to. If a gamer actually believed that he was in Nathan Drake's position
halfway through Uncharted 3, being shot at while clinging to a cargo net that was hanging
out of the open door of a transport plane thousands of feet above a desert, the player would
be absolutely terrified! One of the critical aspects of the magic circle is that both entry into
the circle and remaining in the circle are choices made by the player, and she is always
aware that the game is voluntary. (As Suits points out, once participation is no longer
voluntary, the experience is no longer a game.)

Instead of immersion, Lemarchand seeks to initially gain the player's attention and then to
maintain hold upon it. For the sake of clarity, I use attention to describe immediate interest
that can be grabbed and involvement to describe long-term interest that needs to be held (a
distinction that Lemarchand now uses as well). Lemarchand also differentiates between
reflexive attention (the involuntary response that we have to stimuli around us) and
executive attention (which occurs when we choose to pay attention to something).

According to his talk, the elements of beauty, aesthetics, and contrast are great at grabbing
attention. James Bond films always open with an action scene for this very reason. They
begin in medias res (in the middle of things) because doing so creates a marked contrast

158

between the boredom of sitting in the theater waiting for the film to start and the excitement
of the beginning of the film. This kind of attention grab exploits reflexive attention, the
attention shift that is evolutionarily hard-wired into you. When you see something moving
out of the corner of your eye, it will grab your attention regardless of whether you want it
to. Then, after the Bond movie has your attention, it switches to the rather tedious
exposition required to set up the rest of the film. Because the viewer is already hooked by
the film, she will make the choice to use her executive attention to listen to this exposition.

In The Art of Game Design, Jesse Schell presents his theory of the interest curve. The
interest curve is also about grabbing attention, and according to Schell, a good interest
curve looks like Figure 8.3.

Figure 8.3 Interest curve from Jesse Schell's book

According to Schell, in a good interest curve, the audience will enter with a little interest
(A), and then you want to grab them with a "hook" that piques their interest (B). After you
have them interested, you can drop it back down and steadily build interest with little peaks
and valleys (C, E and D, F, respectively) that should slowly build to the highest point of
interest: the climax (G). After the climax, the audience's interest is let back down to (H) in
a denouement as the experience comes to a close. This is actually very similar to Syd
Field's standard three-act dramatic curve diagram (described in Chapter 4, "The Inscribed
Layer"), and it has been shown to work well for time spans between a few minutes and a
couple of hours. Schell tells us that this interest curve can be repeated in fractal fashion to
cover longer periods of time. One way this could be accomplished is by having a mission
structure within a larger game and making sure that each mission has its own good interest
curve within the larger interest curve of the entire game. However, it's more complex than
that because the interest that Schell discusses is what I'm calling attention, and we still
need to account for involvement if we want to hold player interest over long periods of
time.

159

Taking a closer look at attention and involvement, attention is directly paired with reflexive
attention (the involuntary response), whereas involvement is almost exclusively voluntary/
executive attention. The diagram in Figure 8.4 depicts a synthesis of Lemarchand's concepts
and my personal experience as both a designer and player.

Figure 8.4 The four elements of the Layered Tetrad plus Community in relation to attention
and involvement (because technology is largely invisible to the player, it doesn't register
much on this graph)

As you can see in the diagram, aesthetics (in terms of the aesthetic element in the tetrad) are
best at grabbing our attention, and in the case of aesthetics, that attention is largely
reflexive. This is because aesthetics deal directly with our senses and call for attention.

Narrative and mechanics both require executive attention. As pointed out by Lemarchand,
narrative has a greater ability to grab our attention, but I disagree with Lemarchand and
Jason Rohrer when they state that mechanics have a greater ability to sustain involvement
than narrative. Although a single movie tends to last only a couple of hours, the same is also
relatively true of the mechanics in a single session of play. Also, in my personal
experience, I have found that just as great mechanics can hold my involvement for over 100
hours, so can a series of narratives hold my attention through more than 100 episodes of a
serial television show. The major difference between mechanics and narrative here is that
narrative must be ever evolving whereas gameplay mechanics can exist unchanged for
years and still hold interest due to the different circumstances of play (for example,
consider a player's lifelong devotion to chess or go).

The one thing that I have seen outlast both narrative and mechanics in terms of long-term
involvement is community. When people find that a community exists around a game,
movie, or activity, and they feel part of that community, they will continue to take part long
after the hold of narrative or mechanics have lost their sway. Community is what kept many
guilds together in Ultima Online long after most people had moved on to other games.

160

Also, when the members of the community did eventually move on, they more often than not
chose as a community which new game to play together and all switched to the new game at
the same time, thus continuing the same community through multiple different online games.

Interesting Decisions
As you read in Chapter 1, Sid Meier has stated that games are (or should be) a series of
interesting decisions, but we questioned at that time what exactly was meant by interesting.
Throughout the book thus far, we have seen several concepts presented that can help
illuminate this.

Katie Salen and Eric Zimmerman's concept of meaningful play as presented in Chapter 5,
"The Dynamic Layer," gives us some insight into this. To be meaningful, a decision must be
both discernible and integrated:17

 Discernible: The player must be able to tell that the game received and understood her
decision (i.e., immediate feedback).
 Integrated: The player must believe that her decision will have some effect on the
long-term outcome of the game (i.e., long-term impact).

In his definition of game, Keith Burgun points out the importance of decisions being
ambiguous:

 Ambiguous: A decision is ambiguous for the player if she can guess at how it might
affect the system but can never be sure. The decision to wager money in the stock market
is ambiguous. As a savvy investor, you should have a pretty decent guess about whether
the value of the stock will go up or down, but the market is so volatile that you can never
know for sure.

Almost all interesting decisions are also double-edged (as in the saying "a double-edged
sword"):

 Double-edged: A decision is double-edged when it has both an upside and a downside.
In the previous stock purchase example, the upside is the longer-term potential to make
money, and the downside is the immediate loss of the resource (money) used to purchase
the stock as well as the potential for the stock to lose value.

Another aspect involved in making a decision interesting is the novelty of the decision.

 Novel: A decision is novel if it is sufficiently different from other decisions that the
player has made recently. In the classic Japanese roleplaying game (JRPG) Final
Fantasy VII, combat with a specific enemy changes little throughout each battle,

161

meaning that few novel decisions exist for the player to make. If the enemy is weak to
fire, and the player has enough mana and fire magic, she will generally attack every
round with fire magic until the enemy is defeated. In contrast, the excellent combat in the
JRPG Grandia III makes positioning and location important for most special attacks, but
the player's characters move around the field autonomously (independent of player
input). Whenever the player is able to make a decision, time freezes for her, and she
must reevaluate the positions of allies and enemies before making her decision. This
autonomous movement of her characters and the importance of position make every
combat decision novel.

The final requirement for interesting decisions is that they must be clear.

 Clear: Although it is important for the outcomes of a choice to have some ambiguity, the
choice itself must be clear. Choices can lack clarity in many ways:

 A choice can be unclear if there are too many options to choose from at a given time;
the player can have difficulty discerning the differences between them. This leads to
choice paralysis, the inability to choose because there are too many options.
 A choice can be unclear if the player can't intuit the likely outcome of the choice. This
was often a problem in the dialog trees in some older games, which for years just
listed the possible statements that a player could make without any information about
the implied meaning of those statements. In contrast, the dialog tree decision wheel in
Mass Effect included information about both whether a statement would be said in a
friendly or antagonistic way and whether it would extend or shorten the conversation.
This allowed the player to choose an attitude rather than specific wording of a
statement and removed the ambiguity in the dialog tree.
 A choice can also be unclear if the player doesn't understand the significance of the
choice. One of the great advances in the combat system of Grandia III over Grandia
II allowed threatened characters to automatically call for help during another
character's turn. If Character A is about to be hit by an attack, and Character B can
prevent it by acting on this turn, Character A will cry for help during Character B's
turn. The player might still choose to have Character B do something other than
prevent the attack, but the game has made it clear to her that this is her last chance to
prevent the attack on A.

We can combine these six aspects together into a decent understanding of the things that
make a decision interesting. An interesting decision is discernible, integrated, ambiguous,
double-edged, novel, and clear. By making your decisions more interesting, you can
increase the appeal of your mechanics and thereby the player's long-term involvement in
your game.

162

Experiential Understanding
The final goal for players that we'll discuss in this chapter is experiential understanding, a
design goal that is far more accessible to game designers than designers of any other kind of
media.

In 2013, game critic and theorist Mattie Brice released Mainichi,18 the first game that she
had designed and developed (see Figure 8.5).

Figure 8.5 Mainichi by Mattie Brice (2013)

As described by Brice, Mainichi is a personal letter from her to a friend to help her friend
understand what her daily life is like. In her real life, Brice is a transgender woman who at
the time lived in the Castro district of San Francisco. In Mainichi, the player takes on the
role of Mattie Brice and must choose what to do to prepare to go out for coffee with a
friend: does she dress nicely, put on makeup, eat a bite? Each of these decisions change
how some (but not all) of the people around town react to her as she walks to the coffee
shop and orders her drink. Even a simple decision like whether to pay with a credit card or
cash has meaning in the game. (Paying with a credit card will cause the barista to refer to
you as "Ms… er… Mr. Brice" because he reads Brice's old, male name on the credit card.)

163

The game is very short, and as a player, you are compelled to try again and see what
happens differently based on the seemingly small choices that you make throughout the
game. Because the player's decisions change how the character of Mattie is perceived, you
feel complicit in her being treated well or poorly by the people around her. Though some
kind of branching chart or a story structured like the movie Groundhog Day (in which Bill
Murray's character must relive the same day hundreds of times until he finally gets it right)
could convey the same information about the large implications of the tiny choices that
Brice makes every day, neither would convey a sense of responsibility to the audience. At
this time, it is only through a game (be it a video game, make-believe, or roleplaying) that a
person can actually walk in the shoes of another and gain insight into what it must be like to
make the decisions that they make. This experiential understanding is one of the most
interesting goals that we can seek to achieve as game designers.

Summary
Everyone making games has different feelings about each of the design goals presented in
this chapter. Some people just want to make fun experiences, some people want to give
players interesting puzzles, some people want to encourage players to think deeply about a
specific topic, and some people want to give players an arena in which to be empowered.
Regardless of what your reasons are for wanting to make a game, it is time now to start
making them.

The next two chapters are about paper prototyping and playtesting. Together, prototyping
and playtesting form the core of the real work of game design. In almost any game—
especially a digital game—there are hundreds of small variables that you can tweak to
modify the experience. However, in digital games, even seemingly small changes can take
considerable development time to implement. The paper prototyping strategies presented in
the next chapter can help you get from concept to playable (paper) prototype very quickly
and then get you from one prototype to the next even more rapidly. For many games, this
paper prototyping phase can save you a lot of time in digital development because you will
have already run several paper playtests to find the fun before writing a single line of code.

1. That Dragon, Cancer (2014, by Ryan Green and Josh Larson) relates the experience of
a couple learning that their young son has terminal cancer and helped Ryan deal with his
own son's cancer. Mainichi (2013, by Mattie Brice) was designed to express to a
friend of hers what it was like to be a transgender woman living in San Francisco. Papo
y Yo (2014, by Minority Media) places the player in the dream world of a boy trying to
protect himself and his sister from a sometimes-helpful, sometimes-violent monster that
represents his alcoholic father.

2. Roger Caillois, Le Jeux et Les Hommes (Man, Play, & Games) (Paris: Gallimard,
1958).

164

3. Chris Bateman, Imaginary Games (Washington, USA: Zero Books, 2011), 26–28.
4. Nicole Lazzaro discusses fiero often in her talks at GDC about emotions that drive

players.
5. Thanks to my good friends Donald McCaskill and Mike Wabschall for introducing me

to the beautiful intricacies of Tekken 3 and for the thousands of matches we've played
together.

6. Cash, Bryan and Gibson, Jeremy. "Sporadic Games: The History and Future of Games
for Busy People" (presented as part of the Social Games Summit at the Game
Developers Conference, San Francisco, CA, 2010). Cash, Bryan and Gibson, Jeremy
"Sporadic Play Update: The Latest Developments in Games for Busy People"
(presented at the Game Developers Conference Online, Austin, TX, 2010).

7. Skyrates was developed over the course of two semesters in 2006 while we were all
graduate students at Carnegie Mellon University's Entertainment Technology Center.
The developers were Howard Braham, Bryan Cash, Jeremy Gibson (Bond), Chuck
Hoover, Henry Clay Reister, Seth Shain, and Sam Spiro, with character art by Chris
Daniel. Our faculty advisors were Jesse Schell and Dr. Drew Davidson. After Skyrates
was released, we added the developers Phil Light and Jason Buckner. You can still play
the game at http://skyrates.net.

8. You can play the original Flash-based version of Flow at
http://interactive.usc.edu/projects/cloud/flowing/. An updated and expanded
PlayStation 3 (and PS4) version is available from the PlayStation Store.

9. Jeanne Nakamura and Mihaly Csíkszentmihályi, "The Concept of Flow." Handbook of
Positive Psychology (2002): 89–105, 90.

10. Christ Bateman, Imaginary Games (Washington, USA: Zero Books, 2011), 24.
11. Frank Bird Linderman, Plenty-Coups, Chief of the Crows, New ed. (Lincoln, NE:

University of Nebraska Press, 2002), 31–32.
12. Nakamura and Csíkszentmihályi, "The Concept of Flow," 98.
13. Mihaly Csíkszentmihályi, Flow: The Psychology of Optimal Experience (New York:

Harper & Row, 1990), 69.
14. http://www.escapistmagazine.com/news/view/109385-Computer-Built-in-Minecraft-

Has-RAM-Performs-Division.
15. One of the major reasons that this was done was because of the multiplicative

explosions of content that would occur if the player were allowed to do anything in the
game narrative. The closest thing that I have seen to a truly open, branching narrative is
the interactive drama Façade by Michael Mateas and Andrew Stern.

16. However, you must also keep development cost and time in perspective. If you're not
careful, every option that you give your player could increase the cost of development,
both in terms of monetary cost and in terms of time. It's a careful balance that you must
maintain as a designer and developer.

17. Katie Salen and Eric Zimmerman, Rules of Play (Cambridge, MA: MIT Press, 2003),

165

http://skyrates.net
http://interactive.usc.edu/projects/cloud/flowing/
http://www.escapistmagazine.com/news/view/109385-Computer-Built-in-Minecraft-Has-RAM-Performs-Division

34.
18. You can download and play Mainichi at http://www.mattiebrice.com/mainichi/.

166

http://www.mattiebrice.com/mainichi/

CHAPTER 9

PAPER PROTOTYPING

In this chapter, you learn about paper prototyping, one of the best tools available
to game designers to rapidly test and iterate on game ideas. Although simple to
implement, paper prototypes can teach you a tremendous amount about various
aspects of your game, even if that game will eventually be digital.

By the end of the chapter, you will know the best practices for implementing
paper prototypes and understand the parts of a digital game that can best be
understood and tested through paper.

The Benefits of Paper Prototypes
Although digital technologies have enabled a whole new world of possibilities for game
development, many designers still find themselves exploring their initial ideas using
traditional paper methods. With computers able to calculate and display information much
faster than a person could draw or calculate by hand, you might be wondering why this is. It
largely comes down to two factors: speed and ease of implementation. These two factors
lead to several benefits, including the following:

 Initial development speed: For quickly throwing together a game, nothing beats paper.
You can combine some dice, 3 x 5 note cards, and other simple elements to make a game
in very little time. Even when you have a lot of experience as a game designer, starting
on a new digital game project can take quite a bit of time if it's significantly different
from anything you've done before.
 Iteration speed: Making changes to paper games is also very fast; in fact, you can even
make changes to the games while you're playing. Because of the ease of changes, paper
prototypes are a great fit for game brainstorming at the beginning of preproduction on a
project (when large changes to the project can happen frequently). If a paper prototype
isn't working, making a change can take as little as a few minutes.
 Low technical barrier to entry: Because very little technical knowledge or artistic
talent is required to make a paper prototype, anyone on the game development team can
take part in the process. This is a way to get great ideas from people on your team who
would not be able to effectively contribute to a digital prototype.

167

 Collaborative prototyping: Because of the low barrier to entry and the rapid iteration,
you can collaboratively create and modify a paper prototype in a way that is not yet
possible for digital prototypes. A group of people from across your team can work
together on a paper prototype and share ideas quickly. As an added benefit, bringing
people from across your game development team into the design process in this way can
help to increase their buy-in for the entirety of the project and can serve as a fantastic
team-building activity.
 Focused prototyping and testing: It is obvious to even a complete novice that a paper
prototype of a digital game is going to be very different from the final digital product.
This allows you to test specific elements of your game without your testers getting hung
up on details. In the 1980s, an internal document to user interface designers at Apple
Computer recommended that they make rough sketches of the buttons for their interfaces
on paper, scan the paper, and then make their UI prototypes from the scanned images.
Because the sketched and scanned images of UI elements like buttons and menus were so
obviously not the final look that Apple would choose for the UI, testers didn't get hung
up on the look of the buttons and instead focused on the usability of the interface, which
is what Apple was interested in testing. A paper prototype can help direct the attention
of your testers in the same way so that they don't get hung up on the look of the prototype
but instead focus on the specific aspect of gameplay that you intend to test.

Paper Prototyping Tools
There are several tools for paper prototyping that you might want to have handy. You can
make a paper prototype from almost anything, but some tools can help make the process go
faster:

 Large sheets of paper: At most office supply stores, you can get easel-sized sheets of
paper (something like 24" wide by 36" tall). These often come in a pad of several
sheets, and some have a mild adhesive on the back of each sheet to stick them to walls
and such. You can also often find large sheets of paper inscribed with a square or
hexagonal grid. See the "Movement on Different Grid Types" sidebar for information
about why you would choose a hexagonal or square grid and how to handle free
movement on an open grid game board.
 Dice: Most people have some d6 dice (normal six-sided dice) sitting around. As a game
designer, it's also really good to own some of the other dice varieties. Your local game
store should have sets for sale that include all the dice normally used for d20
roleplaying games including 2d6 (2 six-sided dice), 1d8, 1d12, 1d20, and percentile
dice (2d10 with one marked 0–9 and the other marked 00–90; rolled together, they give
you a number between 00 and 99). Chapter 11, "Math and Game Balance," includes a lot
of information about different kinds of dice and what the probability space of their
randomness looks like. For example, with 1d6, you have an even chance of any number

168

from 1 to 6, but with 2d6 there are 6 different ways to roll a 7 (a 6/36 chance) but only
one way to roll a 12 (a 1/36 chance).
 Cards: Cards are a fantastic prototyping tool because they are so malleable. Create
cards numbered 1–6, and you have a 1d6 deck. If you shuffle before every draw, it acts
just like a 1d6, but if you draw all the cards before reshuffling, then you're guaranteed to
get one each of 1, 2, 3, 4, 5, and 6 before seeing any number for a second time.
 Card sleeves: Most gaming stores sell several different styles of card sleeves. Card
sleeves were initially developed to protect baseball cards, and they were extended to
the gaming industry with the rise of collectible card games like Magic: The Gathering
in the '90s. Each card sleeve is a protective plastic cover for an individual card, and
there's enough room inside of them for both a regular card and a slip of paper. This is
great for prototyping because it means that you can print the cards for your prototype on
regular printer paper and then put them into a sleeve in front of a regular playing card.
The regular card will give the card enough stiffness to be shuffled without the time and
expense of writing or printing on card stock. The card sleeves can also ensure that all
the card backs look uniform, or alternatively, several sets of card sleeves can be used to
keep different decks of designed cards separate.

MOVEMENT ON DIFFERENT GRID TYPES
As shown in Figure 9.1, if your game includes player movement, you must make
choices about how players can move across the board. As depicted in image A, on
a square grid diagonal movement moves the player almost 50% further than
orthogonal movement. (According to the Pythagorean theorem, the diagonal
distance is 2 or roughly 1.414.) However, movement to any adjacent hex in a
hexagonal grid is the same, regardless of which hex you choose (image B).

169

Figure 9.1 Movement systems

Image C shows a simple alternative movement system across a square grid that
can be used in board games to still allow diagonal movement yet prevent abuse
thereof. Players are allowed to move diagonally with every other movement. This
evens out the distances somewhat and makes possible movement within a specific
number of moves roughly circular. The purple lines on diagram C show two
different possible paths of four moves each. This movement system is used in
Dungeons & Dragons by Wizards of the Coast.

Hexagonal grids are often used for military simulation board games where an
accurate representation of distances and movement is critical. However, most
buildings in the real world are rectangular, so they don't fit as well on a hexagonal
board. The choice of which type of grid to use is up to you as a designer.

 3 x 5 note cards: Cut in half, 3 x 5 note cards are a great size for a deck of cards. At
their regular size, they're fantastic for brainstorming. Some stores now sell 3 x 5 cards
that have already been cut in half (to 3 x 2.5).
 Post-It® notes: These simple little sticky notes are fantastic for quickly arranging and
sorting ideas.
 Whiteboard: Nothing says brainstorming like a whiteboard. Be sure to have lots of
colors of markers available. Whiteboards tend to get erased often, so be sure to snap a
digital photo of anything you write on one that is at all worth keeping. If you have a
whiteboard tabletop or a vertical whiteboard that is magnetic, you can also draw a game
board on it, but I tend to prefer large sheets of paper for game boards because they won't

170

be erased.
 Pipe cleaners / LEGO blocks: Both of these can be used for the same purpose: quickly
building little things. These could be playing pieces, set pieces, or really anything you
can think of. LEGO blocks are a lot sturdier, but pipe cleaners are much cheaper and
more flexible.
 A notebook: As a designer, you should always have a notebook handy. I like the
pocket-size Moleskine with unlined paper, but several types are available. The key
element of your notebook is that it needs to be small enough to carry with you and large
enough that you won't be filling it up and replacing it every few weeks. Any time
someone plays your game prototype, you should be taking notes. Although during a
playtest, you might think you'll remember important things that happen or were said by
players, even a few hours later—that is often not the case.

Paper Prototyping for Interfaces
One example of a great place to use a paper prototype is when making interface decisions.
For instance, the diagram in Figure 9.2 shows some different screens from a Graphical
User Interface (GUI) mockup of an options menu for a touchscreen mobile game. Each
playtester would only be shown one screen at a time, starting with #1, the Options Menu.
While shown screen #1, the playtester would be instructed to "Press the selections you
would make to turn the subtitles on." (You would encourage the playtesters to actually touch
the paper as if they were touching a touchscreen.)

Figure 9.2 A simple paper GUI prototype

Some playtesters might press the Video button, whereas others might press Audio (and a

171

few might press Game). After the user makes a selection, you would replace the #1 sheet of
paper with the menu of her selection (for example, #2 Video Options). Then, presumably,
the playtester would press the Subtitles: on / OFF button to switch the subtitles on, when
you would replace #2 with #4 Video Options.

One important thing to note here is that subtitles are available to be changed on both the
video and sound options screens. For testing this works well because regardless of which
of the two options the player chooses (Video or Audio), you can then subsequently test
whether the on / OFF capitalization clearly conveys that the subtitles are currently turned
off.

An Example Paper Prototype
In this section of the chapter, I take you through the process of designing a paper prototype
for a level that you will implement in Chapter 35, "Dungeon Delver." You'll see it from the
initial phase of ideation through to the creation of a clear, limited paper prototype that can
teach us something useful for the final digital version of the game.

Game Concept—A 2D Adventure Game Level
In the last chapter of this book, I'll lead you through developing a top-down 2D adventure
game based on the original Legend of Zelda for the Nintendo Entertainment System (NES).
In games like this, one of the most important level design questions has to do with locks and
keys.

As a designer, you place locks on doors and keys to those locks in rooms with the
expectation that your players will approach the dungeon in a specific way; however,
players are often unpredictable. Take a look at the two identical versions of the first
dungeon from The Legend of Zelda shown in Figure 9.3. The green line in the top map
shows a completionist player's path through the dungeon. Here, she has collected and used
every key and every item in the dungeon (including the collection of the bow in B1 and the
boomerang in D3). This is generally how new players experience the level, but it's not the
only way to reach the goal at the end.

172

Figure 9.3 The first dungeon from The Legend of Zelda, showing the expected player path
(top) and two possible shortcut paths (bottom)

The bottom map of Figure 9.3 shows two shortcut paths through the dungeon. Following
either of these paths, the player will not collect the bow from room B1, though she will still
get the boomerang in room D3. The purple shortcut path shows one that a player can take
without any special items. The dashed red shortcut path shows the fastest way that a player
can get to the boss battle if she has the bomb item. This red path only requires the use of 2
out of 6 keys and only visits 9 of the 17 rooms. The bow obtained in room B1 is a strong

173

impetus for the player to go all the way up to that room, but she has the option not to if she
chooses to forego the bow in exchange for extra keys that she can use in other dungeons.

If the player wanted to get the bow but use bombs to walk the shortest path possible, what
path could she take? You should make a paper prototype to find out! Try drawing the map of
this dungeon on a piece of paper. Put a marker in each room that has a key (something like a
coin or a small bit of paper with a key drawn on it). Place paper clips (or something else
rectangular) over each of the locked doors that you haven't yet opened. Find another
rectangular marker and place it over the bombable walls.1 Then, place a marker for
yourself in the starting room. Move into rooms and pick up keys when you encounter them,
then discard 1 key and 1 paper clip whenever you unlock a door. Use bombs whenever you
want. How few rooms can you visit and still make it to B1 before finishing at F2?2 If you
had bombs and wanted to get the bow from B1, could you exit the dungeon without using all
the keys?3

This is a very-well designed dungeon, and all of these behaviors are intentional, but you
can see how players can exploit even a great dungeon design. Try designing your own
Legend of Zelda dungeon with just keys and locked doors (and no bombable walls) and see
whether players you give it to can exploit it in some way.

Prototyping New Traversal Mechanics
In later games in the Legend of Zelda series, several items increased the main character
Link's ability to move through dungeons. One classic example of this is the hookshot, a
grappling hook that allows Link to connect to a wall on the other side of a gap and pull
himself across. A hookshot-like item is another thing that you can easily explore using a
paper prototype.

Figure 9.4 shows a dungeon that I designed using this concept. You can see the dungeon
layout on top with the full traversal path in green.

174

Figure 9.4 A new dungeon that uses a hookshot item (acquired in room E4) to cross gaps

Warning
THE DANGER OF ALLOWING SHORTCUTS There are no bombable
walls in the Figure 9.4 level because allowing shortcuts can also allow players
to get into unwinnable situations. For example, in the bottom diagram of Figure
9.4, a single bombable wall between C6 and C5 would allow the player to

175

follow the broken red path and get stuck, having used the one key she could
acquire on the wrong door. This is another big thing that a paper prototype can
help you solve.

Playtesting
Play the prototype a few times yourself and then get a few different friends to play it as
well. They might find some paths through the dungeon that you had missed.

One thing that this prototype doesn't handle well in its current state is the surprise of each
new room in a Legend of Zelda dungeon. What I mean by this is that players are able to
plan their moves ahead of time by seeing the whole dungeon at once instead of seeing each
room one at a time. The best way to implement this discovery would be to draw (or print
out) your dungeon with each room on a separate piece of paper. In this case, putting each
room on a separate 3 x 5" notecard (or on the blank back of business cards) would allow
you to place them on the playing surface one by one as they're discovered. Players will
almost certainly follow different paths if they don't have an understanding of the whole map
(which is why the map and compass items in The Legend of Zelda are so important4).

Every time you play, be sure to keep these questions in mind:

 Is the player following a path that surprises you?
 Is it possible for her to get herself stuck in any way?
 Is the player having fun?

The third question might seem a little strange for a prototype that doesn't even have a single
enemy in it, but the levels for a game like this are puzzles in and of themselves, and puzzles
should be fun.

Be sure to write down notes on what the player does and what she thinks of the prototype
every time you play it. As you modify the prototype, you might find that your opinions
change over time. Taking notes is critical because it allows you to understand how your
game changed throughout the course of development and gives you more awareness of
trends over time.

Chapter 10, "Game Testing," includes a lot of information about how to run playtests, and
Chapter 13, "Puzzle Design," covers several aspects of the puzzle design process and why
it is so important for single-player games.

Best Uses for Paper Prototyping

176

Paper prototyping for digital games has both strengths and weaknesses. Here are some
things that paper prototypes are particularly good at:

 Understanding player movement through space: This is the core purpose of the
example prototype in this chapter. Keep track of which directions players tend to go
through your dungeon. Do they usually turn left or right when given two equal options?
Understanding player flow through space helps you in all aspects of level design.
 Balancing simple systems: Even with just a few variables, balancing the strength of
similar items in a game can be very complex. For example, consider the balancing of
two weapons—a shotgun and a machine gun—each having three simple variables:
accuracy over distance, number of shots, and damage per shot. Although there are only
three variables, balancing each weapon against the others is more complex than it might
originally seem. For example, consider the shotgun and the machine gun relative to each
other:

 Shotgun: The shotgun would do lots of damage up close, but its accuracy would
decrease very quickly as distance increased. Additionally, it has only one shot, so if
that shot misses, the enemy will take no damage at all.
 Machine Gun: The machine gun would only do a little damage per shot, but could fire
a number of bullets in a single turn and it would lose less accuracy over distance. The
randomness aspect of accuracy could also be calculated on a per-bullet basis.

If accuracy in the game includes some randomness in the calculation, the multiple per-
bullet random chances offered by the machine gun in a single turn will make it much
more likely to do a reliable amount of damage when fired, whereas the shotgun's single
shot is an all-or-nothing thing. With these stats, the shotgun is risky but powerful,
whereas the machine gun is reliable but a little less powerful. We'll explore the math
behind this much more in Chapter 11, "Math and Game Balance."
 Graphical user interface: As shown earlier in Figure 9.2, you can easily print several
mock-ups of a GUI (i.e., buttons, menus, input fields) and then ask testers which on-
screen button they would press to accomplish a certain task (e.g., pausing the game,
picking a character).
 Trying wild ideas: Because of the rapid iteration and development speed of paper
prototypes, trying a crazy rule every once in a while to see how it changes gameplay is
also easy.

Poor Uses for Paper Prototyping
Although it has many great uses, paper prototyping is pretty awful at some things:

 Tracking lots of information: Many digital games constantly keep track of hundreds of
variables. In a stealth combat game, these could include visibility calculations, health

177

tracking, the distance of a ranged attacker from their target, and so on. In paper
prototypes, you want to focus on the simple systems in a game and get a good idea of
things like the layout of a level or the general feel of various weapons (e.g., the "risky"
shotgun and the "reliable" machine gun could be prototyped with a single d20 die roll
for the shotgun versus 4d4 for the machine gun). You'll then fine tune this information
with the digital prototype.
 Game rhythm for fast or slow games: Paper prototypes can also give you a false
impression of game rhythm and feel if the game will be played much more quickly or
more slowly than the paper prototype. For example, I once saw a team put too much
stock in a paper prototype for a game that would be played by players around the world
over the span of a month. The paper prototype had a number of interesting revenge
mechanics where players could directly taunt and compete with each other. These
worked really well with all players in the same room and the paper prototype lasting
only an hour or so. However, with players distributed around the world and the actual
game lasting weeks or months, the revenge mechanics were less immediate and didn't
work very well.
 Physical interface: Although paper prototypes can work well for GUIs, they have very
little to tell us about physical interfaces (e.g., gamepad controllers, touchscreens,
keyboard, and mouse). Until you have a digital prototype working with the actual
physical interface that the player will use, you really won't know anything about how
well the physical control scheme maps to your game. This is a tough issue, as can be
evidenced by the subtle changes to controls for many long-running game series (for
example, all the changes over the years to the controls of the various Assassin's Creed
games).

Summary
I hope that this chapter has demonstrated to you the power and ease of paper prototyping.
At some of the best university game design programs, students spend their first game design
class working primarily on board games and card games to build their skills in paper
prototyping, game balance, and tuning. Not only can paper prototypes help you rapidly
explore concepts for your digital games, they can also help you build skills in iterative
design and decision making that will be invaluable to you when you start making digital
games.

Each time you start designing a new game (or a new system for a game you're already
developing), ask yourself the question of whether that game or system could benefit from a
paper prototype. For example, the new dungeon level that is shown in Figure 9.4 took me
less than an hour to design, implement, and test several times; yet it took me several days to
develop all the different logic, camera moves, artificial intelligence, controls, and so on for
the digital version in Chapter 35, "Dungeon Delver." Adding something like the hookshot

178

would take just minutes on paper and hours or days in Unity and C#.

Another thing that you can learn from paper prototypes is to not be discouraged when a
design decision you make backfires. We all make bad design decisions throughout our
careers as designers, and doing so is okay. The benefit of a bad decision in a paper
prototype is that you can quickly discover that it is a bad decision, toss it out, and move on
to the next idea.

In the next chapter, you will learn about various forms of playtesting and usability testing.
This knowledge can help you get more valid and specific information from your playtests.
Then, in Chapter 11, "Math and Game Balance," you'll explore some of the math behind
game design and look at how to use a spreadsheet program to help you balance your games.

1. In The Legend of Zelda the bombable walls in the first dungeon look just like normal
walls, but we don't need to worry about that for this prototype.

2. The shortest path I found visited 12 rooms, picked up 5 keys, and only used 4 of them.
There is also a path that visits 13 rooms, picks up 5 keys, and only uses 3 of them.

3. Yes, this is possible, and you can exit the dungeon with extra keys that you can use in
any dungeon in the game.

4. In the original NES version, the map shows you a grid with blue blocks representing
every room in the dungeon, and the compass places a red dot on the map showing you
where the boss fight room is.

179

CHAPTER 10

GAME TESTING

Inherent in the concepts of prototyping and iteration is an understanding that
high-quality testing is absolutely necessary for good game design. But the
question becomes: How exactly should this testing be performed?

In this chapter, you learn about various methods of playtesting for games, how to
implement them properly, and at what stage in development each method is
appropriate.

Why Playtest?
After you've analyzed your goals, designed a solution, and implemented a prototype, it's
time to test that prototype and get some feedback on your design. I understand that this can
be a frightening proposition. Games are difficult to design, and you'll need a lot of
experience to get good at it. Even when you become a great designer, you'll still probably
have some trepidation when you think about people playing your game for the first time.
That's okay. The number one thing to keep in mind is that every person who plays your
game is making it better; every comment you get, whether positive or negative, can help
steer you in a direction that can improve player experience and hone your design.

Refining the design is what it's all about, and you absolutely must have external feedback to
do so. I've served as a judge for several game design festivals over the years, and it always
amazes me how easy it is to tell whether a dev team has done sufficient playtesting. For
example, without enough playtesting, the goals of the game are often not clearly specified,
and the difficulty of the game often ramps up very erratically. These are both common
indications that the game was most often played by people who already knew how to play
and knew how to get through the difficult parts, so they couldn't see the ambiguity of the
goals or the variations in difficulty the way that a naïve tester would have.

This chapter gives you the knowledge and skills to run meaningful playtests and get the
information from them that you need to make your games better.

Note
180

INVESTIGATORS VERSUS PLAYTESTERS In the game industry, we often
refer to both the people running the playtests and the participants in those tests as
playtesters. For clarity, in this book, I use these terms as follows:

 Investigator: A person administering a playtest, usually someone on your
team
 Playtester: A person taking part in the playtest by playing games and giving
feedback

Being a Great Playtester Yourself
Before getting into how to run various types of playtests for your games or what to look for
in playtesters, let's examine how you can be a great playtester for other people.

 Think out loud: One of the best things you can do as a playtester is to describe your
internal thought processes out loud while playing. Doing so helps the investigator
running the test to correctly interpret the thoughts behind your actions. This can be
especially helpful if it's the first time that you've ever encountered the game.
 Reveal your biases: We are all biased by our experiences and tastes, but investigators
often have difficulty knowing where their playtesters are coming from. As you're
playing, talk about other games, films, books, experiences, and so on that the game
reminds you of. This helps the investigators understand the background and biases that
you bring with you to the playtest.
 Self-analyze: Try to help the investigators understand why you're experiencing the
reactions that you're having to the game. Instead of just saying something like "I feel
happy," say something more specific like "I feel happy because the jumping mechanic
makes me feel powerful and joyful."
 Separate elements: As a playtester, after you've given overall feedback on the game
experience, try to see each element separately; analyze art, game mechanics, game feel,
sound, music, and so on as individual elements. This can be very helpful to investigators
and is akin to saying, "The cellos sounded out of tune" rather than "I didn't like that
symphony." As a designer, your insight into games can allow you to give more specific
feedback than most players, so take advantage of it.
 Don't worry if they don't like your ideas: As a designer, you should tell the
investigators any ideas you have to make their game better, but you also shouldn't be at
all offended if they don't use them. A lot of game design is about checking your ego at the
door; it turns out that playtesting has an element of that, too.

The Circles of Playtesters

181

The game testing you do will go through several expanding circles of playtesters, starting
with you and expanding outward through your friends and acquaintances to eventually
encompass many people you have never met. Each circle of people can help with different
aspects of your playtesting.

The First Circle—You
As a game designer, the first and last playtester of the games you design will most likely be
you. You will be the first person to try out each of your ideas, and you'll be the first person
to decide whether the game mechanics and interface feel right.

A central theme of this book is that you always want to get a prototype of your game
working as soon as possible. Until you have a working prototype, all you have is a jumble
of ideas, but after you have a prototype, you have something concrete for others to react to.

Later in this book, you'll be making digital game prototypes in Unity. Every time you click
the Play button in Unity to run your game, you are acting as a playtester. Even if you're
working in a team and are not the primary engineer on the project, as a designer, your job is
to determine whether the game is heading toward the kind of experience your team wants to
create. Your skills as a playtester are most useful in the very early stages of prototyping
when you are working toward an early internal prototype to help other team members
understand the design or when you are still trying to discover the core mechanic or core
experience of the game.

However, you can never get a first impression of your own game; you know too much about
it. At some point you must show your game to other people. After you feel that your game is
anything better than terrible, it's honestly time to find a few other people and show it to
them.

TISSUE PLAYTESTERS
Tissue playtester is an industry term to describe playtesters who are brought in to
play the game and give their feedback once and are then discarded. They are one-
use, like facial tissues. This kind of tester is important because they can give you a
naïve reaction to your game. After anyone has played your game even a single
time, they know something about it, and that knowledge biases subsequent playtest
sessions. This kind of naïve perspective is critically important when testing:

 The tutorial system
 The first few levels
 The emotional impact of any plot twists or other surprises

182

 The emotional impact of the end of the game

Everyone Is a Tissue Playtester Only Once
Your game never gets a second chance to make a first impression. When Jenova
Chen was working on his most famous game, Journey, he and I were housemates.
However, he asked me to wait until more than a year into the development of the
game before I playtested it. Later, he expressed to me that he specifically wanted
my feedback on the level of polish of the game and whether it was achieving its
intended emotional arc. As such, playing it in the early stages of development
before any of that polish existed would have ruined the experience for me. Keep
this in mind when playtesting with close friends. Think about the most valuable
kinds of feedback that each person can give and make sure to show them the game
at the best time for each individual.

That being said, never use that point as an excuse for hiding your game from
everyone "until it's ready." Hundreds of people playtested Journey before I saw it.
You will find that in the initial stages of playtesting, most people tell you the same
things in slightly different ways. You need that feedback, and even very early in
the development process, you need tissue playtesters to tell you which of your
game mechanics are confusing or need work for a variety of reasons. Just save a
couple of trusted people for later when you know that their specific feedback will
be most useful.

The Second Circle—Trusted Friends
After you've playtested your game, iterated, made improvements, and actually crafted
something that approximates the experience that you want, it's time to show it to others. The
first people should be trusted friends and family members, preferably those either in your
target audience or in the game development community. Members of your target audience
give you good feedback from the point of view of your future players, and game developers
can help by sharing their considerable insight and experience. Game developers also often
have the ability to overlook aspects of the game that are obviously unfinished, which can be
very useful for relatively early prototypes.

The Third Circle—Acquaintances and Others
After you've been iterating on your game for a while and you have something that seems
pretty solid, it's time to take it out into the wild. This isn't yet the time to post a beta to the
Internet and expose your game to the rest of the world, but this is when feedback from
others with whom you don't normally associate can be helpful. The people who make up

183

your friends and family often share your background and experiences, meaning that they
will also often share some of your tastes and biases. If you only test with them, you will get
a biased understanding of your game.

A corollary to this would be someone in Austin, Texas, being surprised that the state of
Texas voted for a Republican presidential candidate. Most people in Austin are liberal,
whereas the rest of the state is primarily conservative. If you only polled people in Austin
and didn't break out of that left-leaning bubble, you would never know the opinion of the
state as a whole. Similarly, you must get out of your normal social circles to find more
playtesters for your game and to understand a larger audience's reaction to your game.

So, where do you look for more people to playtest your game? Here are some possibilities:

 Local universities: Many college students love playing games. You could try setting up
your game in the student center or quad and showing it to groups of people. Of course,
you'll want to check with the campus security before doing so.
You could also look into whether your local university has a game development club or
a group that meets for weekly game nights and ask whether they would mind your
bringing a game for them to playtest.
 Local game stores / malls: People head to these places to buy games, so they could be
a fantastic place to get some playtest feedback. Each of these places has different
corporate policies on these kinds of things, so you need to talk with them first.
 Farmers markets / community events / parties: These kinds of public gatherings of
people can have incredibly diverse audiences. I've gotten some great feedback on games
from people I met at parties.

The Fourth Circle—The Internet
The Internet can be a scary place. Anonymity ensures that little or no accountability exists
for actions or statements, and some people online are mean just for kicks. However, the
Internet also contains the largest circle of playtesters that you can possibly get. If you're
developing an online game, you're eventually going to have to reach out to the Internet and
see what happens. However, before you do so, you need to have considerable data and user
tracking in place, which you can read about in the later section Online Playtesting.

Methods of Playtesting
Several different methods of playtesting exist, each of which is most appropriate for
different phases of your game. The following pages explore various methods of playtesting
that I have found to be useful in my design process.

184

Informal Individual Testing
As an independent developer this is how I tend to do most of my testing. I've been focusing
on mobile games lately, so carrying my device around with me and showing my games to
people is easy to do. More often than not, during a break in conversation I'll ask whether
the person I'm speaking with would mind taking a look at my game. This is, of course, most
useful in the early stages of development or when you have a specific new feature that you
want to test. Things to keep in mind during this kind of testing include the following:

 Don't tell the player too much: Even in the early stages, learning whether your
interface is intuitive and the goals of your game are clear is important. Try giving your
game to players and watching what they do before they've had any instruction. This can
tell you a lot about what interactions your game implies on its own. Eventually, you'll
learn the specific short sentences you need to say to people to help them understand your
game, and these can form the basis of your in-game tutorial.
 Don't lead the playtester: Be sure you don't ask leading questions that might
inadvertently bias your player. Even a simple question like "Did you notice the health
items?" informs your playtester that health items exist and implies that it is important for
her to collect them. After you release your game, players won't have you there to explain
the game to them, and letting your playtesters struggle a bit to help you learn which
aspects of your game are unintuitive is important.
 Don't argue or make excuses: As with everything in design, your ego has no place in a
playtest. Listen to the feedback that playtesters are giving you, even (or possibly
especially) if you disagree with it. This isn't the time to defend your game; it's the time to
learn what you can from the person who is taking time out of her day to help the design
improve.
 Take notes: Keep a small notebook with you and take notes on the feedback you get,
especially if it's not what you expected or wanted to hear. Later, you can collate these
notes and look for statements that you heard multiple times. You shouldn't really put too
much stock in what is said by a single playtester, but you should definitely pay attention
if you hear the same feedback from many different people.

TAKING PLAYTEST NOTES
Playtest notes can be one of your most valuable tools for understanding and
improving your games, however, you need to make sure that you're taking notes in
an effective way. Just writing down a bunch of notes randomly or writing notes
and never reviewing them aren't going to help you much. Figure 10.1 shows the
grid of information that I typically use when writing down playtest notes.

185

Figure 10.1 A single example row of playtest notes.

As mentioned in Chapter 7, it is critical to gather as much usable information from
each playtest as possible, and this form can help you to do so. Record the first
three columns (with black headers) during the playtest. You should add a new row
for each different comment that is made by the playtester.

After the playtest has finished, meet with your team and fill out the three columns
with green headers. As you do this, you will see that some issues were only
experienced by a few playtesters, while others issues were experienced by nearly
everyone. In this phase, you can also combine several rows into one if you think a
single solution can fix several issues.

Formal Group Testing
For many years, formal group testing was the only form of playtesting done at large studios,
and when I worked at Electronic Arts, I took part in many playtests for other teams. In
formal group testing, several people are brought into a room full of individual stations at
which they can play the game. They are given little or no instruction and allowed to play the
game for a specific amount of time (usually about 30 minutes). After this time, the
playtesters are given a written survey to fill out, and investigators sometimes interview
them individually. This is a great way to get feedback from a high volume of people, and it
can get you a large number of answers to some important questions.

Some example post-playtest survey questions include:

 "What were your three favorite parts of the game?"
 "What were your three least favorite parts of the game?"
 Provide the playtesters with a sequential list of various points in the game (or even
better a series of images) and ask them, "How would you describe the way you felt at
each of these points in the game?"
 "How do you feel about the main character (or other characters) in the game? Did your
feelings about the main character change over the course of the game?"
 "How much would you pay for this game?" or "How much would you charge for this

186

game?"1

 "What were the three most confusing things about the game?"

Investigators outside of the core development team often administer formal group testing,
and there are companies that provide testing services like this.

All Formal Testing Requires a Script
You need to write a script for your investigators any time you do formal testing, regardless
of whether or not the investigators are members of your team. A script helps ensure that
every playtester has the same setup for their game experience, which minimizes the number
of external factors that could cause flukes in your testing. The script should include the
following information:

 What should investigators say to the playtesters to set up the game? What instructions
should they give?
 How should investigators react during the playtest? Should they ask questions if they see
a playtester do something interesting or unusual? Should they provide any hints to
playtesters during the test?
 What should the environment be like for the playtest? How long should the playtester be
allowed to play?
 What specific survey questions should be asked of the playtester after the playtest is
complete?
 What kinds of notes should the investigator take during the playtests?

Formal Individual Testing
Where formal group testing seeks to gather small bits of information from many different
people and grant investigators a gestalt understanding of how playtesters react to a game,
formal individual testing seeks to understand the fine details of a single playtester's
experience. To accomplish this goal, investigators carefully record the details of a single
individual's experience with the game and then review the recordings later to make sure
that they haven't missed anything. You should record several different data streams when
doing formal individual testing:

 Record the game screen: You want to see what the player is seeing.
 Record the playtester's actions: You want to see the input attempted by the player. If
the game is controlled with mouse and keyboard, place a camera above them. If the
game is tested on a touchscreen tablet, you should have a shot of the player's hands
touching the screen.

187

 Record the playtester's face: You want to see the player's face so that you can read
her emotions.
 Record audio of what the playtester says: Even if the player doesn't vocalize her
stream of consciousness, hearing utterances she makes can give you more information
about her internal thought process.
 Log game data: Your game should also be logging time-stamped data about its internal
state. This can include input from the player (e.g., button presses on the controller), the
player's success or failure at various tasks, the location of the player, time spent in each
area of the game, and so on. See the "Automated Data Logging" sidebar later in this
chapter for more information.

All of these data streams are later synched to each other so that designers can clearly see
the relationships between them. This allows you to see the elation or frustration in a
player's face while simultaneously viewing exactly what the player was seeing on-screen at
the time and the input their hands were attempting on the controls. Though this is a
considerable amount of data, modern technology has actually made it relatively cheap to
create a reasonably good lab for individual testing. See the "Setting Up a Lab..." sidebar for
more information.

SETTING UP A LAB FOR FORMAL INDIVIDUAL
PLAYTESTING

You can easily spend tens of thousands of dollars setting up a lab for formal
individual testing—and many game studios have—but you can also mock up a
pretty decent one for not a lot of money.

For any computer platform, you should be able to capture all the data streams
listed in the chapter with a powerful gaming laptop and just one additional
camera: Modern graphics cards can record the screen as the game is played, the
laptop's webcam can record the player's face, and the one separate camera should
be set up to show the player's hands. Recording audio on all streams can help you
to synchronize them later. The game data log should also be time stamped to allow
for synchronization.

Synchronizing Data

Many software packages out there enable you to synch several video streams, but
often the oldest methods are the easiest, and in this case, you can use a digital
version of the slate from the early days of sound in film, when the image and
sound were recorded by separate machines. In a film, the slate is the little

188

clapboard that is shown at the beginning of a take. A member of the crew holds the
slate, which shows the name of the film, the scene number, and the take number.
She reads these three things out loud and then claps the slate together. This later
enables the editor to match the visual film frame where the clapper closed with the
moment in the audio tape that the sound was made, synching the separate video
and audio tracks.

You can do the same thing by making a digital slate part of your game. At the
beginning of a playtest session, the game screen can show a digital slate
containing a unique ID number for the session. An investigator can read the ID
number out loud and then press a button on the controller. Simultaneously, the
software can show a digital clapper closing, make a clapper sound, and log game
data with the time stamp according to the internal clock on your playtest machine.
You can use all of these to synch the various video streams later (with the clapper
sound used to synch streams that cannot see the screen), and you can even synch
the game data log. Most even half-decent video editing programs allow you to put
each of these videos into one quarter of the screen and fill the fourth quarter with
the date, time, and unique ID of the playtest session. Then you can see all of this
data synchronized in a single video.

Privacy Concerns

Many people are understandably concerned about their personal privacy. You must
be upfront with your playtesters and let them know that they will be recorded.
However, you should also promise them that the video will only be used for
internal purposes and will never be shared with anyone outside of the company.

Running a Formal Individual Playtest
Investigators should seek to make the individual playtest as similar as possible to the
experience a player who had bought the game would have at home. The player should be
comfortable and at ease. You might want to provide snacks or drinks, and if the game is
designed for tablet or console, you might want to give the player a couch or other
comfortable seat to sit on. (For computer games, a desk and office chair are often more
appropriate.)

Start the playtest by telling the playtester how much you appreciate the time she has set
aside to test your game and how useful getting her feedback will be for you. You should
also request that she please speak out loud while playing. Few playtesters will actually do
so, but asking can't hurt.

189

After the playtester finishes the section of the game that you want her to play, an
investigator should sit with her and discuss her experience with the game. The questions the
investigator asks should be similar to those that are asked at the end of formal group testing,
but the one-on-one format allows the investigator to frame meaningful follow-up questions
and get better information. Also record the post-playtest question-and-answer sessions,
though audio recording is more important than video for the post-play interview.

As with all formal playtesting, it is best if the investigator is not part of the game
development team. This helps the investigator's questions and perceptions to not be biased
by personal investment in the game. However, after you have found a good investigator,
working with the same investigator throughout the development process is very useful so
that she can provide you information about the progression of playtesters' reactions to the
game.

Online Playtesting
As mentioned previously, the largest circle of playtesters is composed of online playtest
communities. Your game must be in the beta phase before you attempt this, so these are
colloquially known as beta tests, and they come in a few forms:

 Closed: An invite-only test with a limited number of people. This is where your online
tests should start. Initially, you should have only a few trusted people serve as online
playtesters. This gives you a chance to find any bugs with your server architecture or any
aspects of your game that are unclear before a larger audience sees it.
For my graduate school project, Skyrates,2 our first closed online beta started eight
weeks into the project and was composed of the four members of the dev team and only
12 other people, all of whom had offices in the same building as the development team.
After two weeks of fixing both game and server issues and adding a few more features,
we expanded the playtest group to 25 people, all of whom were still in the same
building. Two weeks later, we expanded to 50. Up until this point, a member of the dev
team had individually sat down with each player and taught her how to play the game.
Over the next two weeks, we developed an online game tutorial document and entered
the limited beta phase.
 Limited: A limited beta is generally open to anyone who signs up, though a few specific
limitations are often in place. The most common limitation is the number of players.
When Skyrates first entered the limited beta phase, we capped the number of players at
125 and told our players that they could invite one friend or family member to join the
game. This was a much larger number of concurrent players than we had managed in
prior rounds, and we wanted to make sure that the server could handle it. After that, we
limited the next round to 250 before moving on to our first open beta.

190

 Open: Open betas allow anyone online to play. This can be fantastic because you can
watch your game gain popularity halfway around the globe, but it can also be terrifying
because a spike in players can threaten to overload your server. Generally, you want to
make sure that your game is near completion before you do an online, open beta.
Skyrates entered open beta at the end of the first semester of development. We didn't
expect to work on the game for a second semester, so we left our game server running
over the summer. To our surprise, even though Skyrates was initially developed as a
two-week game experience, several people played the game throughout the summer, and
our total numbers for the summer were somewhere between 500 and 1000 players.
However, this all happened in 2006 before Facebook became a game platform and
before the ubiquity of gaming on smartphones and tablets. Although 99% of all games on
these platforms don't gain much popularity at all, be aware that a game released on any
of them has the potential to go from only a few players to millions in just a few days. Be
wary of open betas on social platforms, but know that you will need to open up the game
eventually.

AUTOMATED DATA LOGGING
You should include automated data logging (ADL) in your game as early as
possible. ADL occurs when your game automatically records information about
player performance and events any time someone plays your game. This is often
recorded to a server online, but can just as easily be stored as local files and then
output by your game later.

At Electronic Arts in 2007, I designed and produced the game Crazy Cakes for
Pogo.com. Crazy Cakes was the first Pogo game to ever use ADL, but afterward it
became a standard part of production. The ADL for Crazy Cakes was really pretty
simple. For each level of the game that was played, we recorded several pieces of
data:

 Timestamp: The date and time that the round started.
 Player username: This allowed us to talk to players with very high scores and
ask them what strategies they employed or contact them if something unusual
happened during gameplay.
 Difficulty level and round number: We had a total of five difficulty levels, each
of which contained four progressively more challenging rounds.
 Score.
 Number and type of power-up items used during the round.
 Number of tokens earned.

191

 Number of patrons served.
 Number of desserts served to patrons: Some patrons requested multiple
desserts, which this helped us track.

At the time, Pogo.com had hundreds of beta testers, so three days after releasing
Crazy Cakes, we had recorded data from more than 25,000 playtest sessions! I
culled this data to a more manageable 4,000 randomly selected rows and brought
it into a spreadsheet application that I used to balance the game based on real data
rather than conjecture. When I thought that the game was well-balanced relative to
the data, I selected another 4,000 random rows and confirmed the balance with
them.

Other Important Types of Testing
In addition to playtesting, you can do several other important types of testing on a game.

Focus Testing
Focus testing involves gathering a group of people in your game's core demographic (a
focus group) and getting their reaction to the look, premise, music, or other aesthetic and
narrative elements of your game. Studios sometimes use focus testing to determine whether
developing a certain game is a good business decision.

Interest Polling
You can now use social networks like Facebook or crowdfunding sites like Kickstarter to
poll the level of interest that your game could generate in the online public. On these
websites, you can post a pitch video for a game and receive feedback, either in the form of
likes on a social media site or pledges on a crowdfunding site. If you are an independent
developer with limited resources, interest polling might be a way to secure some funding
for your game, but of course, the results are incredibly varied.

Usability Testing
Many of the techniques now used in formal individual testing grew out of the field of
usability testing. At its core, usability testing is about understanding how well testers can
understand and use the interface for a piece of software. Because understanding is so
important to usability, data gathering of the screen, interaction, and face of the tester are
common practices. In addition to the playtesting of your game, engaging in some individual
usability testing that investigates how easily the playtester can interact with and gain
critical information from your game is also important. This can include testing of various

192

layouts for on-screen information, several different control configurations, etc.

Quality Assurance (QA) Testing
Quality assurance testing focuses specifically on finding bugs in your game and ways to
reliably reproduce them. An entire industry is devoted to this kind of testing. QA testing is
largely outside the scope of this book, but the core elements are as follows:

1. Find a bug in the game (a place where it breaks or doesn't react properly).
2. Discover and write down the steps required to reliably reproduce the bug.
3. Prioritize the bug. Does it crash the game? How likely is it to occur for a normal

player? How noticeable is it?
4. If the bug is high enough priority, tell the engineering team so that they can fix it.

QA is most often done simultaneously by both the development team and a group of game
testers hired for the final phase of a project. Setting up ways for players to submit bugs that
they find is also possible, although most players don't have the training to generate good
bug reports that include clear steps for reproducing the bug. Many free bug tracking tools
are available that can deploy on your project website, including Bugzilla, Mantis Bug
Tracker, and Trac.

Automated Testing
Automated testing (AT) occurs when a piece of software attempts to find bugs in your game
or game server without requiring human input. For a game, AT could simulate rapid user
input (like hundreds of clicks per second all over the screen). For a game server, AT could
inundate the server with thousands of requests per second to determine the level of server
load that could cause the server to fail. Although AT is complex to implement, it can
effectively test your game in ways that are very difficult for human QA testers to
accomplish. As with other forms of testing, several companies provide automated testing
services.

Summary
The intent of this chapter was to give you a broad understanding of various forms of testing
for your games. As a new game designer, you should find the ones that seem most useful to
you and try to implement them. I have had success with several different forms of testing,
and I believe that all the forms covered in this chapter can provide you with important
information that can improve your game.

The next chapter covers some of the math that lies beneath the surface of the fun in games.
You'll also learn about how to use a spreadsheet application to aid you in game balancing.

193

1. These are two great questions to A/B test on your playtesters (i.e., give the first
question to some playtesters and the second question to others). When asked how much
they would pay, people usually pick a lower price. When asked how much they would
charge, people choose a higher one. A fair price is usually in between.

2. Skyrates (Airship Studios, 2006) is a game that was introduced in Chapter 8, "Design
Goals." It made extensive use of the concept of sporadic play, where players interacted
with the game for only a few minutes at a time throughout their day. Though this is now
common behavior for Facebook games, at the time we were developing it, this was an
unusual concept, and it required many rounds of playtesting to refine it.

194

CHAPTER 11

MATH AND GAME BALANCE

This chapter explores various systems of probability and randomness and how
they relate to paper game technologies. You also learn a little about the online
Google Sheets spreadsheet application that can help you explore these
possibilities.

Following the mathematical explorations (which I promise are as clear and easy
to understand as possible), I cover how to use these systems in both paper and
digital games to balance and improve gameplay.

The Meaning of Game Balance
Now that you've made your initial game prototype and experimented with it a few times
through playtests, you will probably need to balance it as part of your iteration process.
Balance is a term that you will often hear when working on games, but it means different
things depending on the context.

In a multiplayer game, balance most often means fairness: each player should have an equal
chance of winning the game. This is most easily accomplished in symmetric games where
each player has the same starting point and abilities. Balancing an asymmetric game is
considerably more difficult because player abilities or start positions that might seem
balanced could, in practice, demonstrate a bias toward one set of player abilities over the
others. This is one of the many reasons why playtesting is critically important.

In a single-player game, balance usually means that the game is at an appropriate level of
difficulty for the player and the difficulty changes gradually. If a game has a large jump in
difficulty at any point, that point becomes a place where the game tends to lose players.
This relates to the discussion of flow as a player-centric design goal in Chapter 8, "Design
Goals."

In this chapter, you learn about several disparate aspects of math that are all part of game
design and balance. This includes understanding probability, an exploration of different
randomizers for paper games, and the concepts of weighted distribution, permutations, and
positive and negative feedback. Throughout this exploration, you use Google Sheets, a free

195

online spreadsheet program, to better explore and understand the concepts presented.

The Importance of Spreadsheets
For some of the things that you'll be doing in this chapter, a spreadsheet program like Sheets
isn't strictly necessary—you could get the same results with a piece of scratch paper and a
calculator—however, I feel that introducing spreadsheets as an aspect of game balance is
important for a few reasons:

 A spreadsheet can help you quickly grasp gestalt information from numerical data. In
Chapter 9, I presented you with two weapons—a shotgun and a machine gun—that each
had different stats. At the end of this chapter, I will take you through the process that I
went through to balance those weapons to each other as well as three others, contrasting
the weapon stats that I initially created based on gut feeling with those that I refined
through use of a spreadsheet.
 Charts and spreadsheet data can be used to convince non-designers of the validity of a
game design decision that you have made. To develop a game, you often work with many
different people, some of whom prefer to see numbers behind decisions rather than
instinct. That doesn't mean that you should always make decisions with numbers; I just
want you to be able to do so if necessary.
 Many professional game designers work with spreadsheets on a daily basis, but I have
seen very few game design programs that teach students anything about how to use them.
In addition, the classes at universities that do cover spreadsheet use tend to be more
interested in business or accounting than game balance, and therefore focus on different
spreadsheet capabilities than those I have found useful in my work.

As with all aspects of game development, the process of building a spreadsheet is an
iterative and somewhat messy process. Rather than show you perfect examples of making
spreadsheets from start to finish with every little thing planned ahead of time, the tutorials
in this chapter are designed to demonstrate not only the steps to make a spreadsheet but also
a realistic iterative process of both building and planning the spreadsheet.

The Choice of Google Sheets for This Book
For this book, I have chosen to use Google Sheets because it is free, cross-platform, and
easily available. Most other spreadsheet programs have many of the same capabilities as
Sheets (e.g., Microsoft Excel, Open Office Calc, and LibreOffice Calc Spreadsheet), but
each program is subtly different from the others, so attempting to follow the directions in
this chapter in an application other than Google Sheets may lead to frustration.

See the sidebar "Not All Spreadsheet Programs Are Created Equal" for more information
on the various programs.

196

NOT ALL SPREADSHEET PROGRAMS ARE CREATED
EQUAL

Spreadsheet programs are most commonly used to manage and analyze large
amounts of numerical data. Some popular spreadsheet programs in use today are
Microsoft Excel, Apache OpenOffice Calc, LibreOffice Calc, Google Sheets, and
Apple Numbers.

 Google Sheets (http://sheets.google.com) is part of the free, online suite of
Google Drive tools. Because it is written in HTML5, it is compatible with
most modern web browsers, though you should have a good Internet connection
to use it effectively. Google Sheets has improved dramatically since the first
edition of this book and is now my spreadsheet of choice. One other advantage
that it offers is the ability to work synchronously with several team members
online. Free app versions exist for iOS and Android that can be used offline.
 Microsoft Excel (http://office.microsoft.com) was once the most commonly
used spreadsheet program, though it was also the most expensive. Some
differences also exist between the PC and macOS platforms because they are
on different release schedules. Excel uses the same syntax for formulae as
Google Sheets and is still considered the industry standard for most businesses,
though in practice, I have found it slower and less elegant than Google Sheets.
 Apache OpenOffice Calc (http://openoffice.org) is a free, open source
program intended to offer the same functionality as Excel at no cost to the user.
It is compatible with PC, macOS, and Linux platforms. Excel and OpenOffice
spreadsheets differ from each other in some subtle ways, including the user
interface, but they largely share the same functionality. One major difference is
that OpenOffice uses semicolons (;) to separate the arguments of a formula,
whereas Excel and Google Sheets use commas (,). OpenOffice Calc was the
spreadsheet program that I used in the first edition of the book, but Google
Sheets has now improved enough to where I no longer use Calc.
 Apple Numbers (http://www.apple.com/numbers/) is included with new Mac
computers, but it is also downloadable for about $20. Numbers works only on
macOS computers and includes some nice-looking features not available in the
other programs, though I find some of them get in the way. The core
functionality is very comparable to the rest, but I believe that better options are
available.
 LibreOffice Calc (http://libreoffice.org) is a free, open source program
intended to offer the same functionality as Excel at no cost to the user.
LibreOffice was originally spun off of the OpenOffice source code, so they

197

http://sheets.google.com
http://office.microsoft.com
http://openoffice.org
http://www.apple.com/numbers/
http://libreoffice.org

share many similarities. One small advantage that LibreOffice has over
OpenOffice if you come from an Excel background is that commas are used to
separate parameters in LibreOffice formulae (like Excel) instead of the
semicolons used in OpenOffice.

Any of these programs can open and export Microsoft Excel files, though each
also has its own native format. Even if you already own or are familiar with one
of the others, I would like for you to give Google Sheets a chance in this chapter.

Examining Dice Probability with Sheets
A large portion of game math comes down to probability, so understanding a little about
how probability and chance work is critical. You'll start by using Google Sheets to help you
understand the probability distribution of rolling various numbers using 2d6 (two six-sided
dice).

On a single roll of 1d6 (a single six-sided die), you have an even chance of getting a 1, 2, 3,
4, 5, or 6. That's pretty obvious. However, things get much more interesting when you
consider adding the results of two dice together. If you roll 2d6, then there are 36 different
possibilities for the outcome, all of which are shown here:

Die A:
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Die B:
1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6

Writing all of these by hand is certainly possible, but I would like you to learn how to use
Sheets to do it as an introduction to using a spreadsheet to aid in game balance. You can
look ahead to Figure 11.5 to see what you'll be making.

Getting Started in Google Sheets
You need to be online to use Google Sheets. This is a bit of a negative for it, but it is
quickly becoming the standard spreadsheet program that most designers I know use, so you
should be familiar with it. To start your exploration into game math, please do the
following:

1. In a web browser, go to: http://sheets.google.com.
This redirects you to the main Sheets page, where you can get started. I strongly
recommend either Google Chrome or Mozilla Firefox as your browser for this work.
Chrome has the advantage of allowing some offline editing of Google Sheets
spreadsheets, though it is limited and sometimes confusing. Even when using Chrome,

198

http://sheets.google.com

being online is much better.
2. Under the Start a new spreadsheet heading, click the Blank button as shown in Figure

11.1. This creates an Untitled spreadsheet like the one shown in Figure 11.2.

Figure 11.1 Creating a new spreadsheet at http://sheets.google.com

Figure 11.2 A new Google Sheets spreadsheet with important parts of the interface labeled

Getting Started with Sheets
The cells in a spreadsheet are each named with a column letter and a row number. The top-
left cell in the spreadsheet is A1. In Figure 11.2, cell A1 is highlighted with a blue border
and a small blue box in its bottom-right corner, showing that it is the Active Cell. Follow
these steps to get started using Sheets:

1. Click cell A1 to select it and ensure that it is the Active Cell.
2. Type the number 1 on your keyboard and press Return. A1 now holds the value 1.
3. Click cell B1, type =A1+1, and press Return. This creates a formula in B2 that will

constantly calculate its value based on A1. All formulas start with an =. You'll see that
the value of B1 is now 2 (the number you get when you add 1 to the value in A1). If you
change the value in A1, B1 will automatically update.

4. Click B1 and copy the cell (choose Edit > Copy or press Command-C on macOS or

199

http://sheets.google.com

Ctrl+C on PC).
5. Shift-click cell K1 (by holding Shift on the keyboard and clicking cell K1). This

highlights the cells B1:K1 (i.e., all cells from B1 to K1; the colon is used to define a
range between the two listed cells). You might need to use the scroll bar at the bottom of
the Sheets window to scroll to the right and bring K1 into view.

6. Paste the formula from B1 into the highlighted cells (choose Edit > Paste or press
Command-V on macOS or Ctrl+V on PC). This pastes the formula that you copied from
B1 into the cells B1:K1 (i.e., the formula =A1+1). Because the cell reference A1 in the
formula is a relative reference, it will update based on the position of the new cell into
which it has been pasted. In other words, the formula in K1 will be =J1+1 because J1
is one cell to the left of K1 just as A1 was one to the left of B1.

For more information on relative and absolute references, please read the Relative and
Absolute References sidebar.

RELATIVE AND ABSOLUTE REFERENCES
As part of the formula =A1+1 in cell B1, the A1 is storing a relative reference,
meaning that the formula stores the location of the referenced cell relative to cell
B1 rather than an absolute reference to cell A1. In other words, the A1 in this
formula refers to the cell one to the left of the cell the formula is in (B1) and will
change if the formula is copied to another cell. This is critical to making
spreadsheets easy to use, as you saw in step 6 of the "Getting Started with Sheets"
heading.

In Sheets, it is also possible to create absolute reference to a cell; that is, a
reference to a cell that will not change if the formula is moved or copied. To make
a cell reference absolute, add a $ (dollar sign) before both the column and row.
For example, to make the A1 reference absolute, convert it to A1. You can also
make just the column or just the row absolute by adding the $ to only the column
letter or row number.

In Figure 11.3, you can see an example of partial absolute references. Here, I've
written a function to subtract various numbers of days from people's birthdays so
that I know when to start looking for presents for them. You can see that the
formula in B5 is =B$3-$A5, and this same formula was copied and pasted
across B5:O7. The partial absolute reference B$3 indicates that the column
should change, but not the row, and the partial absolute reference $A5 indicates
that the row should change, but not the column.

200

Figure 11.3 An example of partially absolute references

In Figure 11.3, the formula changed as I copied it across the other cells as
follows:

B5: =B$3-$A5 O5: =O$3-$A5
 H6: =H$3-$A6
B7: =B$3-$A7 O7: =O$3-$A7

Naming the Document
To name the document, do the following:

1. Click the words Untitled spreadsheet in the Document Name area shown in Figure
11.2.

2. Change the name of this spreadsheet to 2d6 Dice Probability and press Return.

Creating a Row of Numbers from 1 to 36
The preceding instructions should leave you with the numbers 1 through 11 in the cells
A1:K1. Next, you will extend the numbers to count all the way from 1 to 36 (for the 36
possible die rolls).

Adding More Columns
First, you must make enough columns to hold all the cells. Right now, all the columns are
quite wide, and if you scroll to the right, you can see that the columns stop at Z. First, you
will narrow the columns and then add sufficient columns to hold 36 different numbers.

1. Click directly on the column A header (i.e., the A at the top of column A).
2. Scroll to the right (using the scroll bar at the bottom of the Sheets window) and Shift-

click the column Z header. This selects all columns A:Z.
3. When you hover your mouse cursor over the Z column header, a box with a downward-

pointing arrow appears. Click that downward arrow box, and select Insert 26 Right
from the pop-up menu as shown in the left side of Figure 11.4A. This creates 26

201

additional columns lettered AA:AZ.

Figure 11.4 Adding 26 columns to the right of column Z

Setting Column Widths
You want to be able to see 36 columns (A:AJ) on screen at once. To make the columns
narrower do the following:

1. Click the column A header.
2. Scroll to the right and Shift-click the column AJ header. This selects all 36 columns

A:AJ.
3. Hover the mouse over the right edge of the column AJ header; and you will see the edge

thicken and turn blue (as shown in Figure 11.4B).
4. Click and hold the mouse button to grab the thick blue border like a handle and make

column AJ about 1/3 its original width (as shown in Figure 11.4C). This resizes all
columns A:AJ. If these columns are still too wide to fit on your screen, feel free to make
them narrower.

Filling Row 1 with the Numbers 1 to 36
Fill row 1 by doing the following:

1. Click B1 to select it. Another way that you can copy the contents of a single cell over a
large range is to use the blue square in the lower-right corner of a selected cell (which
you can see at the lower-right corner of cell A1 in Figure 11.2).

2. Click and drag the blue square from the corner of B1 to the right until you have selected

202

cells B1:AJ1. When you release the mouse button, cells A1:AJ1 will be filled with the
series of numbers from 1 to 36.

3. If your columns are too narrow to show the numbers, select columns A:AJ again and
resize them to a comfortable width. Instead of dragging the edge between columns, you
can also double-click the thickened edge between any two columns to set all columns to
their optimal width; however, if you do so here, the columns with a single digit will be
narrower than those with two digits.

Making the Row for Die A
Now, you have a series of the numbers 1 to 36, but what you really want is two rows like
those for Die A and Die B that were listed earlier in this chapter. You can achieve this with
some simple formulae:

1. Click the Function button (labeled in Figure 11.2) and choose More Functions… .
2. In the Filter with a few keywords… text field, replace the text with MOD, which will

filter the long list of functions down to less than a dozen. Look for the function named
MOD, which is listed under the Math type.

3. On the right side of the row for MOD, click the Learn more link. A new browser tab
will open showing a description of MOD. According to it, the MOD function divides
one number by another and returns the remainder. For example, the two formulae
=MOD(1,6) and =MOD(7,6) would both return a 1 because 1/6 and 7/6 both have a
remainder of 1.

4. Return to the spreadsheet by clicking the 2d6 Dice Probability tab at the top of your
browser window.

5. Click cell A2 to select it.
6. Type =MOD(A1,6) and press Return. As you type, text will appear in both cell A2

and the Formula Bar (labeled in Figure 11.2). After you're finished, 1 is shown in the
cell A2.

7. Click cell A2 and Shift-click cell AJ2 (to select cells A2:AJ2).
8. Press Command-R on your keyboard (Ctrl+R on PC). This fills cells to the right,

copying the contents of the leftmost cell (A2) over everything to the right (B2:AJ2).

Now you can see that the MOD function is working properly for all 36 cells; however, you
wanted the numbers 1 through 6, not 0 through 5, so you need to iterate a bit.

Iterating on the Row for Die A
You need to fix two issues: First, the lowest number should be in columns A, F, L, and so
on; and second, the numbers should range from 1 to 6, not 0 to 5. You can fix both of these

203

with simple adjustments:

1. Select cell A1, change its value from 1 to 0, and press Return (Enter on PC). This
change cascades through the formulae in B1:AJ1 and gives you a series of numbers on
row 1 from 0 to 35. Now, the formula in A2 returns 0 (the remainder when 0 is divided
by 6), and the numbers in A2:AJ2 are six series of 0 1 2 3 4 5, which fixes the first
issue.

2. To fix the second issue, select A2 and change the formula in A2 to =MOD(A1,6)+1.
This simply adds 1 to the result of the previous formula, which increases the formula
result in A2 from 0 to 1. This might seem like you've gone in a circle, but after you
complete step 3, you'll see the reason for doing so.

3. Select A2, hold Shift-Command (Shift+Ctrl on PC) and press the right arrow on your
keyboard. This highlights all the filled cells to the right of A2, which should be A2:AJ2.
Press Command-R on macOS (Ctrl+R on PC) to fill right again.

Now, the row for Die A is complete and you have six series of the numbers 1 2 3 4 5 6. The
mod values still range from 0 to 5, but now they are in the correct order, and adding +1 to
them has generated the numbers that you wanted for Die A.

Making the Row for Die B
The row for Die B includes six repetitions of each number on the die. To accomplish this,
you will use the division and floor functions in Sheets. Division works as you would expect
it to (for example, =3/2 returns the result 1.5); however, floor might be a function that you
have not encountered before.

1. Select cell A3.
2. Type =FLOOR into A3, and as you do so a pop-up appears below cell A3 containing

the text "FLOOR Rounds number down to nearest multiple of a factor." (The "factor" is
1 by default.)
FLOOR is used to round decimal numbers to integers, but FLOOR always rounds down.
For example, =FLOOR(5.1) returns 5 and =FLOOR(5.999) also returns 5.

3. Enter =FLOOR(A1/6) into cell A3. The pop-up result field updates to show a result
of 0.

4. As was needed with the Die A row, you must add 1 to the result of the formula. Change
the formula in A3 to =FLOOR(A1/6)+1; the result is now 1.

5. Copy the contents of A3. Highlight cells A3:AJ3, and paste (Command-V on macOS,
Ctrl+V on PC, or choose Edit > Paste on either). This copies the formula from A3 and
pastes it into A3:AJ3.

204

Your spreadsheet should now look like top image in Figure 11.5. However, it would be
much easier to understand if it were labeled as is shown in the bottom image of Figure 11.5.

Figure 11.5 Adding clarity with labels

Adding Clarity with Labels
To add the labels shown in the second image of Figure 11.5, you need to insert a new
column to the left of column A:

1. Right-click the column A header and choose Insert 1 left. This inserts one new column
to the left of the current column A. The new column becomes A, and the old column A
now becomes column B. If you're on macOS and don't have a right-click button, you can
Ctrl-click. See the section Right-Click on macOS in Appendix B, "Useful Concepts,"
for a more permanent way to enable right-click on macOS.

2. Click on the new, empty cell A2 to select it and enter the text Die A.
3. To make the column wide enough to see the entire label, either double-click on the edge

to the right of the column A header or click and drag the column A header edge to the
right.

4. Enter the text Die B into A3.
5. Enter the text Sum into A4.
6. To make all the text in column A bold, click the column A header (to select all of

column A) and then press Command-B (Ctrl+B on PC) or click the B formatting button
in the Text Formats area shown in Figure 11.2.

7. To make the background of column A slightly gray, make sure that all of column A is
still highlighted, and click the paint bucket above the Formula Bar (on the left side of
Cell Formats in Figure 11.2). From the paint bucket pop-up menu, choose one of the
lighter gray colors. This sets the background color of all highlighted cells.

8. To make the background of row 1 also gray, click the row 1 header (the 1 to the left of
row 1) to select the whole row, and then choose the same gray background from the
paint bucket pop-up menu.

Now your spreadsheet should look like the bottom half of Figure 11.5.

205

Tip
THERE'S NO NEED TO SAVE IN GOOGLE SHEETS! Throughout this
book—and especially in the tutorials at the end—I constantly remind you to save
your files. I've lost a ton of work in many programs due to crashes and other
computer errors. However, I've never lost work in Google Sheets because it
constantly saves the work I'm doing online to the cloud. The one caveat to this is:
if you're working offline in a Google Sheets window in the Chrome browser and
close the window before you go online again, your changes might not be saved,
although in experiments I've run, they have been auto-saved even in that case.

Summing the Results of the Two Dice
Another formula will enable you to sum the results of the two dice.

1. Click B4 and enter the formula =SUM(B2,B3), which sums the values in cells B2 and
B3 (the formula =B2+B3 would also work equally well). This puts the value 2 into B4.

2. Copy B4 and paste it into B4:AK4. Now, row 4 shows the results of all 36 possible
rolls of 2d6.

3. To make this visually stand out, click the row 4 header and make all of row 4 bold.

Counting the Sums of Die Rolls
Row 4 now shows all the results of the 36 possible rolls of 2d6. However, although the
data is there, interpreting it is still not as easy as it could be. This is where you can really
use the strength of a spreadsheet. To start the data interpretation, let's create formulae to
count the occurrences of each sum (that is, count how many different ways a 7 can be rolled
with 2d6). First, you create a vertical series of the possible sums, 2 to 12:

1. Enter 2 into A7.
2. Enter 3 into A8.
3. Select cells A7 and A8.
4. Drag the little blue box at the bottom-right of A8 down until you've selected cells

A7:A17, and release the mouse button.

Cells A7:A17 fill with the numbers from 2 to 12. Google Sheets recognizes that you're
starting a series of numbers with the 2 and 3 in adjacent cells, and when you drag that
series over other cells, it continues it.

Next, you create a formula to count how many times the 2 occurs in row 4:

206

5. Select cell B7 and type =COUNTIF (but don't press the Return or Enter key.
6. Use your mouse to click and drag from B4 to AK4. This draws a box around B4:AK4

and enters B4:AK4 into your in-progress formula.
7. Type , (a comma).
8. Click A7. This enters A7 into the formula. At this point, the entire formula should be
=COUNTIF(B4:AK4,A7.

9. Type) and press Return (or in Windows, Enter). Now, the formula in B7 will be
=COUNTIF(B4:AK4,A7).

The COUNTIF function counts the number of times within a series of cells that a certain
criterion is met. The first parameter of COUNTIF is the range of cells to search within
(B4:AK4 in this case), and the second parameter (the entry after the comma) is the entry to
search for (the value of A7, which is 2). In cell B7, the COUNTIF function looks at all the
cells B4:AK4 and counts the number of times that the number 2 occurs (which is once).

Counting All Possible Rolls
Next, you want to extend this from just counting the number of 2s to counting the number of
rolls of all numbers from 2 to 12 in the A:A17 vertical series:

1. Copy the formula from B7 and paste it into B7:B17.

You will notice that this doesn't work properly. The counts for all the numbers other than 2
are 0. Let's explore why this is happening.

2. Select cell B7 and then click once in the Formula Bar. This highlights all the cells that
are used in the calculation of the formula in cell B7.

3. Press the Esc (escape) key. This is a critical step because it returns you from the cell-
editing mode. If you were to click another cell without first pressing Esc, this would
enter the clicked cell's reference into the formula. See the following warning for more
information.

Warning
EXITING FORMULA EDITING When working in Sheets, you need to press
either Return, Tab, or Esc (Enter, Tab, or Esc on PC) to exit from editing a
formula. Use Return or Tab to accept the changes that you have made or Escape
to cancel them. If you don't properly exit from formula editing, any cell you click
will be added to the formula (which you don't want to do accidentally). If this
does happen to you, you can press Esc to exit editing without changing the actual

207

formula.

4. Select cell B8 and click once in the Formula Bar.

Now, you should see the problem with the formula in B8. Instead of counting the
occurrence of 3s in B4:AK4, it is looking for 3s in B5:AK5. This is a result of the
automatic updating of relative references that was covered earlier in this chapter. Because
B8 is one cell lower than B7, all the references in B8 were updated to be one cell lower as
well. This is correct for the second argument in the formula (i.e., B8 should be looking for
the number in A8 and not A7), but it you need to make the row reference in the first
argument absolute to force the function to look at row 4 regardless of where it is pasted.

5. Press Esc to exit from editing B8.
6. Select B7 and change the formula to =COUNTIF(B$4:AK$4,A7). The $ in the

formula creates an absolute reference to row 4 in the first parameter of the COUNTIF
function.

7. Copy the formula from B7 and paste it into B7:B17. You can see that the numbers
update correctly, and each formula in B7:B17 properly searches the cells B$4:AK$4.

Charting the Results
Now, the cells B7:B17 show you the data you wanted. Across the 36 possible rolls of 2d6,
there are six possible ways to roll a 7 but only one way to roll a 2 or a 12. This information
can be read in the numbers in the cells, but a chart can make this much easier to understand.
Follow these steps to create a chart for the die rolls. As you do so, refer to the several
images of the Chart editor shown in Figure 11.6 with circled letters like (A) for each step
of the process. The bottom section of Figure 11.6 shows the chart at each step of the
process.

208

Figure 11.6 A probability distribution chart for 2d6

1. Select cells A7:B17.
2. Click the chart button shown in Figure 11.2. (If you don't see the chart button on your

screen, your window might be too narrow; in this case, click the More button at the right
of the button bar, and the chart button will be in the pop-up menu that appears.) This
opens the Chart editor pane shown in Figure 11.6.

3. Click the Chart type dropdown menu (which currently displays "Scatter chart") (A)
and choose the first Column chart type (B).

4. Near the bottom of the Chart editor DATA pane, check the box next to the Use column A
as labels option (C). This converts column A from data shown in the chart to labels
shown at the bottom.

5. Click the CUSTOMIZE tab (D) and click the Chart & axis titles heading (E) to expand
that area of the pane. Set the Title text of the chart to 2d6 Dice Roll Probability (F).

6. Click the Horizontal axis heading (G) further down in the same pane. Within the
Horizontal axis section, check the Treat labels as text option (H). This ensures that a
number label is shown at the bottom of every column.

7. Click the close button of the Chart editor (I). Move and resize the chart if you want.

I know that this was a pretty exhausting way to get this data, but I wanted to introduce you
to spreadsheets because they can be an extremely important tool to use when balancing your
games.

209

The Math of Probability
At this point, you are probably thinking that there must be an easier way to learn about the
probability of rolling dice than just enumerating all the possibilities. Happily, an entire
branch of mathematics deals with probability, and this section of the chapter covers several
of the rules that it has taught us.

First, let's try to determine how many possible different combinations there can be if you
roll 2d6. Because there are two dice, and each has 6 possibilities, there are 6 x 6 = 36
different possible rolls of the two dice. For 3d6, there are 6 x 6 x 6 = 216, or 63 different
combinations. For 8d6, there are 68 = 1,679,616 possibilities! This means that you would
require a ridiculously large spreadsheet to calculate the distribution of results from 8d6 if
you used the enumeration method that was employed earlier in the chapter for 2d6.

In The Art of Game Design, Jesse Schell presents "Ten Rules of Probability Every Game
Designer Should Know,"1 which I have paraphrased here:

 Rule 1: Fractions are decimals are percents: Fractions, decimals, and percents are
interchangeable, and you'll often find yourself switching between them when dealing
with probability. For instance, the chance of rolling a 1 on 1d20 is 1/20 or 0.05 or 5%.
To convert from one to the other, follow these guidelines:

 Fraction to Decimal: Type the fraction into a calculator. (Typing 1 ÷ 20 = gives
you the result 0.05.) Note that decimals are not able to accurately represent many
numbers (e.g., 2/3 is accurate, whereas 0.666666667 is just an approximation).
 Percent to Decimal: Divide by 100 (e.g., 5% = 5 ÷ 100 = 0.05).
 Decimal to Percent: Multiply by 100 (e.g., 0.05 = (0.05 * 100)% = 5%).
 Anything to Fraction: This is pretty difficult, because there is often no easy way to
convert a decimal or percent to a fraction except for the few equivalencies that most
people know (e.g., 0.5 = 50% = 1/2, 0.25 = 1/4).

 Rule 2: Probabilities range from 0 to 1 (which is equivalent to 0% to 100% and 0/1
to 1/1): There can never be less than a 0% chance or higher than a 100% chance of
something happening.
 Rule 3: Probability is "sought outcomes" divided by "possible outcomes": If you
roll 1d6 and want to get a 6, that means that there is 1 sought outcome (the 6) and 6
possible outcomes (1, 2, 3, 4, 5, or 6). The probability of rolling a 6 is 1/6 (which is
roughly equal to 0.16666 or about 17%). A regular deck of 52 playing cards has 13
spades, so if you pick one random card, the chance of it being a spade is 13/52 (which is
equal to 1/4 or 0.25 or 25%).
 Rule 4: Enumeration can solve difficult mathematical problems: If you have a low
number of possible outcomes, enumerating all of them can work fine, as you saw in the

210

earlier 2d6 spreadsheet example. If you have a larger number (something like 10d6,
which has 60,466,176 possible rolls), you could write a computer program to enumerate
them. After you have some programming under your belt, you should check out the
program to do so that is in the Dice Probability section of Appendix B, "Useful
Concepts."
 Rule 5: When sought outcomes are mutually exclusive, add their probabilities:
Schell's example of this is figuring the chance of drawing either a face card OR an ace
from the deck. There are 12 face cards (3 per suit) and 4 aces in the deck. Aces and face
cards are mutually exclusive, meaning that there is no card that is both an ace and a face
card. The question for this is "What is the probability of drawing a face card OR an ace
from the deck?" The answer: 12/52 + 4/52 = 16/52 (0.3077 ≈ 31%).
What is the probability of rolling a 1, 2, OR 3 on 1d6? 1/6 + 1/6 + 1/6 = 3/6 (0.5 =
50%). Any time you use an OR to combine mutually exclusive sought outcomes, you can
add their probabilities.
 Rule 6: When sought outcomes are not mutually exclusive, multiply their
probabilities: If you want to know the probability of choosing a card that is both a face
card AND a spade, you can multiply the two probabilities together. Because
probabilities are less than or equal to 1, multiplying them usually makes it less likely
that the thing will happen. A deck has 13 spades (13/52) and 12 face cards (12/52).
Multiplied together, you get the following:

13/52 × 12/52 = (13 × 12) / (52 × 52)
=
156/2704

Both numerator and denominator
are divisible by 52.

= 3/52
(0.0577 ≈
6%)

You know this is correct because there are actually 3 spades in the deck that are also
face cards (which is 3 out of 52).
Another example would be the probability of rolling a 1 on 1d6 AND a 1 on another
1d6. This would be 1/6 × 1/6 = 1/36 (0.0278 ≈ 3%), and as you saw in the enumerated
example in Sheets, there is exactly a 1/36 chance of getting a 1 on both dice when you
roll 2d6.
Remember, if you use an AND to combine non-mutually exclusive sought outcomes, you
can multiply their probabilities.
Corollary: When sought outcomes are independent, multiply their probabilities: If
two actions are completely independent of each other (which is a subset of them not
being mutually exclusive), the probability of them both happening is the multiplication of
their individual probabilities.

211

The probability of getting a six on 1d6 (1/6) AND getting heads on a coin toss (1/2)
AND drawing an Ace from a deck of cards (4/52) is 1/156 (1/6 × 1/2 × 4/52 = 6/624 =
1/156).
 Rule 7: One minus "does" = "doesn't": The probability of something happening is 1
minus the probability of it not happening. For instance, the chance of rolling a 1 on 1d6
is 1/6, as you know. This means that the chance of not rolling a 1 on 1d6 is 1 – 1/6 = 5/6
(0.8333 ≈ 83%). This is useful because it is sometimes easier to figure out the chance of
something not happening than the chance of it happening.
For example, what if you wanted to calculate the odds of rolling a 6 on at least one die
when you roll 2d6? If you enumerate, you'll find that the answer is 11/36 (the sought
outcomes being 6_x, x_6, and 6_6 where the x could be any number other than six). You
can also count the number of columns with at least one 6 in them in the Sheets chart you
made. However, you can also use probability rules 5, 6, and 7 to figure this out.
The possibility of rolling a 6 on 1d6 is 1/6. The possibility of rolling a non-6 on 1d6 is
5/6, so the possibility of rolling 6 on one die AND a non-6 on the other (i.e., 6_x) is 1/6
× 5/6 = 5/36. (Remember from Rule 6 that AND means multiply.) Because this can be
accomplished by either rolling 6_x OR x_6, you add those two possibilities together:
5/36 + 5/36 = 10/36. (Rule 5: OR means add.)
The possibility of rolling a 6 on one die AND a 6 on the other (6_6) is 1/6 × 1/6 = 1/36.
Because all three cases (6_x, x_6, OR 6_6) are mutually exclusive, you can add all of
them together: 5/36 + 5/36 + 1/36 = 11/36 (0.3055 ≈ 31%).
This got complicated pretty quickly, but you can actually use Rule 7 to simplify it. If you
reverse the problem and look for the chance of not getting a 6 in two rolls, that can be
restated "What is the chance of getting a non-6 on the first die AND a non-6 on the
second die (i.e., x_x)?" These two sought possibilities are not mutually exclusive, so
you can multiply them! So, the chance of getting a non-6 on both rolls is just 5/6 × 5/6 =
25/36. Using Rule 7, 1 – 25/36 = 11/36, which is pretty awesome and a lot easier to
figure out!
Now, what if you were to roll 4d6 and sought at least one 6? This is now simply:

 1 – (5/6 × 5/6 × 5/6 × 5/6)

= 1 – (54/ 64)

= 1 – (625 / 1,296)

= (1,296 / 1,296) – (625 / 1,296) 1,296/1,296 is equal to 1.

= (1,296 – 625) / 1,296 Both are divisible by 1,296.

= 671 / 1,296 (0.5177 ≈ 52%)

212

There is about a 52% chance of rolling at least one 6 on 4d6.
 Rule 8: The sum of multiple dice is not a linear distribution: As you saw in the
enumerated Sheets example of 2d6, though each of the individual dice has a linear
distribution—that is, each number 1–6 has an equal chance of happening on 1d6—when
you sum multiple dice together, you get a weighted distribution of probability. It gets
even more complex with more than two dice, as shown in Figure 11.7.

Figure 11.7 Probability distribution for 2d6, 3d6, 4d6, 5d6, and 10d6

As you can see in the figure, the more dice you add, the more severe the bias is toward
the average sum of the dice. In fact, with 10d6, you have a 1/60,466,176 chance of
rolling all 6s, but a 4,395,456/60,466,176 (0.0727 ≈ 7%) chance of rolling exactly 35 or
a 41,539,796/60,466,176 (0.6869922781 ≈ 69%) chance of rolling a number from 30 to
40. There are some complex math papers about how to calculate these values with a
formula, but I instead chose to follow Rule 4 and wrote a program to do so (see
Appendix B).
As a game designer, it is not important to understand the exact numbers of these
probability distributions. The thing that it is very important to remember is this: The
more dice you have the player roll, the more likely they are to get a number near the
average.

213

 Rule 9: Theoretical versus practical probability: In addition to the theoretical
probabilities that we've been talking about, it is sometimes easier to approach
probability from a more practical perspective. There are both digital and analog ways to
do so.
Digitally, you could write a simple computer program to do millions of trials and
determine the outcome. This is often called the Monte Carlo method, and it is actually
used by some of the best artificial intelligences that have been devised to play chess and
go. Go is so complex that until recently, the best a computer could do was to calculate
the results of millions of random plays by both the computer and its human opponent and
determine the play that statistically led to the best outcome for it. This can also be used
to determine the answers to what would be very challenging theoretical problems.
Schell's example of this is a computer program that could rapidly simulate millions of
rolls of the dice in Monopoly and let the programmer know which spaces on the board
players were most likely to land on.
Another aspect of this rule is that not all dice are created equal. For instance, if you
wanted to publish a board game and were looking for a manufacturer for your dice, it
would be very worthwhile to get a couple of dice from each potential manufacturer and
roll each of them a couple hundred times, recording the result each time. This might take
an hour or more to accomplish, but it would tell you whether the dice from the
manufacturer were properly weighted or if they would instead roll a certain number
more often than the others.
 Rule 10: Phone a friend: Nearly all college students who major in computer science or
math must take a probability class or two as part of their studies. If you run into a
difficult probability problem that you can't figure out on your own, try asking one of
them. In fact, according to Schell, the study of probability began in 1654 when the
Chevalier de Méré couldn't figure out why he seemed to have a better than even chance
of rolling at least one 6 on four rolls of 1d6 but seemed to have a less than even chance
of rolling at least one 12 on 24 rolls of 2d6. The Chevalier asked his friend Blaise
Pascal for help. Pascal wrote to his father's friend Pierre de Fermat, and their
conversation became the basis for probability studies.2

In Appendix B, "Useful Concepts," I have included a Unity program that calculates the
distribution of rolls for any number of dice with any number of sides (as long as you have
enough time to wait for it to calculate).

Randomizer Technologies in Paper Games
Some of the most common randomizers used in paper games include dice, spinners, and
decks of cards.

214

Dice
This chapter has already covered a lot of information about dice. The important elements
are as follows:

 A single die generates randomness with a linear probability distribution.
 The more dice you add together, the more the result is biased toward the average (and
away from a linear distribution), and the more extreme the bell curve becomes.
 Standard die sizes include d4, d6, d8, d10, d12, and d20. Commonly available packs of
dice for gaming usually include 1d4, 2d6, 1d8, 2d10, 1d12, and 1d20.
 The 2d10 in a standard dice pack are sometimes called percentile dice because one
will be used for the 1s place (marked with the numbers from 0–9) and the other for the
10s place (marked with the multiples of 10 from 00–90), giving an even distribution of
the numbers from 00 to 99 (where a roll of 0 and 00 is usually counted as 100%).

Spinners
Multiple kinds of spinners are available, but all have a rotating element and a still element.
In most board games, the spinner is composed of a cardboard base that is divided into
sections with a plastic spinning arrow mounted above it (see Figure 11.8A). Larger
spinners (e.g., the wheel from the television show Wheel of Fortune) often have the
sections on the spinning wheel and the arrow on the base (Figure 11.8B). As long as
players spin the spinner with enough force, a spinner is effectively the same as a die from a
probability standpoint.

Figure 11.8 Various spinners. In all diagrams, the green elements are static, and the black
element rotates.

Spinners are often used in children's games for two major reasons:

 Young children lack the motor control to throw a die within a small area, so they will
often accidentally throw dice in a way that they roll off of the gaming table.
 Spinners are a lot more difficult for young children to swallow.

215

Though they are less common in games for adults, spinners provide interesting possibilities
that are not feasible with dice:

 Spinners can be made with any number of slots, whereas it is difficult—though not
impossible—to construct a die with 3, 7, 13, or 200 sides.3

 Spinners can be weighted very easily so that not all possibilities have the same chance
of happening. Figure 11.8C shows a hypothetical spinner to be used by a player when
attacking. On this spinner, the player would have the following chances on a spin:

 3/16 chance of Miss
 1/16 chance of Hit 4
 5/16 chance of Hit 1
 1/16 chance of Hit 5
 3/16 chance of Hit 2
 1/16 chance of Crit!
 2/16 chance of Hit 3

Decks of Cards
A standard deck of playing cards includes 13 cards of 4 different suits and sometimes two
jokers (see Figure 11.9). This includes the ranks 1 (also called the Ace) through 10, Jack,
Queen, and King in each of the four suits: Clubs, Diamonds, Hearts, and Spades.

Figure 11.9 A standard deck of playing cards with two jokers4

Playing cards are very popular because of both their compactness and the many different
ways in which they can be divided.

In a draw of a single card from a deck without Jokers, you have the following probabilities:

 Chance of drawing a particular single card: 1/52 (0.0192 ≈ 2%)

216

 Chance of drawing a specific suit: 13/52 = 1/4 (0.25 = 25%)
 Chance of drawing a face card (J, Q, or K): 12/52 = 3/13 (0.2308 ≈ 23%)

Custom Card Decks
A deck of cards is one of the easiest and most configurable randomizers that you can make
for a paper game. You can very easily add or remove copies of a specific card to change
the probability of that card appearing in a single draw from the deck. See the section on
weighted distributions later in this chapter for more information.

TIPS FOR MAKING CUSTOM CARD DECKS
One of the difficulties in making custom cards is getting material for them that you
can easily shuffle. 3x5 note cards don't work particularly well for this, but there
are a couple of better options:

 Use marker or stickers to modify an existing set of cards. Sharpies work well
for this and don't add thickness to the card like stickers do.
 Buy a deck of card sleeves and insert a slip of paper along with a regular card
into each, as described in Chapter 9, "Paper Prototyping."

The key thing you want to avoid when making a deck (or any element of a paper
prototype) is putting too much time into any one piece. After you've devoted time
to making a lot of nice cards (for instance) you might be less willing to remove
any of those cards from the prototype or to scrap them and start over.

Digital Deck Construction

I have recently started using digital deck construction tools like nanDECK in my
game prototyping (http://www.nand.it/nandeck/). nanDECK is Windows software
that builds a deck of cards from a simple markup language (somewhat like
HTML). My favorite nanDECK feature is its ability to pull card data from an
online Google Sheets file and turn it into a full deck of cards. There isn't room in
this book to describe how this works, but I recommend checking out nanDECK if
you're interested. In addition to the PDF reference file on the website, you can
also find several useful video tutorials by searching YouTube for "nanDECK."

When to Shuffle a Deck
Shuffling the entire deck of cards before every draw gives you an equal likelihood of
drawing any of the cards (just like when you roll a die or use a spinner). However, this isn't

217

http://www.nand.it/nandeck/

how most people use decks of cards. In general, people draw until the deck is completely
exhausted and then shuffle all the cards. This leads to very different behavior from a deck
than from an equivalent die. If you had a deck of six cards numbered 1–6, and you drew
every card before reshuffling, you would be guaranteed to see each of the numbers 1–6
once for every six times you drew from the deck. Rolling a die six times will not give you
this same consistency. An additional difference is that players could count cards and know
which have and have not been drawn thus far, giving them insight into the probability of a
certain card being drawn next. For example, if the cards 1, 3, 4, and 5 have been drawn
from the six-card deck, there is a 50% chance that the next card will be a 2 and a 50%
chance that it will be a 6.

This difference between decks and dice came up in the board game Settlers of Catan
where some players got so frustrated at the difference between the theoretical probability
of the 2d6 rolls in the game versus the actual numbers that came up in play that the
publisher of the game now sells a deck of 36 cards (marked with each of the possible
outcomes of 2d6) as an option to replace the dice in play, ensuring that the practical
probability experienced in the game is the same as the theoretical probability.

Weighted Distributions
A weighted distribution is one in which some options are more likely to come up than
others. Most of the randomizer examples that you've looked at so far involve equal
distributions of random possibilities, but it is common for designers to want to weight one
option more heavily than another. For example, in the board game Small World, the
designers wanted an attacker to get a random bonus on her final attack of each turn about
half of the time, and they wanted that bonus to range from +1 to +3. To do this, they created
a die with the six sides shown in Figure 11.10.

Figure 11.10 The attack bonus die from Small World with weighted bonus distribution

With this die, the chance of getting zero bonus is 3/6 = 1/2 (0.5 = 50%), and the chance of
getting a bonus of 2 is 1/6 (0.1666 ≈ 17%), so the chance of zero bonus is weighted much
more heavily than the other three choices.

What if instead, you still wanted the player to get a bonus only half of the time, but you
wanted for the bonus of 1 to be three times more likely than the 3, and the 2 to be twice as
likely as the 3? This would provide the weighted distribution shown in Figure 11.11.

218

Figure 11.11 Die with 1/2 chance of 0, 1/4 chance of 1, 1/6 chance of 2, and 1/12 chance
of 3

Luckily, this adds up to 12 total possible sides for a die (a common die size). However, if it
didn't add up to a common size, you could always create a spinner or a deck of cards with
the same probabilities (though the card deck would need to be shuffled each time before
drawing a card). Modeling weighted distributions with randomized outcomes is also
possible in Sheets. The process is very similar to how you will deal with random numbers
later in Unity and C#.

Weighted Probability in Sheets
Weighted probability is commonplace in digital games. For instance, if you wanted an
enemy who encounters the player to attack her 40% of the time, adopt a defensive posture
40% of the time, and run away 20% of the time, you could create an array of values
[Attack, Attack, Defend, Defend, Run]5 and have the enemy's artificial intelligence code
pull a random value from it when the player was first detected.

Take the following steps to make a Sheets worksheet that you can use to randomly select
from a series of values. Initially, it picks a random number between 1 and 12. When you
have completed the worksheet, you can replace choices in column A with any that you wish.

1. Add a new Worksheet to your existing Sheets document by clicking the plus symbol to
the left of the existing Sheet 1 worksheet tab at the bottom of the window (refer to
Figure 11.2, earlier this chapter).

219

Figure 11.12 Google Sheets table for weighted random number selection

2. In this new worksheet, fill in the text and numbers shown in columns A and B of Figure
11.12 but leave column C empty for now. To right-align the text in column B, select cells
B1:B4 and choose Format > Align > Right from the Sheets menu bar (inside the
browser window, as shown highlighted in a blue rectangle in Figure 11.2).

3. Select cell C1 and enter the formula =COUNTIF(A1:A100,"<>"). This counts the
number of cells in the range A1:A100 that are not empty (in a Sheets formula, <> means
"different from," and not following it with a specified value means "different from
nothing"). This results in the number of valid choices that are listed in column A (you
currently have 12).

4. In cell C2 enter the formula =RAND(), which generates a number from 0 (inclusive) to
1 (exclusive).6

5. Select cell C3 and enter the formula =FLOOR(C2*C1)+1. The number you're flooring
is the random number between 0 and ≈0.9999 multiplied by the number of possible
choices, which is 12 in this case. This means that you're flooring numbers between 0
and ≈11.9999 to give you the integers from 0 to 11. You then add 1 to the result to give
you the integers 1 to 12.

6. In cell C4, enter the formula =INDEX(A1:A100,C3). INDEX() takes a range of

220

values (e.g., A1:A100) and chooses from them based on an index (C3 in this case,
which can range from 1 to 12). Now, C4 will choose a random value from the list in
column A.

To get a different random value, copy cell C2 and paste it back into C2. This forces a
recalculation of the RAND function. You can also make any change to the spreadsheet to
cause it to recalculate the RAND (for instance, you could type 1 into E1 and press Return
to force a recalculation). Any time you change any cell in the spreadsheet, RAND will
recalculate.

You can put either numbers or text into the cells in column A as long as you don't skip any
rows. Try replacing the numbers in cells A1:A12 with the weighted values from Figure
11.11 (that is, [0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 3]). If you do so and try recalculating the
random value in C2 several times, you will see that zero comes up in cell C4 about half of
the time. You can also fill the values A1:A5 with [Attack, Attack, Defend, Defend, Run]
and see the weighted enemy AI choice that was used as an example at the beginning of this
section.

Permutations
There is a traditional game called Bulls and Cows (see Figure 11.13) that served as the
basis for the popular board game Master Mind (1970 by Mordecai Meirowitz). In this
game, each player writes down a secret four-digit code (where each of the digits is
different). Players take turns trying to guess their opponent's code, and the first person to
guess correctly wins. When a player guesses, her opponent responds with a number of bulls
and a number of cows. The guesser gets a bull for each number she guessed that is in the
correct position and a cow for each number that is part of the code but not in the right
position. In Figure 11.13 green represents a bull, and white represents a cow.

Figure 11.13 An example game of Bulls and Cows

From the perspective of the guesser, the secret code is effectively a series of random

221

choices. Mathematicians call series like these permutations. In Bulls and Cows, the secret
code is a permutation of the ten digits 0–9, where four are chosen with no repeating
elements. In the game Master Mind, there are eight possible colors, of which four are
chosen with no repetition. In both cases, the code is a permutation and not a combination
because the positions of the elements matter (9305 is not the same as 3905). A combination
is a selection of choices where the position doesn't matter. For example, 1234, 2341, 3421,
2431, and so on are all the same thing in a combination. A good example of a combination
is the combination of three flavors of ice cream you want in your sundae; it doesn't matter
what order they're added in, as long as they're all there.

Permutations with Repeating Elements
The math is a little easier for permutations that allow repetition, so we'll start there. If there
were four digits with repetition allowed, there would be 10,000 possible combinations (the
numbers 0000 through 9999). This is easy to see with numbers, but you need a more general
way of thinking about it (for cases where there are not exactly 10 choices per slot).
Because each digit is independent of the others and each has 10 possible choices,
according to probability Rule 6, the probability of getting any one number is 1/10 × 1/10 ×
1/10 × 1/10 = 1/10,000. This also tells you that there are 10,000 possible choices for the
code (if repetition is allowed).

The general calculation for permutations with repetition allowed is to multiply the number
of choices for each slot by each other. With four slots and ten choices each, this is 10 × 10
× 10 × 10 = 10,000. If you were to make the code from six-sided dice instead of digits, then
there would be six choices per slot, making 6 × 6 × 6 × 6 = 1296 possible choices.

Permutations with No Repeating Elements
But what about the actual case for Bulls and Cows where you're not allowed to repeat any
digits? It's actually simpler than you might imagine. After you've used a digit, it's no longer
available. So, for the first slot, you can pick any number from 0–9, but after a number (e.g.,
9) has been chosen for the first slot, only 9 choices remain for the second slot (0–8). This
continues for the rest of the slots, so the calculation of possible codes for Bulls and Cows
is 10 × 9 × 8 × 7 = 5040. Not allowing repeating digits eliminates almost half of the
possible choices.

Using Sheets to Balance Weapons
Another use of math and programs like Google Sheets in game design is the balance of
various weapons or abilities. In this section, you'll look at an example weapon balancing
process for a game similar to Valkyria Chronicles by Sega. In this example game, each
weapon has three important values:

222

 The number of shots fired at a time
 The damage done by each shot
 The chance that each shot will hit at a given distance

As you balance these weapons, you want them to feel roughly equal to each other in power,
though you also want each weapon to have a distinct personality. For each weapon, these
personalities are the following:

 Pistol: A basic weapon; pretty decent in most situations but doesn't excel in any
 Rifle: A good choice for mid and long range
 Shotgun: Deadly up close but its power falls off quickly; only one shot, so a miss really
matters
 Sniper Rifle: Terrible at close range but fantastic at long range
 Machine Gun: Fires many shots, so even if some miss, the others will usually hit; this
should feel like the most reliable gun, though not the most powerful

Figure 11.14 shows the values for the weapons as I initially imagined they might work. The
ToHit value is the minimum roll on 1d6 that would hit at that range. For example, in cell
K3, you can see that the ToHit for the pistol at a range of 7 is 4, so if the player is shooting
a target 7 spaces away, a roll of 4 or higher would be a hit. This is a 50% chance of hitting
on 1d6 (because it would hit on a roll of 4, 5, or 6).

Figure 11.14 Initial values for the weapons balance spreadsheet

Determining the Percent Chance for Each Bullet
In the cells under the heading Percent Chance, you want to calculate the chance that each
shot of a weapon will hit at a certain distance. To do so, follow these steps.

1. Create a new spreadsheet document in Sheets and enter all the data shown in Figure
11.14. To change the background color of a cell, you can use the Cell Color button
shown in Figure 11.2.

In cell E3, you can see that each shot from a pistol will hit at a distance of 1 if the player
rolls a 2 or better on 1d6. This means that it will miss on a 1 and hit on 2, 3, 4, 5, or 6. This
is a 5/6 chance (or ≈83%), and you need a formula to calculate this. Looking at probability

223

Rule 7, you know that there is a 1/6 chance of it missing (which is the same as the ToHit
number minus one).

2. Select cell P3 and enter the formula =(E3-1)/6. This causes P3 to display the
chance of the pistol missing at a range of one. Order of operations does work in Sheets,
so divide operations happen before minus operations, necessitating the parentheses
around E3-1.

3. Using Rule 7 again, you know that 1 – miss = hit, so change the formula in P3 to =1-
((E3-1)/6). After you've done this, P3 will hold the value 0.8333333.

4. To convert P3 from showing decimal numbers to showing a percentage, select P3 and
click the button labeled % in the Number Formats area shown in Figure 11.2. You will
also probably want to click the button just to the right of % a couple of times (this button
looks like a .0 with a left arrow). This removes decimal places from the cell view to
show 83% instead of the more accurate but messier %83.33. This only changes the view
—not the underlying data—so the cell still maintains accuracy for further calculations.

5. Copy the formula in P3 and paste it into all the cells in the range P3:Y7. You'll see that
everything works perfectly except for the blank ToHit cells, which now have a percent
chance of %117! You need to alter the formula to ignore blank cells.

6. Select P3 again and change the formula to =IF(E3="", "", 1-((E3-1)/6)).
The IF function in Sheets has three parts, which are divided by commas.
 E3="": Part 1 is a question: is E3 equal to ""? (i.e., is E3 equal to an empty cell?)
 "": Part 2 is what to put in the cell if the question in part 1 evaluates to true. That is,
if E3 is empty, make cell P3 empty as well.
 1-((E3-1)/6): Part 3 is what to put in the cell if the question in part 1 evaluates
to false. That is, if E3 is not empty, then use the same formula you had before.

7. Copy the new formula from P3 and paste it into P3:Y7. The empty cells in the ToHit
area now result in empty cells in the Percent Chance area. (E.g., L5:N5 are empty, so
W5:Y5 are empty as well.)

8. Next, you'll add some color to this chart. Select cells P3:Y7. From the Sheets menu bar
choose Format > Conditional formatting. A new Conditional format rules pane opens
on the right side of your window. Conditional formatting is formatting that adjusts based
on the contents of a cell.

9. Click Color scale near the top of the Conditional format rules pane.
10. Under the Preview heading in the Color scale section, you can see the word Default

over a gradient of green color swatches. Click Default and choose the bottom, middle
option: Green to yellow to red.

11. Click Done, and your spreadsheet will look like the Percent Chance section in Figure
11.15.

224

Figure 11.15 The Percent Chance and Average Damage sections of the weapons
spreadsheet. You will make the Average Damage section next. (Note that I've scrolled the
spreadsheet to the right so you can also see Average Damage.)

Calculating Average Damage
The next step in the balancing process is to determine how much average damage each gun
inflicts at a certain distance. Because some guns fire multiple shots, and each shot causes a
certain amount of damage, the average damage will be equal to the number of shots fired *
the amount of damage per shot * the chance that each shot will hit:

1. Highlight columns O:Z and copy them (press Command-C, or Ctrl+C on PC, or choose
Edit > Copy).

2. Select cell Z1 and paste (Command-V, Ctrl+V on PC, or choose Edit > Paste). This
expands your worksheet out to column AK and fills it with a duplicate of the columns
you copied.

3. Enter Average Damage into cell AA1.
4. Select cell AA3 and enter the formula =IF(P3="", "", $B3*$C3*P3). Just as in

the formula for P3, the IF function here ensures that only non-empty cells are
calculated. The formula includes absolute column references to columns $B and $C
because column B holds the number of shots, and C holds the damage per shot
regardless of the distance to the enemy. You don't want those references moving to other
columns (though you do want them able to move to other rows, so only the column
reference is absolute).

5. Select cell AA3 and click the rightmost button in the Number Formats area of the button
bar (the button looks like 123▾). Select Number from the pop-up menu.

6. Copy cell AA3 and paste it into AA3:AJ7. Now the numbers are accurate, but the
conditional formatting is still tied to that for the Percent Chance section, causing the
numbers above 1 to cause the percentages between 0 and 100% in the Percent Chance
section to all turn green.

7. Select cells AA3:AJ7. If the Conditional format rules pane is no longer showing, choose
Format > Conditional formatting from the Sheets menu bar to open it again.

8. With AA3:AJ7 selected, you should see a rule in the Conditional format rules pane that
reads Color scale with the cell references P3:Y7,AA3:AJ7 under it. Click this rule.

9. This expands the rule and allows you to edit it, allowing you to change the Apply to

225

range to just P3:Y7 and click Done. This causes the previous format to only apply to
the Percent Chance section.

10. Select AA3:AJ7 once more. In the Conditional format rules pane, click Add new rule.
11. Choose Color scale and Green to yellow to red as you did before. Then click Done.

This results in two separate conditional formatting rules, one for the Percent Chance
section and another for the Average Damage section. Keeping these rules separate causes
the colors to be determined for each separately, which is important because the ranges of
the numbers in each section are so different from each other. Now your Average Damage
section should look like the one shown in Figure 11.15.

Charting the Average Damage
The next important step is to chart the average damage. Although you can look carefully at
the numbers and interpret them, having Sheets do the job of charting information is much
easier and allows you to visually assess what is going on. Follow these steps to do so:

1. Select cells A2:A7.
2. Scroll over to where you can see the Average Damage section. With A2:A7 still

selected, hold Command (or Ctrl on PC), click on AA2, and drag to select AA2:AJ7. You
should now have A2:A7,AA2:AJ7 selected.

3. Click the Chart button (refer to Figure 11.2) to open the Chart Editor.
4. Click the Chart type pop-up menu (which currently shows "Column chart") (Figure

11.6.A) and click the leftmost chart type under the Line heading (it is the top-left image
showing blue and red lines with sharp angles).

5. Near the bottom of the DATA tab, check the box for Switch rows / columns.
6. Check the box for Use column A as headers. Also make sure that the box next to the

Use row 2 as labels option is checked.
7. Click the close box in the Chart editor to complete the chart.

You can see the results of the chart in Figure 11.16. As you can see, there are some
problems with the weapons. Some, like the sniper rifle and shotgun have personalities as
we had hoped (the shotgun is deadly at close range, and the sniper rifle is better at long
range), but there are a lot of other problems:

226

Figure 11.16 The weapon balance at the halfway point showing the chart of initial weapon
stats. (I did some tweaking to the CUSTOMIZE tab of the chart to make the text more
legible in the book figure.)

 The machine gun is ridiculously weak.
 The pistol might be too strong.
 The rifle is also overly strong compared to the other weapons.

In short, the weapons are not balanced well to each other.

Duplicating the Weapon Data
To rebalance the weapons, having the original and rebalanced information next to each
other is very helpful:

1. Start by moving the chart further down the worksheet. It should be somewhere below
row 16.

2. Double-click anywhere in the chart, which reopens the Chart editor. Select the
CUSTOMIZE tab at the top of the Chart editor (Figure 11.6.D). Click the Chart axis &
titles header (Figure 11.6.E) and set the Title text of the chart to Original (Figure
11.6.F).

3. You need to make a copy of the data and formulas that you've already worked out.
Select the cells A1:AK8 and copy them.

4. Click cell A9 and paste. This should create a full copy of all the data you just created in
cells A9:AK16.

5. Change the text in A10 to Rebalanced.
This set of rebalanced data will be where you make the changes and try out new
numbers.

6. Now, to make a chart for the new data that is identical to the one for the original
weapon stats, select A10:A15,AA10:AJ15 just as you selected A2:A7,AA2:AJ7 in steps
1 and 2 of "Charting the Average Damage." Follow the rest of the instructions in that

227

section to create a second chart showing the rebalanced values.
7. Position the new chart to the right of the original one so that you can see both charts and

the data above them.
8. Change the title of the new chart to Rebalanced.

Showing Overall Damage
One final stat that you might want to track is overall damage. This sums the average damage
that a weapon can do at all ranges to give you an idea of the overall power of the weapon.
To do this, you can take advantage of a trick I use frequently to make a simple bar chart
within the cells of the spreadsheet (i.e., not inside a chart). The results are shown in Figure
11.17.

Figure 11.17 The weapon balance chosen for Chapter 9

1. Right-click the AK column header and choose Insert 1 right.
2. Right-click the B column header and choose Copy. This will copy the entire B column.
3. Right-click the AL column header and choose Paste. This pastes everything from

column B into AL, including the background color and font style.
4. Right-click the AL column header and choose Insert 1 right.
5. Enter Overall Damage into cells AL1 and AL9.
6. Select cell AL3 and enter the formula =SUM(AA3:AJ3). This adds up the average

damage done by the pistol at all ranges (it should equal 45.33).
7. For the bar chart trick, you must convert this decimal value to an integer, so the SUM

228

needs to be rounded. Change the formula in AL3 to =ROUND(SUM(AA3:AJ3)). The
result will now be 45.00. To remove the extra zeroes, highlight cell AL3 and click the
button to remove decimal places as you did earlier (the third button in the Number
Formats group).

8. Select cell AM3 and enter the formula =REPT("|", AL3). The REPT function
repeats text a certain number of times. The text in this case is the pipe character (you
type a pipe by holding Shift and pressing the backslash (\) key, which is above the
Return/Enter key on most U.S. keyboards), and it is repeated 45 times because the value
in AL3 is 45. A little bar of pipe characters appears, extending to the right in cell AM3.
Double-click the right edge of the AM column heading to expand the AM column to
show this.

9. Select cells AL3:AM3 and copy them. Paste them into cells AL3:AM7 and AL11:AM15.
This gives you a text-based total damage bar chart for all weapons, both original and
balanced. Finally, adjust the width of column AM again to make sure you can see all the
repeated characters.

Rebalancing the Weapons
Now that you have two sets of data and two charts, you can try rebalancing the weapons.
How will you make the machine gun more powerful? Will you increase its number of shots,
its chance to hit, or its damage per shot? Some additional game rules to keep in mind as you
balance include:

 In this example game, units have only 6 health, so they will fall unconscious if 6 or more
damage is dealt to them.
 In Valkyria Chronicles, if an enemy is not downed by an attacking soldier, the enemy
automatically counterattacks. This makes dealing 6 damage in an attack much more
powerful than dealing 5 damage because it also protects the attacker from counterattack.
 Weapons with many shots (e.g., the machine gun) have a much higher chance of dealing
the average amount of damage in a single turn, whereas guns with a single shot will feel
much less reliable (e.g., the shotgun and sniper rifle). Figure 11.7 shows how the
probability distribution shifts toward the average when you start rolling dice for
multiple shots instead of a single one.
 Even with all this information, this chart does not show some aspects of weapon
balance. This includes things like the point made earlier about multishot weapons having
a much higher chance of dealing the average amount of damage as well as the benefit of
the sniper rifle to deal damage to enemies who are too far away to effectively
counterattack.

Try your hand at balancing the stats for these weapons. You should only change the values
in the range B11:N15. Leave the original stats alone, and don't touch the Percent Chance

229

and Average Damage sections; both they and the Rebalanced chart will update to reflect the
changes you make to the Shots, D/Shot, and ToHit cells. After you've played with this for a
while, continue reading.

One Example of Balanced Values
In Figure 11.17, you can see the weapon stats that I chose when I did this exercise for a
prototype that I designed.7 This is absolutely not the only way to balance these weapons or
even the best way to balance them, but it does achieve many of the design goals.

 The weapons each have a personality of their own, and none is too overpowered or
underpowered.
 Though the shotgun might look a little too similar to the machine gun in this chart, the
two guns will feel very different due to two factors: 1) A hit with the 6-damage shotgun
is an instant knockout; and 2) The machine gun fires many bullets, so it will deal average
damage much more often.
 The pistol is pretty decent at close range and is more versatile than the shotgun or
machine gun with its ability to attempt to hit enemies at longer range.
 The rifle really shines at mid-range.
 The sniper rifle is terrible at close range, but it dominates long-distance. A hit with the
sniper rifle is 6 points of damage like the shotgun, so it can also take down an enemy in
one shot.

Even though this kind of spreadsheet-based balancing doesn't cover all possible
implications of the design of the weapons, it's still an important tool to have in your game
design arsenal because it can help you understand large amounts of data quickly. Several
designers of free-to-play games spend most of their day modifying spreadsheets to make
slight tweaks in game balance, so if you're interested in a job in that field, spreadsheets and
data-driven design (like you just did) are very important skills.

Positive and Negative Feedback
One final critical element of game balance to discuss is the concept of positive and
negative feedback. In a game with positive feedback, a player who takes an early lead gains
an advantage over the other players and is more likely to win the game. In a game with
negative feedback, the players who are losing have an advantage.

Poker is an excellent example of a game with positive feedback. If a player wins a big pot
and has more money than the other players, individual bets matter less to her, and she has
more freedom to do things like bluff (because she can afford to lose). However, a player
who loses money early in the game and has little left can't afford to take risks and has less
freedom when playing. Monopoly has a strong positive feedback mechanism where the

230

player with the best properties consistently gets more money and is able to force other
players to sell her their properties if they can't afford the rent when they land on her spaces.
Positive feedback is generally frowned upon in most games, but it can be very good if you
want the game to end quickly (though Monopoly does not take advantage of this because its
designer wished to demonstrate the pain of the poor in capitalist societies). Single-player
games also often have positive feedback mechanisms to make the player feel increasingly
powerful throughout the game.

Mario Kart is a great example of a game with negative feedback in the form of the random
items that it awards to players when they drive through item boxes. The player in the lead
usually only gets a banana (a largely defensive weapon), a set of three bananas, or a green
shell (one of the weakest attacks). A player in last place often gets much more powerful
items such as the lightning bolt that slows down every other player in the race. Negative
feedback makes games feel fairer to the players who are not in the lead and generally leads
to both longer games and to all players feeling that they have still have a chance of winning
even if they're pretty far behind.

Summary
This chapter had a lot of math, but I hope you saw that learning a little about math will be
very useful for you as a game designer. Most of the topics covered in this chapter could
merit their own book or course, so I encourage you to look into them further if your interest
has been piqued.

1. Schell, The Art of Game Design, 155–163.
2. Schell, The Art of Game Design, 154.
3. This is most often done by creating a die shaped like an American football with flat

sides for whatever number is desired. Search for "oblong dice," "crystal dice," or "d7
dice" online to see examples.

4. Vectorized Playing Cards 1.3 (http://sourceforge.net/projects/vector-cards/ —Accessed
January 28, 2017) ©2011, Chris Aguilar, Licensed under LGPLv3.
www.gnu.org/copyleft/lesser.html

5. Square brackets (i.e., []) are used in C# to define arrays (a group of values), so I use
them here to group the five possible action values.

6. "0 (inclusive)" means that the random number returned could be 0, while "1
(exclusive)" means that the random number returned will never be 1 (though it can be
0.99999999).

7. I used the game described here and these balanced values as the example paper
prototype for Chapter 9, "Paper Prototyping," in the first edition of the book.

231

http://sourceforge.net/projects/vector-cards/

CHAPTER 12

GUIDING THE PLAYER

As you've read in earlier chapters, your primary job as a designer is to craft an
experience for players to enjoy. However, the further you get into your project
and your design, the more obvious and intuitive your game appears to you. This
comes from your familiarity with the game and is entirely natural.

However, this means that you need to keep a wary eye on your game, making
sure that players who have never seen your game before also intuitively
understanding what they need to do to experience the game as you intended. This
requires careful, sometimes invisible, guidance.

This chapter covers two styles of player guidance: direct, where the player knows that she
is being guided; and indirect, where the guidance is so subtle that players often don't even
realize that the guidance is there. The chapter concludes with information about
sequencing, a style of progressive instruction to teach players new concepts or introduce
them to new game mechanics.

Direct Guidance
Direct guidance methods are those that the player is explicitly aware of. Direct guidance
takes many forms, but in all of them, quality is determined by immediacy, scarcity, brevity,
and clarity:

 Immediacy: The message must be given to the player when it is immediately relevant.
Some games try to tell the player all the possible controls for the game at the very
beginning (sometimes showing a diagram of the controller with all of the buttons
labeled), but it is ridiculous to think that a player will be able to remember all of these
controls when the time comes that she actually needs to use them. Direct information
about controls should be provided immediately the first time that the player needs it. In
the PlayStation 2 game Kya: Dark Lineage, a tree falls into the path of the player
character that she must jump over, and as it is falling, the game shows the player the
message "Press X to jump" at exactly the time she needs to know that information.
 Scarcity: Many modern games have lots of controls and lots of simultaneous goals. Not

232

flooding the player with too much information all at one time is important. Making
instructions and other direct controls scarcer makes them more valuable to the player
and more likely to be heeded. This is also the case with missions. A player can only
really concentrate on a single mission at once, and some otherwise fantastic open world
games like Skyrim inundate the player with various missions to the point that after
several hours of gameplay, the player could potentially be in the middle of dozens of
different missions, many of which will just be ignored.
 Brevity: Never use more verbiage than is necessary, and don't give the player too much
information at one time. In the tactical combat game Valkyria Chronicles, if you wanted
to teach the player to press O to take cover behind some sandbags, the least you would
need to say is "When near sandbags, press O to take cover and reduce damage from
enemy attacks."
 Clarity: Be very clear about what you're trying to convey. In the previous example, you
might be tempted to just tell the player "When standing near sandbags, press O to take
cover," because you might assume that players should know that cover will shield them
from incoming bullets. However, in Valkyria Chronicles, cover not only shields you but
also drastically reduces the amount of damage you take from bullets that do hit (even if
the cover is not between the attacker and the target). For the player to understand
everything she needs to know about cover, she must also be told about the damage
reduction.

Four Methods of Direct Guidance
There are a number of direct guidance methods that you will find in games.

Instructions
The game explicitly tells the player what to do. These can take the form of text, dialogue
with an authoritative non-player character (NPC), or visual diagrams and often incorporate
combinations of the three. Instructions are one of the clearest forms of direct guidance, but
they also have the greatest likelihood of either overwhelming the player with too much
information or annoying her by pedantically telling her information she already knows.

Call to Action
The game explicitly gives the player an action to perform and a reason to do so. This often
takes the form of missions that are given to the player by NPCs. A good strategy is to
present the player with a clear long-term goal and then give her progressively smaller
medium- and short-term goals that must be accomplished on the way to the long-term goal.

The Legend of Zelda: Ocarina of Time begins with the fairy Navi waking Link to tell him
that he has been summoned by the Great Deku Tree. This message is then reinforced by the

233

first person Link encounters upon leaving his home, who tells him that it is a great honor to
be summoned and that he should hurry. This gives Link a clear long-term goal of seeking the
Great Deku Tree (and the Great Deku Tree's conversation with Navi before Link is awoken
hints to the player that she will be assigned a much longer-term goal when she arrives).
Link's path to the Great Deku Tree is blocked by Mido, who tells him that he will need a
sword and shield before venturing into the forest. The player now has two medium-term
goals she must achieve before she can reach her long-term goal. Along the way to obtaining
both, Link must navigate a small maze, converse with several people, and earn at least 40
rupees. These are all small-term, clear goals that are directly tied to the long-term goal of
reaching the Great Deku Tree.

Map or Guidance System
Many games include a map or other GPS-style guidance system that directs the player
toward her goals or toward the next step in her mission. For example, Grand Theft Auto V
has a radar/mini-map in the corner of the screen with a highlighted route for the player to
follow to the next objective. The world of GTA V is so vast that missions often take the
player into an unfamiliar part of the map, where the player relies heavily on the GPS.
However, be aware that this kind of guidance can lead to players spending most of their
time just following the directions of the virtual GPS rather than actually thinking about a
destination and choosing a path of their own, which can increase the time it takes for the
player to learn the layout of the game world.

Pop-Ups
Some games have contextual controls that change based on the objects near the player. In
Assassin's Creed IV: Black Flag, the same button controls such diverse actions as opening
doors, lighting barrels of gunpowder on fire, and taking control of mounted weapons. To
help the player understand all the possibilities, pop-ups with the icon for the button and a
very short description of the action appear whenever an action is possible.

Indirect Guidance
Indirect guidance is the art of influencing and guiding the player without her actually
knowing that she is being controlled. Several different methods of indirect guidance can be
useful to you as a designer. The quality of indirect guidance can be judged using the same
criteria as direct guidance (immediacy, scarcity, brevity, and clarity) with the addition of
invisibility and reliability:

 Invisibility: How aware is the player that she is being guided? Will her awareness
negatively impact her experience of the game? Once you've answered the second
question, you can set a goal for how invisible the guidance should be. Sometimes, you'll

234

want the guidance to be completely invisible; other times, it will be fine if the player
recognizes it. In all cases, the quality of the indirect guidance is based on how the
player's awareness will affect the way she experiences game.
 Reliability: How often does the indirect guidance influence the player to do what you
want? Indirect guidance is subtle, and as a result, it is somewhat unreliable. While most
players in a dark area of the game will head toward a lit doorway, some other players
will not. When you employ indirect guidance in your games, be sure to test it thoroughly
to ensure that a high enough percentage of players are following the guidance. If not,
your guidance may be too subtle.

Seven Methods of Indirect Guidance
I was first introduced to the idea of indirect guidance by Jesse Schell, who presents it as
"indirect control" in Chapter 16 of his book The Art of Game Design: A Book of Lenses.
This list is an expansion of his six methods of indirect control.1

Constraints
If you give the player limited choices, she will choose one of them. This seems elementary,
but think about the difference between a question that asks you to fill in the blank and one
that gives you four choices to pick from. Without constraint, players run the risk of choice
paralysis, which occurs when a person is presented with so many choices that she can't
weigh them all against each other and instead just doesn't make a choice. This is the same
reason that a restaurant menu might have 100 different items on it but only feature images of
20. The restaurant owners want to make it easier for you to make a decision about dinner.

Goals
As Schell points out, if the player has a goal to collect bananas and has two possible doors
to go through, placing clearly visible bananas behind one of the doors encourages the
player to head toward the door with bananas.

Players are also often willing to create their own goals, to which you can guide them by
giving them the materials to achieve those goals. In the game Minecraft (the name of which
includes the two direct instructions "mine" and "craft"), the designers defined which items
the players are able to craft from which materials, and these design choices in turn imply
the goals that players are able to create for themselves. Because most of the simplest
recipes allow the player to make building materials, simple tools, and weapons, these
recipes start the player down the path toward building a defensible fort to make her home.
That goal then causes her to explore for materials. For example, the knowledge that
diamond makes the best tools will lead a player to explore deeper and deeper tunnels to
find diamond (which is rare and only occurs at depths of about 50–55 meters) and

235

encourage her to expand the amount of the world that she has seen.

Physical Interface
Schell's book covers information about how designers can use the shape of a physical
interface to indirectly guide the player: If you give a player of Guitar Hero or Rock Band a
guitar-shaped controller, she will generally expect to use it to play music. Giving a Guitar
Hero player a regular game controller might lead her to think that she could control her
character's movement around the stage (because a standard game controller usually directs
character movement), but with a guitar controller, her thoughts focus on making music.

The physical sense of touch can also be used for indirect guidance. One example is the
rumble feature on many game controllers, which enables the controller to vibrate in the
players' hands at various intensities. Actual automobile racetracks include red and white
rumble strips on the inside of turns. The rumble strips alternate height along with color,
allowing the driver to feel rumbling in the steering wheel if her wheel goes too far to the
inside of the turn and makes contact with the rumble strip. This is helpful because racers
are often trying to be as close to the inside of a turn as possible to be on the perfect racing
line, and seeing exactly where the wheels are touching the road from inside the car is
usually impossible. This same method—rumbling the controller when the player is at the
extreme inside edge of a turn—is used in many racing games. Expanding on this, you could
imagine keeping the controller still when the player is on the track but causing it to rumble
erratically if the player goes off the track into some grass. The tactile sensation would help
the player understand that she should return to the track.

Visual Design
You can use visuals in several different ways to indirectly guide the player:

 Light: Humans are naturally drawn to light. If you place a player in a dark room with a
pool of light at one end, she will usually move toward that light before exploring
anything else.
 Similarity: After a player has seen that something in the world is good in some way
(helpful, healing, valuable, etc.), she will seek out similar things.
 Trails: Similarity can lead to a "breadcrumb trail" effect where the player picks up a
certain item and then follows a trail of similar items to a location that the designer wants
her to explore.
 Landmarks: Visually interesting and distinct objects can be used as landmarks. At the
beginning of Journey by thatgamecompany, the player starts in the middle of a desert
next to a sand dune. Everything around her looks like sand and dunes except for a few
dark stone markers atop the tallest nearby dune (see Figure 12.1, left). Because this

236

group of markers is the only thing in the landscape that stands out, the player is driven to
move up the dune toward it. When she reaches the top, the camera rises above her,
revealing a towering mountain with light bursting from the top (see Figure 12.1, right).
The camera move causes the mountain to emerge from directly behind the stone markers,
signifying to the player that the mountain is her new goal. The camera move directly
transfers the goal state from the markers to the mountain.

Figure 12.1 Landmarks in Journey
When initially designing Disneyland, Walt Disney Imagineering (which at the time was
named WED Enterprises) designed various landmarks to guide guests around the park
and keep them from bunching up in the main hub. When guests first enter the park, they
are located in Main Street USA, which looks like an idealized small American town
from the early twentieth century. However, very soon into their journey down Main
Street, they notice Sleeping Beauty's Castle at the end of the street and are immediately
drawn to it. Upon finally reaching the castle, guests notice that it is much smaller than it
initially appeared and that there's really nothing to do there. Now that they are in the
main hub of Disneyland, they can see the mountain of the Matterhorn rising in front of
them, the space-age statue at the entrance to Tomorrowland to their right, and the fort of
Frontierland to their left. From their position in the hub, these new landmarks look much
more interesting than the small castle, and guests soon leave the castle area to disperse
through the park toward them.2

Landmarks also appear throughout the Assassin's Creed series. When the player first
enters a new part of the map, she should notice a few structures that are taller than the
others in the area. In addition to the natural attraction of these landmarks, each is also a
view point in the game from which the player can synchronize, which updates her in-
game map with detailed information about the area. Because the designers have given
the player both a landmark and a goal (filling in her map), they can guess that players
will often seek a view point as their first activity in a new part of the world.
 Arrows: The annotated image in Figure 12.2 shows examples of subtle arrows used to
direct the player in the game Uncharted 3: Drake's Deception by Naughty Dog. In these
images, the player (as Drake) is chasing an enemy named Talbot.

237

Figure 12.2 Arrows created by line and contrast in Uncharted 3 direct the player where to
run.

A. As the player vaults up to the roof of a building, numerous lines are formed by
physical edges and contrasting light that direct the player's attention to the left. These
lines include the ledge she is vaulting, the short half-wall in front of her, the boards on
the left, and even the facing of the gray plastic chair.

B. As soon as the player is on top of the roof, the camera angle rotates, and now the
ledge, the wall, and the wooden planks all point directly at the next location where the
player must jump (the roof of the building at the top of the frame). The cinderblock
next to the wall in shot B even forms the head of an arrow made by the wall.
This is particularly important in this moment of the chase because the landing area
will collapse when the player hits it, which could cause the player to doubt whether
jumping on that roof was the correct direction for her to have gone. The arrows in the
environment minimize this doubt.
The Uncharted 3 dev team referred to wooden planks like those shown in this image
as diving boards, and they were used throughout the game to guide players to make
leaps in a specific direction. You can see another diving board in image A of Figure
12.3.

238

Figure 12.3 Camera-based guidance in Uncharted 3

C. In this part of the same chase, Talbot has run through a gate and slams it in the
player's face. The blue fabric on the short wall draws the player's eye to the left, and
the left corner of the fabric forms an arrow to the left as well.
D. The camera has now panned to the left, and from this perspective, the blue fabric
forms an arrow pointing directly at the yellow window frame (the player's next goal).
Bright blue and yellow colors like those seen in this image are used throughout the
game to show the correct path to the player, so their presence here confirms the
player's decision to head through the yellow window.

 Camera: Many games that involve traversal puzzles use the camera to guide the player.
By showing the player the next objective or next jump, the camera guides her in areas
where she might otherwise be confused. This is demonstrated in the shots from
Uncharted 3 that are shown in Figure 12.3.
In shot A, the camera is directly behind the player; however, when the player jumps to
the handholds in front of her, the camera pans to the left, directing her to move left (shot
B). The camera continues to face left (shot C) until the player reaches the far left ladder,
at which point the camera straightens out and pans down to reveal the yellow rungs
going forward (shot D).
 Contrast: The shots in Figures 12.2 and 12.3 each also demonstrate the use of contrast
to guide player attention. There are several forms of contrast demonstrated in Figures
12.2 and 12.3 that contribute to player guidance:

 Brightness: In shots A and B of Figure 12.2, the ledge and the wall that form the
arrows have the highest range of brightness contrast in the image. The dark areas
alongside light areas cause the lines stand out visually.
 Texture: In shots A and B of Figure 12.2, the wooden planks are smooth whereas the

239

surrounding stone textures are rough. In shots C and D of Figure 12.2, the soft texture
of the blue fabric contrasts with the hard stone on which it rests. By laying over the
stone edge, the fabric also serves to soften the edge, making the player more aware that
she can leap over it.
 Color: In shots C and D of Figure 12.2, the blue fabric, yellow window frame, and
yellow bars contrast with the dullness of the other colors in the scene. In shot D of
Figure 12.3, the yellow rung at the bottom stands out because the rest of the scene is
mostly blue and gray.
 Directionality: Though it is not as commonly used as the other three, you can also use
contrast in directionality to draw the eye. In shot A of Figure 12.3, the horizontal rungs
stand out because every other line in that part of the screen is vertical.

Audio Design
Schell states that music can be used to influence the player's mood and thereby her
behavior.3 Certain types of music have become linked to various types of activity: Slow,
quiet, somewhat jazzy music is often linked to activities like sneaking or searching for clues
(as seen in the Scooby Doo cartoon series), whereas loud, fast, powerful music (like that in
an action movie) is better suited to scenes where the player is expected to brazenly fight
through enemies and feel invincible.

Sound effects can also be used to influence player behavior by drawing attention to
possible actions that the player can take. In the Assassin's Creed series, a shimmering,
ringing sound effect plays whenever the player is near a treasure chest. This informs the
player that she could choose to take the action of looking for the chest and, because it only
happens when a chest is nearby, it tells her that it wouldn't be too far out of her way to do
so. With a guaranteed reward in close proximity, the player is usually guided to search for
the chest unless she is already engaged in another more important activity.

Player Avatar
The model of the player's avatar (that is, player character) can have a strong effect on
player behavior. If the player character looks like a rock star and is holding a guitar, the
player might expect for her character to be able to play music. If the player character has a
sword, the player would expect to be able to hit things and run into combat. If the player
character walks around in a wizard hat and long robe while holding a book instead of a
weapon, the player would be encouraged to stay back from direct combat and focus on
spells.

Non-Player Characters

240

Non-player characters (NPCs) in games are one of the most complex and flexible forms of
indirect player guidance, and that guidance can take many forms.

Modeling Behavior
NPC characters can model several different types of behavior. In games, behavior modeling
is the act of demonstrating a specific behavior and allowing the player to see the
consequences of that behavior. Figure 12.4 shows various examples of behavior modeling
in the game Kya: Dark Lineage by Atari. Types of modeling include:

Figure 12.4 NPC Nativs modeling behavior in Kya: Dark Lineage

 Negative behavior: In modeling negative behavior, the NPC does something that the
player should avoid doing and demonstrates the consequences. In image A of Figure
12.4, circled in red, one of the Nativs has stepped onto one of the circular traps on the
ground and has been caught (it then lifted the Nativ up and flew him back to the enemies
pursuing both the Nativs and the player).
 Positive behavior: The other Nativ in image A (circled in green) jumped over a trap,
showing how to avoid it. This models positive behavior, showing the player how to act
properly in the game world. Image B shows another example—the Nativ has stopped
immediately before a place in the level where air currents blow swiftly from left to right
in timed pulses, even though the air isn't blowing yet. The Nativ waits for the air current
to blow, and when it stops, he continues running. This models for the player that she

241

should stop before these air current areas, get the timing right, and then continue.
 Safety: In images C and D, the Nativ is jumping onto or into something that looks quite
dangerous. However, because of his willingness to jump, the player knows that it is safe
to follow.

Using Emotional Connections
Another way in which NPCs influence player behavior is through the emotional connections
that the player develops with them.

In the Journey images shown in Figure 12.5, the player is following the NPC because of an
emotional connection. The beginning of Journey is very lonely, and the NPC in these
images is the first emotive creature that the player has encountered on her journey through
the desert. When she encounters the creature, it flies around her joyfully (shot A) and then
takes off (shot B). In this situation, a player will almost always follow the NPC.

Figure 12.5 Emotional connections in Journey

You can also cause the player to follow an NPC because of a negative emotional
connection. For example, the NPC could steal something from the player and run, causing
the player to chase him in order to retrieve her property. In either case, the reaction of the
player is to follow the NPC, and this is an excellent way to guide the player to another
location.

Teaching New Skills and Concepts
Although direct and indirect guidance usually focus on moving the player through the virtual
locations of the game, this final section is devoted to methods to guide the player to a better
understanding of how to play the game.

When games were simpler, designers could present the player with a simple diagram of the
controls or even just let them experiment. In Super Mario Bros. for the Nintendo
Entertainment System (NES), one button caused Mario to jump, and the other button caused
him to run (and to shoot fireballs after he picked up a fire flower). Through just a small
amount of experimentation, the player could easily understand the functions of the A and B

242

buttons on the NES controller. Modern controllers, however, typically have two analog
sticks (that can also be clicked like buttons), one 8-direction D-Pad, six face buttons, two
shoulder buttons, and two triggers. Even with all of these possible controls, many modern
games have so many possible interactions allowed to the player that individual controller
buttons have various uses based on the current context, as was mentioned during the Pop-
Ups point of the Direct Guidance section.

With so much complexity in some modern games, teaching players how to play the game as
they go along becomes critical. An instruction booklet won't cut it anymore; now designers
must guide the player through experiences that are properly sequenced.

Sequencing
Sequencing is the art of gently presenting new information to the player, and most examples
follow the basic style shown in Figure 12.6. The figure shows several steps in the sequence
from Kya: Dark Lineage that first introduces the player to a hovering mechanic that is used
many times throughout the game:

243

Figure 12.6 The sequence teaching hovering in Kya: Dark Lineage

 Isolated introduction: The player is introduced to a new mechanic that she must use to
continue in the game. In image A of Figure 12.6, air is constantly blowing upward, and
the player must press and hold X to drop down far enough to go under the upcoming
wall. Nothing progresses until she holds X and passes under the wall, so there is no time
pressure while she learns the new skill.
 Expansion: Image B of Figure 12.6 shows the next step of this sequence. Here, the
player is presented with walls blocking both the top and the bottom of the tunnel, so she
must learn to hover in the middle of the tunnel by "pumping" (i.e., tapping) the X button.
However, there is still no penalty for failing to do so correctly.
 Adding danger: In image C of Figure 12.6, some danger has been added. The red
surface of the floor will harm the player if she gets too close; however, the roof is still

244

completely safe, so not pressing X will keep the player safe. Next, in image D, the
ceiling is dangerous, and the floor is completely safe, so if the player is still building her
skills, she can simply hold the X button and glide forward along the floor.
 Increased difficulty: Images E and F of Figure 12.6 show the final stages of this
introduction sequence. In image E, the ceiling is still safe, but the player must navigate
through the narrow channel ahead. Image F also requires navigation through a narrow
channel, but now the danger has been expanded to both ceiling and floor. The player
must demonstrate mastery of the X tapping mechanic to hover safely through the tunnel. 4

I've used several images from Kya: Dark Lineage throughout this chapter because it is one
of the best examples I have ever seen of this kind of sequencing. In the first 6 minutes of
gameplay, the player learns about moving, jumping, avoiding traps, avoiding thorns,
dribbling and kicking ball-like animals to defuse traps, avoiding horizontal air gusts, base
jumping, hovering (Figure 12.6), being stealthy, and about a dozen other mechanics. All of
them are taught using sequencing, and at the end of playing through the introduction for the
first time, I remembered all of them.

Many different games use sequencing. In the God of War series, every time Kratos receives
a new weapon or spell, he is told how to use it through pop-up text messages, but then he is
immediately shown through sequencing as well. For a spell such as a lightning strike that
the player could use either to power devices or electrocute enemies, she is first asked to
use it for the non-combat purpose (e.g., the player would receive the lightning spell in a
room with locked doors and must use the lightning to activate devices to open the doors).
The player is then presented with a combat that she easily wins using the new spell. This
technique not only gives the player experience using the spell in combat but also
demonstrates how powerful the spell is, making the player feel powerful as well.

Integration
After the player understands how to use the new game mechanic in isolation (as described
in the previous examples), it's time to teach her how to combine it with other mechanics.
You can do this explicitly (e.g., you could tell the player that casting the lightning spell in
water will expand its range from a 6 feet radius when used outside the water to the entire
pool when used in the water) or implicitly (e.g., you could place the player in combat in a
pool of water and she can notice for herself that when she uses the lightning spell,
everything in the water is electrocuted, not just those enemies within 6 feet). When later in
the game the player attains a spell that allows her to drench her enemies and cause a
temporary pool of water, she would immediately realize that this mechanic also allows her
to expand the reach of her lightning spell.

Summary

245

There are many more methods of player guidance than could fit in this chapter, but I hope
that it gave you a good introduction not only to some specific methods but also to the
reasons why you might want to use them. As you design your games, remember to keep
player guidance in mind at all times. Doing this can be one of your toughest tasks, because
to you (as the designer), every game mechanic will seem obvious. Breaking out of your
own perspective is so difficult that most game companies seek dozens or hundreds of one-
time testers to play their game throughout the development process. Always finding new
people to test your game and give you feedback on the quality of the guidance from the
perspective of someone who has never seen the game before is critically important. Games
developed in isolation without the benefit of naïve testers are often either too difficult for
new players or have uneven, staggered rises in difficulty that cause frustration. As
described in Chapter 10, "Game Testing," you must test early, often, and with new people
whenever you can.

1. Jesse Schell, The Art of Game Design: A Book of Lenses (Boca Raton, FL: CRC Press,
2008), pp. 283–298.

2. This was first pointed out to me by Scott Rogers, who covers it in more detail in Level
9 (i.e., Chapter 9) of his book Level Up!: The Guide to Great Video Game Design
(Chichester, UK: Wiley, 2010).

3. Schell, Art of Game Design, 292–293.
4. Figure 12.6 also shows the use of color contrast to convey information about safety. The

color of the tunnel shifts from green to red to show increasing danger, and in image F,
the purple light at the end of the tunnel signifies to the player that this trial will be
ending soon.

246

CHAPTER 13

PUZZLE DESIGN

Puzzles are an important part of many digital games as well as an interesting
design challenge in their own right. This chapter starts by exploring puzzle design
through the eyes of one of the greatest living puzzle designers, Scott Kim.

The latter part of the chapter explores various types of puzzles that are common
in modern games, some of which might not be what you would expect.

As you'll learn through this chapter, most single-player games have some sort of puzzle in
them, though multiplayer games often do not. The primary reason for this is that both single-
player games and puzzles rely on the game system to provide challenge to the player,
whereas multiplayer digital games (that are not cooperative) more often rely on other
human players to provide the challenge. Because of this parallel between single-player
games and puzzles, learning about how to design puzzles can help you with the design of
any game in which you intend to have a single-player or cooperative mode.

Scott Kim on Puzzle Design
Scott Kim is one of today's leading puzzle designers. Since 1990, he has written puzzles for
magazines such as Discover, Scientific American, and Games, and he has designed the
puzzle modes of several games including Bejeweled 2. He has lectured about puzzle design
at both the TED conference and the Game Developers Conference. His influential full-day
workshop, "The Art of Puzzle Design"1—which he delivered with Alexey Pajitnov (the
creator of Tetris) at the 1999 and 2000 Game Developers Conferences—has shaped many
game designers' ideas about puzzles for more than a decade. This chapter explores some of
the content of that workshop.

Defining Puzzle
Kim states that his favorite definition of puzzle is also one of the simplest:

"A puzzle is fun, and it has a right answer."2

This differentiates puzzles from toys—which are fun but don't have a right answer—and

247

from games—which are fun but have a goal rather than a specific correct answer. Kim sees
puzzles as separate from games, although I personally see them as more of a highly
developed subset of games. Even though this definition of puzzles is very simple, some
important subtleties lie hidden therein.

A Puzzle Is Fun…
Kim states that puzzles have three elements of fun:

 Novelty: Many puzzles rely on a certain specific insight to solve them, and after the
player has gained that insight, finding the puzzle's solution is rather simple. A large part
of the fun of solving a puzzle is that flash of insight, the joy of creating a new solution. If
a puzzle lacks novelty, the player will often already have the insight required to solve it
before even starting the puzzle, and thus that element of the puzzle's fun is lost.
 Appropriate difficulty: Just as games must seek to give the player an adequate
challenge, puzzles must also be matched to the player's skill, experience, and type of
creativity. Each player approaching a puzzle has a unique level of experience with
puzzles of that type and a certain level of frustration that she is willing to experience
before giving up. Some of the best puzzles in this regard have both an adequate solution
that is of medium difficulty and an expert solution that requires advanced skill to
discover. Another great strategy for puzzle design is to create a puzzle that appears to be
simple although it is actually quite difficult. If the player perceives the puzzle to be
simple, she'll be less likely to give up.
 Trickiness: Many great puzzles cause the player to shift her perspective or thinking to
solve them. However, even after having that perspective shift, the player should still feel
that executing her plan to solve the puzzle requires skill and cunning. The puzzle-based
stealth combat of Klei Entertainment's Mark of the Ninja, in which the player must use
insight to solve the puzzle of how to approach a room full of enemies and then, after she
has a plan, must physically execute that plan with precision,3 exemplifies this
characteristic.

…and It Has a Right Answer
Every puzzle needs to have a right answer, although many puzzles have several right
answers. One of the key elements of a great puzzle is that after the player has found the right
answer, it is clearly obvious to her that she is right. If the correctness of the answer isn't
easily evident, the puzzle can seem muddled and unsatisfying.

Genres of Puzzles
Kim identifies four genres of puzzle (see Figure 13.1),4 each of which causes the player to
take a different approach and use different skills. These genres are at the point of

248

intersection between puzzles and other activities. For example, a story puzzle is the mixture
of a narrative and a series of puzzles.

Figure 13.1 Kim's four genres of puzzles5

 Action: Action puzzles like Tetris have time pressure and allow players a chance to fix
their mistakes. They are the combination of an action game with a puzzle mindset.
 Story: Story puzzles like Myst, the Professor Layton series, and most hidden-object
games6 have puzzles that players must solve to progress through the plot and explore the
environment. They combine narrative and puzzles.
 Construction: Construction games invite the player to build an object from parts to
solve a certain problem. One of the most successful of these was The Incredible
Machine, in which players built Rube Goldberg–like contraptions to cause the cats in
each scene to run away. Some construction games even include a construction set that
allows the player to devise and distribute her own puzzles. They are the intersection of
construction, engineering, and spatial reasoning with puzzles.
 Strategy: Many strategy puzzle games are the solitaire versions of the kinds of puzzles
that players encounter in games that are traditionally multiplayer. These include things
like bridge puzzles (which present players with various hands in a bridge game and ask

249

how play should proceed) and chess puzzles (which give players a few chess pieces
positioned on a board and ask how the player could achieve checkmate in a certain
number of moves). These combine the thinking required for the multiplayer version of
the game with the skill building of a puzzle to help players train to be better at the
multiplayer version.

Kim also holds that some pure puzzles don't fit in any of the other four genres. These
include games like Sudoku or crossword puzzles.

The Four Major Reasons that People Play Puzzles
Kim's research and experience have led him to believe that people primarily play puzzles
for the following reasons:7

 Challenge: People like to feel challenged and to feel the joy of overcoming those
challenges. Puzzles are an easy way for players to feel a sense of achievement,
accomplishment, and progress.
 Mindless distraction: Some people seek big challenges, but others are more interested
in having something interesting to do to pass the time. Several puzzles like Bejeweled
and Angry Birds don't provide the player with a big challenge but rather a low-stress
interesting distraction. Puzzle games of this type should be relatively simple and
repetitive rather than relying on a specific insight (as is common in puzzles played for
challenge).
 Character and environment: People like great stories and characters, beautiful
images, and interesting environments. Puzzle games like Myst, The Journeyman Project,
the Professor Layton series, and The Room series rely on their stories and art to propel
the player through the game.
 Spiritual journey: Finally, some puzzles mimic spiritual journeys in a couple of
different ways. Some famous puzzles like Rubik's Cube can be seen as a rite of passage
—either you've solved one in your life or you haven't. Many mazes work on this same
principle. Additionally, puzzles can mimic the archetypical hero's journey: The player
starts in regular life, encounters a puzzle that sends her into a realm of struggle, fights
against the puzzle for a while, gains an epiphany of insight, and then can easily defeat the
puzzle that had stymied her just moments earlier.

Modes of Thought Required by Puzzles
Puzzles require players to think in different ways to solve them, and most players have a
particular mode of thought that they prefer to engage in (and therefore a favorite class of
puzzle). Figure 13.2 illustrates these concepts.

250

Figure 13.2 A Venn diagram showing the three modes of thought often used in puzzles
(Word, Image, and Logic), including examples of puzzles that use each mode and some that
use two modes simultaneously8

Single-Mode Puzzle Types
The following list describes the single-mode puzzle types shown in Figure 13.2:

 Word: There are many different kinds of word puzzles, most of which rely on the player
having a large and varied vocabulary. Word puzzles are often particularly good if you're
designing games for older adults, because most people's vocabularies peak later in life.
 Image: Image puzzle types include jigsaw, hidden-object, and 2D/3D spatial puzzles.
Image puzzles tend to exercise the parts of the brain connected to visual/spatial
processing and pattern recognition.
 Logic: Logic puzzles like Bulls & Cows (described in Chapter 11, "Math and Game
Balance"), riddles, and deduction puzzles cause players to exercise their logical
reasoning. Many games are based on deductive reasoning: the top-down elimination of
several false possibilities, leaving only one that is true (e.g., a player reasoning "I know
that all the other suspects are innocent, so Colonel Mustard must have killed Mr.
Boddy"). These include Clue, Bulls & Cows, and Logic Grid puzzles. Far fewer games
use inductive reasoning: the bottom-up extrapolation from a specific certainty to a
general probability (e.g., a player reasoning "The last five times that John bluffed in
poker, he habitually scratched his nose; John is scratching his nose now, so he's
probably bluffing"). Deductive logic leads to certainty, whereas inductive logic makes

251

an educated guess based on reasonable probability. The certainty of the answers has
traditionally made deductive logic more attractive to puzzle designers.

Mixed-Mode Puzzle Types
The following list refers to the mixed-mode puzzle types shown in the overlapping areas of
Figure 13.2. Figure 13.3 includes examples of each of these mixed-mode puzzles.

Figure 13.3 Various mixed-mode puzzles (solutions are at the end of the chapter)

 Word / Image: Many games like Scrabble, rebuses (like the one in Figure 13.3), and
word searches incorporate both the word and image modes of thought to solve. Scrabble
is a mixed-mode puzzle, but crossword puzzles are not, because in Scrabble the player
is determining where to place the word and attempting to arrange it relative to score
multipliers on the board. A crossword puzzle does not require either of these two acts of
visual/spatial reasoning and decision-making.9

 Image / Logic: Sliding block puzzles, laser mazes, and puzzles like those shown in the
second category of Figure 13.3 require players to use logic to solve image-based
problems.
 Logic / Word: Most riddles fall into the Logic / Word category, including the classic
"Riddle of the Sphinx," which is the first riddle in Figure 13.3. It was given by the

252

sphinx to Oedipus in the classic Greek tragedy Oedipus Rex by Sophocles.

Kim's Eight Steps of Digital Puzzle Design
Scott Kim describes eight steps that he typically goes through when designing a puzzle:10

1. Inspiration: Just like a game, inspiration for a puzzle can come from anywhere. Alexey
Pajitnov has stated that his inspiration for Tetris was the mathematician Solomon
Golomb's concept of pentominoes (12 different shapes, each made of five blocks, which
could be fit together into an optimal space-filling puzzle) and the desire to use them in
an action game. However, there were too many different five-block pentomino shapes,
so he reduced it to the seven four-block tetrominoes found in Tetris.

2. Simplification: Usually you need to go through some form of simplification to get from
your original inspiration to a playable puzzle.
a. Identify the core puzzle mechanic: the essential tricky skill required.
b. Eliminate any irrelevant details, and narrow the focus.
c. Make pieces uniform. For example, if you're dealing with a construction puzzle, move

the pieces onto a uniform grid to make it easier for the player to manipulate.
d. Simplify the controls. Make sure that the controls for the puzzle are appropriate to the

interface. Kim talks about how great a Rubik's Cube feels in real life but how terrible
it would be to manipulate a digital version with a mouse and keyboard.

3. Construction set: Build a tool that makes construction of puzzles quick and easy. Many
puzzles can be built and tested as paper prototypes, but if that isn't the case for your
puzzle, this is the first place that you will need to do some programming. Regardless of
whether it is paper or digital, an effective construction set can make the creation of
additional levels much easier for you. Discover which tasks are repetitive time-wasters
in the puzzle construction process and see whether you can make reusable parts or
automated processes for them.

4. Rules: Define and clarify the rules. This includes defining the board, the pieces, the
ways that they can move, and the ultimate goal of the puzzle or level.

5. Puzzles: Create some levels of the puzzle. Make sure that you design different levels
that explore various elements of your design and game mechanics.

6. Testing: Just like a game, you don't know how players will react to a puzzle until you
place it in front of them. Even with his many years of experience, Kim still finds that
some puzzles he expects to be simple are surprisingly difficult, whereas some he
expects to be difficult are easily solved. Playtesting is a key step in all forms of design.
Usually, step 6 leads the designer to iteratively return to steps 4 and 5 and refine
previous decisions.

7. Sequence: After you have refined the rules of the puzzle and have several levels

253

designed, it's time to put them in a meaningful sequence. Every time you introduce a new
concept, do it in isolation to require the player to use just that concept in the most
elementary way. You can then progressively increase the difficulty of the puzzle that
must be solved using that concept. Finally, you can create puzzles that mix that concept
with other concepts that the player already understands. This is very similar to the
sequencing in Chapter 12, "Guiding the Player," that is recommended for teaching any
new game concept to a player.

8. Presentation: With the levels, rules, and sequence all created, it's now time to refine
the look of the puzzle. Presentation also includes refinements to the interface and to the
way you display that information to the player.

Seven Goals of Effective Puzzle Design
You need to keep several things in mind when designing a puzzle. Generally, the more of
these goals that you can meet, the better puzzle you will create:

 User friendly: Puzzles should be familiar and rewarding to their players. Puzzles can
rely on tricks, but they shouldn't take advantage of the player or make the player feel
stupid.
 Ease of entry: Within one minute, the player must understand how to play the puzzle.
Within a few minutes, the player should be immersed in the experience.
 Instant feedback: The puzzle should be "juicy" in the way that Kyle Gabler (co-creator
of World of Goo and Little Inferno) uses the word: The puzzle should react to player
input in a way that feels physical, active, and energetic.
 Perpetual motion: The game should constantly prod the player to take the next step, and
there should be no clear stopping point. When I worked at Pogo.com, all of our games
ended with a Play Again button instead of a game over screen. Even a simple thing like
that can keep players playing for longer.
 Crystal-clear goals: The player should always clearly understand the primary goal of
the puzzle. However, having advanced goals for players to discover over time is also
useful. The puzzle games Hexic and Bookworm are examples of puzzles that have very
clear initial goals and also include advanced expert goals that veteran players can
discover and enjoy over time.
 Difficulty levels: The player should be able to engage the puzzle at a level of difficulty
that is appropriate to her skill. As with all games, appropriate puzzle difficulty is
critical to making the experience fun for players.
 Something special: Most great puzzle games include something that makes them unique
and interesting. Alexey Pajitnov's game Tetris combines apparent simplicity with the
chance for deep strategy and steadily increasing intensity. Both World of Goo and Angry
Birds have incredibly juicy, reactive gameplay.

254

Puzzle Examples in Action Games
Modern AAA game titles frequently include a number of puzzles. Most of these fall into one
of the following categories.

Sliding Blocks / Position Puzzles
Sliding block or position puzzles usually take place in third-person action games and
require the player to move large blocks around a gridded floor to create a specific pattern.
An alternative version of this involves positioning mirrors that are used to bounce light or
laser beams from a source to a target. One common variation is a slippery floor that causes
the blocks to move continuously until they hit a wall or other obstacle.

 Game examples: Soul Reaver, Uncharted, Prince of Persia: The Sands of Time, Tomb
Raider, several games in The Legend of Zelda series

Physics Puzzles
Physics puzzles all involve using the physics simulation built in to the game to move
objects around the scene or hit various targets with either the player character or other
objects. This is the core mechanic in the Portal series and has become increasingly popular
as reliable physics engines like Havok and the Nvidia PhysX system (built in to Unity) have
become ubiquitous in the industry.

 Game examples: Portal, Half-Life 2, Super Mario Galaxy, Rochard, Angry Birds

Traversal
Traversal puzzles show you a place in the level that you need to reach but often make it less
than obvious how to get there. The player must frequently take detours to unlock gates or
open bridges that will allow her to reach the objective. Racing games like Gran Turismo
are also traversal puzzles; the player must discover the perfect racing line that will enable
her to complete each lap as efficiently and quickly as possible. This is critically important
in the "Burning Lap" puzzles of the Burnout series, which require players to avoid making
a single mistake while traversing a racecourse that includes sections of oncoming traffic,
cross traffic, and hairpin turns.

 Game examples: Uncharted, Tomb Raider, Assassin's Creed, Oddworld: Abe's
Oddyssee, Gran Turismo, Burnout, Portal

Stealth
An extension of traversal puzzles that became important enough to merit its own genre,

255

stealth puzzles ask the player to traverse a level while also avoiding detection by enemy
characters, who are generally patrolling a predetermined path or following a specific
schedule. Players usually have a way to disable the enemy characters, though this can also
lead to detection if performed poorly.

 Game examples: Metal Gear Solid, Uncharted, Oddworld: Abe's Oddyssee, Mark of
the Ninja, Beyond Good and Evil, The Elder Scrolls V: Skyrim, Assassin's Creed

Chain Reaction
Chain reaction games include physics systems in which various components can interact,
often to create explosions or other mayhem. Players use their tools to set traps or other
series of events to either solve a puzzle or gain them an advantage over attacking enemies.
The Burnout series of racing games include a Crash Mode that is a puzzle game where the
player must drive her car into a specific traffic situation and cause the greatest amount of
monetary damage through a fantastic multicar collision.

 Game examples: Pixel Junk Shooter, Tomb Raider (2013), Half-Life 2, The
Incredible Machine, Magicka, Red Faction: Guerilla, Just Cause 3, Bioshock,
Burnout

Boss Fights
Many boss fights, especially in classic games, involve some sort of puzzle where the player
is required to learn the pattern of reactions and attacks used by a boss and determine a
series of actions that would exploit this pattern and defeat the boss. This is especially
common in third-person action games by Nintendo like those in the Zelda, Metroid, and
Super Mario series. One element that is very common in this kind of puzzle is the rule of
three:11

1. The first time the player performs the correct action to damage the boss, it is often a
surprise to her.

2. The second time is an experiment to see whether she now has the insight to defeat the
puzzle/boss.

3. The third time, she demonstrates her mastery over the puzzle and defeats the boss.

Players can defeat most bosses throughout the Legend of Zelda series since The Ocarina of
Time in three attacks, as long as the player understands the solution to the puzzle of that
boss.

 Game examples: The Legend of Zelda, God of War, Metal Gear Solid, Metroid,
Super Mario 64/Sunshine/Galaxy, Guacamelee, Shadow of the Colossus, multiplayer

256

cooperative raids in World of Warcraft

Summary
As you've seen in this chapter, puzzles are an important aspect of many games that have
single-player or multiplayer co-op modes. Puzzle design is not a large departure from the
skills you've already learned as a game designer, but there are some subtle differences.
When you design a game, the most important aspect is the moment-to-moment gameplay,
whereas in puzzle design, the solution and the moment of insight are of primary importance.
(In an action puzzle like Tetris, however, insight and solution happen with the drop and
placement of every piece.) In addition, when the player solves a puzzle, being able to tell
with certainty that she has found the right answers is important; but in games, interesting
decisions rely on uncertainty in the player's mind about the outcome or correctness of
decisions.

Regardless of the differences between designing puzzles and games, the iterative design
process is as critical for puzzles as it is for all other kinds of interactive experiences. As a
puzzle designer, you want to make prototypes and playtest just as you would for a game;
however, with puzzles, ensuring that your playtesters have not seen the puzzle before is
even more important (because they will have already had the moment of insight).

To close, Figure 13.4 shows the solutions to the puzzles in Figure 13.3. I didn't want to give
away the answer by saying so, but the insight of the matchstick puzzle is that it actually
requires all three modes of thought: logic, image, and word.

257

Figure 13.4 Mixed-mode puzzle solutions for the puzzles shown in Figure 13.4

1. Scott Kim and Alexey Pajitnov, "The Art of Puzzle Game Design" (presented at the
Game Developers Conference, San Jose, CA, March 15, 1999). Accessed January 21,
2017.
https://web.archive.org/web/20030219140548/http://scottkim.com/thinkinggames/GDC99/gdc1999.ppt

2. Scott Kim, "What Is a Puzzle?" Accessed January 21, 2017.
https://web.archive.org/web/20070820000322/http://www.scottkim.com/thinkinggames/whatisapuzzle/

3. Nels Anderson, "Of Choice and Breaking New Ground: Designing Mark of the Ninja"
(presented at the Game Developers Conference, San Francisco, CA, March 29, 2013).
Nels Anderson, the lead designer of Mark of the Ninja, spoke in this talk about
narrowing the gulf between intent and execution. The team found that making it easier
for a player to execute her plans in the game shifted the skill of the game from physical
execution to mental planning, making the game more puzzle-like and more interesting to
players. He has posted a link to his slides and his script for the talk on his blog at
http://www.above49.ca/2013/04/gdc-13-slides-text.html, accessed March 6, 2014. His
talk is also available for free on the GDC Vault at http://gdcvault.com.

4. Scott Kim and Alexey Pajitnov, "The Art of Puzzle Game Design," slide 7.
5. Scott Kim and Alexey Pajitnov, "The Art of Puzzle Game Design," slide 7.
6. Myst was one of the first CD-ROM adventure games, and was the number one best-

258

https://web.archive.org/web/20030219140548/http://scottkim.com/thinkinggames/GDC99/gdc1999.ppt
https://web.archive.org/web/20070820000322/http://www.scottkim.com/thinkinggames/whatisapuzzle/
http://www.above49.ca/2013/04/gdc-13-slides-text.html
http://gdcvault.com

selling CD-ROM game until The Sims took that title. The Professor Layton series of
games is an ongoing series for Nintendo's handheld platforms that wraps many
individual puzzles inside an overarching mystery story. Hidden-object games are a
popular genre of game where a player must find a list of hidden objects in a
complicated scene. These games often have mystery plots that the player is attempting
to solve by finding the objects.

7. Scott Kim and Alexey Pajitnov, "The Art of Puzzle Game Design," slide 8.
8. Scott Kim and Alexey Pajitnov, "The Art of Puzzle Game Design," slide 9.
9. While writing the second edition of this book, I've been working on a Word / Image

puzzle game for mobile devices named Ledbetter. You can check it out at
http://exninja.com/ledbetter.

10. Scott Kim and Alexey Pajitnov, "The Art of Puzzle Game Design," slide 97.
11. I believe that this "rule of three" was first pointed out to me by Jesse Schell.

259

http://exninja.com/ledbetter

CHAPTER 14

THE AGILE MENTALITY

In this chapter, you learn how to think about projects as an agile prototyper and
how to weigh your options when beginning to tackle a project. The chapter
introduces you to the Agile development mindset and Scrum methodology. It also
extensively covers burndown charts, which I recommend using on all your game
projects.

After this chapter, you'll have a better understanding of how to approach game
projects, how to break them down into sprints that you can tackle in a specific
amount of time, and how to prioritize tasks within those sprints.

The Manifesto for Agile Software Development
For many years, a large number of software titles, including games, tended to be developed
using what is commonly known as the waterfall method of development. Using the
waterfall method, a small preproduction team would define the entire project via a massive
game design document that the production team was expected to follow to the letter as they
developed the game. Sticking to waterfall too strictly often led to games that were not
tested until they neared completion, and members of these production teams could feel more
like cogs in a massive machine than actual game developers.

With the experience you've now gained through paper and digital prototyping in this book,
I'm sure you can immediately see some issues with this approach. In 2001, the developers
who formed the Agile Alliance saw these issues as well, leading to their Manifesto for
Agile Software Development,1 which reads as follows:

We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

260

 Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

Embedded in these four core values, you can see many of the principles that I've tried to
impress upon you throughout this book:

 Following your individual design sense, continually asking questions, and developing
an understanding of procedural thinking are more important than following predefined
rules or using a specific development framework.
 Making a simple prototype that works and iterating on it until it's fun is more successful
than waiting for months until you have the perfect game idea or solution to your problem.
 Bouncing your ideas off of other creative people in a positive, collaborative
environment is more important than worrying about who owns specific intellectual
property.2

 Listening to and reacting to playtesters' feedback about your game is much more
important than following your original design vision. You must let your game evolve.

Prior to my introduction of Agile development methodologies into my classes, students
often got drastically behind schedule when developing their games. In fact, they even had
trouble understanding how behind they were because they lacked the tools to manage their
development process. This also meant that playtesting student work was difficult until very
late in the project.

After my introduction of Agile and its associated tools and methodologies to my classes, I
found that several things occurred:

 Students had a much better understanding of their progress on projects and were better
able to stick to their schedule.
 The games being produced by students showed a marked improvement, largely because
the students' focus on constantly having a playable build allowed them to playtest the
games earlier and more frequently.
 Student understanding of both C# and Unity increased as did their confidence in their
technical skills.

Of those three points, the first two were expected. The third initially took me by surprise,
but I have found it to be the case in every class that I have taught using Agile
methodologies. As a result, I have continued to use Agile in all of my classes, in my own
personal game development practice, and even while writing this book. I hope that you
will, too.3

261

Scrum Methodology
In the years since 2001, many people have developed tools and methodologies to help
teams easily adapt to the Agile mentality. One of my favorites is Scrum.

Scrum actually started several years before the Agile Manifesto and was developed by
various people, but its relationship to Agile was solidified in the 2002 book Agile Software
Development with Scrum by Ken Schwaber and Mike Beedle.4 In it, they describe many of
the common elements of the Scrum methodology that are still popular.

The goal of Scrum, like most Agile methodologies, is to get to a working product or game
as quickly as possible while allowing for the design to flexibly adapt to feedback from
playtesters and members of the design team. The remainder of this chapter introduces you to
some of the terminology and practices used in the Scrum methodology and shows you how
to use a spreadsheet-based burndown chart that I have developed for this book.

The Scrum Team
A Scrum team for game prototyping is composed of one product owner, one Scrum master,
and an interdisciplinary development team consisting of up to ten other people who are
skilled in various fields, including programming, game design, modeling, texturing, audio,
etc.

 Product Owner: The voice of the client or the voice of the future players of your
game.5 The product owner wants to make sure that all the cool features make it into the
game, and she is responsible for understanding the gestalt vision of the game.
 Scrum Master: The voice of reason. The Scrum Master runs the daily Scrum meeting
and wants to make sure that everyone is on-task without being overworked. The Scrum
master acts as a foil for the product owner by keeping a realistic eye on how much work
remains on the project and how quickly the members of the development team are
completing the tasks assigned to them. If the project is behind schedule or certain
features need to be cut, the Scrum master is responsible for getting the schedule back on
track and ensuring any required changes happen.
 Development team: The people in the trenches. The development team is composed of
everyone working on the project and can include the product owner and Scrum master,
who often work as standard members of the team outside of the Scrum meeting.
Members of the development team are assigned tasks at the daily Scrum meeting and are
relied on to accomplish those tasks by the next meeting. In Scrum, individual team
members are given far more agency than in other development methods, but that agency
comes with accountability of daily check-ins with the rest of the team.

Product Backlog / Feature List
262

A Scrum project starts with a product backlog (also known as a feature list), which is a
list of all the features, mechanics, art, and so on that the team expects to implement for the
final game. Some of these start out pretty vague and are broken down into more specific
sub-features as development progresses.

Releases and Sprints
A product is broken down into releases and sprints. You can think of a release as a known
time when you will show the game to others (for example, a meeting with investors, a
public beta, or a formal playtest round) whereas a sprint is a step along the way to a
release. At the beginning of a sprint, a sprint backlog list is created that contains all the
features to complete by the end of the sprint. A sprint usually takes between 1 and 4 weeks,
and regardless of what you choose to work on during the sprint, it is important that you have
a playable game (or playable part of a game) by the end of the sprint. In fact, in the best
case, from the moment when you have your first playable prototype, you should strive to
never have a day that ends with the game in an unplayable state (though ensuring that is
sometimes a difficult task).

Scrum Meetings
A Scrum meeting is a daily 15-minute stand-up meeting (literally, everyone stands
throughout the meeting) that keeps the whole team on track. The Scrum Master runs the
meeting, during which each person answers three questions:

1. What did you accomplish since yesterday?
2. What do you plan to accomplish today?
3. What obstacles might get in your way?

That's it. The Scrum meeting is meant to get everyone on the same page quickly. Questions 1
and 2 are checked against the burndown chart (BDC) to see how the project is progressing.
You want to keep the Scrum meeting as short as possible so that the creative people on your
team are wasting as little time as possible in full-group meetings. For example, any issues
that arise as part of question 3 are not discussed during the meeting. Instead, the Scrum
master asks for a volunteer to help the person with the potential obstacle and then moves
on. Then, after the meeting is over, the person with the issue and the volunteer discuss the
obstacle without the rest of the team.

As a result of Scrum meetings, everyone on the team knows their responsibilities, what
everyone else is working on, and whom they can ask for help if they need it. Because Scrum
meetings happen every day, problems are addressed as soon as they arise and not left to
fester.

263

The Burndown Chart
I have found the burndown chart to be one of the most useful tools in my game development
process and my classes. A burndown chart starts with a list of tasks to be performed during
a sprint (the sprint backlog) and estimates of the amount of time required to complete each
task (in hours, days, weeks, and so on). Throughout the project, the burndown chart tracks
each team member's progress on the goals that have been assigned to her and converts it
into a chart that not only tracks the total number of hours of work remaining on the project
but also shows whether the team is on track to finish the project on time.
The beauty of the burndown chart is that it converts a tremendous amount of data into a
simple chart that answers three critical questions:

1. Is the team on track to finish the sprint on time?
2. What tasks are assigned to each person?
3. Is everyone on the team being utilized well? (Is everyone pulling their weight?)

These three questions are often difficult to answer when you're working on any team, but
the burndown chart answers all of them very efficiently. Burndown charts are so important
that the rest of this chapter is devoted to helping you understand how to use the burndown
chart template that I've provided for you.

Burndown Chart Example
I have created a burndown chart (BDC) template that is available online as a Google
Sheets document. Google Sheets is the free online competitor to the Microsoft Excel that
was featured in Chapter 11, "Math and Game Balance." Explaining the spreadsheet
formulae used in this burndown chart is beyond the scope of this book, but you can learn the
basics of spreadsheets and how to use them to balance games in Chapter 11.

The link for this example burndown chart spreadsheet is:

 At the link: http://bit.ly/IGDPD_BDC_Example
Or
 The website for this book: http://book.prototools.net under Chapter 14

This chart is referenced several times on the following pages, so please follow the link to it
now. If you want to make any edits to the sheet, you should make your own copy. To do so
choose File > Make a copy… from the Sheets menu bar (in the browser window), as
shown on the left side of Figure 14.1.

After making your own copy of the example burndown chart, please open it in Google
Sheets and continue this chapter.

264

http://bit.ly/IGDPD_BDC_Example
http://book.prototools.net

Figure 14.1 The menu to make your own copy of a Google Sheet and the Main example
worksheet

Burndown Chart Example: Worksheets
Modern spreadsheets are broken into several worksheets, which you can select by choosing
from among the tabs at the bottom of the window (labeled Main, Task Rank Chart, and so
on in Figure 14.1). As you look at the descriptions of each worksheet that follow, click the
tab at the bottom of the spreadsheet to view that worksheet.

Each worksheet in this spreadsheet has a specific purpose:

 Main: The worksheet where you track tasks and hours remaining. This is where you
input most of the data.
 Task Rank Chart: This chart shows current progress toward the project deadline,
sorted by the rank (or importance) of the tasks.
 Stacked Person Chart: This chart shows current progress toward the project deadline,
sorted by the person to whom the task is assigned.
 Person Chart: This chart shows each individual's assigned tasks and progress toward
the deadline.
 Daily Scrum: This worksheet allows team members to have a daily virtual Scrum
meeting with each other, even if they can't meet in person.

Next, you'll explore each worksheet in more detail.

Warning

265

ONLY CHANGE VALUES IN CELLS WITH A DARK GRAY BORDER! In
both the Burndown Chart Example and the Burndown Chart Template
spreadsheets, you should only edit cells that have a dark gray border. All other
cells either have unchanging data or (more likely) data that is calculated using a
formula. For example, the dates shown in cells I3:Z3 on the chart are calculated
by formulae that use the start date (F102), end date (F103), and workday data
(J102:J108) entered into dark gray bordered cells in the Sprint Settings area. You
should never directly edit I3:Z3.

Worksheet—Main
The Main worksheet is where you make most of your burndown chart edits. The top section
of this worksheet includes nearly 100 lines for tracking tasks, to whom they're assigned,
and how much work is left. The bottom half includes cells for entering team member names,
the start and end date of the project, and workdays. It also has an area at the bottom of the
worksheet that is entirely for calculation of data to be displayed in the charts on other tabs.

Sprint Settings
Scroll down to line 101 to look at the Sprint Settings shown in Figure 14.2. As mentioned
earlier in this chapter, a sprint is usually a couple of weeks long and has specific tasks that
must be completed (the sprint backlog). This section of the Main worksheet includes
information that you must set as you create the BDC spreadsheet for each sprint.

Figure 14.2 The Sprint Settings section of the Main worksheet

 Team Members: A list of up to six team members working on this sprint (B102:B107)
as well as one- or two-letter identifying initials for them (C102:C107), which will be
used to assign them tasks in the section above.
 Sprint Dates: Set the start date of your sprint in F102, and put the end date in F103.
 Workdays: In cells J102:J107, enter a 1 on days of the weeks that are typically
workdays for your team and a 0 on days of the week that you don't plan to work. This

266

information factors into the number of Work Days shown in F106.

The rest of the spreadsheet uses the information from this section to populate itself. This
information is below all the rest on the Main worksheet because it you will set it only once
at the beginning of the sprint.

Tip
ESTIMATING HOURS In this example burndown chart, today (cell A2) is
always Tuesday, December 13. However, in the Burndown Chart Template, today
(A2) reflects the actual current date.

Task Assignments and Time Estimation
Scroll back up to the top of the Main worksheet (see Figure 14.3).

Figure 14.3 The Task Assignments section of the Main worksheet

In columns A:D of each row, you must also set some important information before the sprint
can begin. Each row has the following columns:

A Rank: The importance of this task from 1 (Critical) to 5 (Low Priority)

267

B Task: A short description of the task
C Assignment: The initials of the team member to whom this task is assigned
D Hours Estimate: The estimated number of hours to complete this task

The estimated number of hours for each task is key to the concept of a BDC. Throughout the
project you will refer to this number, so estimating as accurately and honestly as you can is
important. See the tip "Estimating Hours."

tip
ESTIMATING HOURS One of the toughest tasks for programmers, artists, and
other creative workers is estimating the number of hours required to finish a task.
Things almost always take longer than you expect, except for the one thing that
you think will take 20 hours but is then somehow completed in only 2. For now,
you need to just make the best guess that you can while following some simple
estimation rules, all based on the fact that as the size of a task increases, the
accuracy of your estimate necessarily decreases.

 If you're estimating in hours, stick to values of 1, 2, 4, or 8 hours.
 In days: 1, 2, 3, or 5 days.
 In weeks: 1, 2, 4, or 8 weeks.

However, if you're estimating anything in weeks for a sprint, you need to break it
down into much smaller tasks!

Sprint Progress
The right half of the Main worksheet is where all the tracking of progress toward the sprint
deadline occurs. Column H reflects the initial estimated hours for each task, and all the
columns to the right of that show the team's progress toward completing them. Today's date
is highlighted by a blue column with red numbers (column M in this example).

As team members work on various tasks, they report the number of estimated hours
remaining on that task in columns I:Z. At the very least, you should fill out the BDC at the
end of every workday, and you should only ever enter numbers for hours remaining into the
column for today (the blue column). On both today and the days leading up to it, you can see
bold, black numbers where a team member has done work on a task and reduced the
number of estimated hours remaining.

Estimated Hours Versus Real Hours
268

One of the most important concepts in a burndown chart is the difference between estimated
hours and real hours. After you have estimated the number of hours for a task, the time you
spend working on that task is counted not in actual hours worked but instead in terms of the
percent of the task that is still incomplete. For an example, take a look at the Acceleration
task on row 6 of the example spreadsheet (see Figure 14.4).

Figure 14.4 Close up of the Acceleration task work for the first 5 days of the project

The initial estimate of hours for the Acceleration task was 4.

 12/07 (December 7): Archon (A) worked on Acceleration for 2 hours but only
accomplished about 25% of the task. This left 75% of the work remaining on the task, so
he entered a 3 into the spreadsheet (cell I6) for 12/07 because 3 is 75% of the original
4-hour estimate. He also placed a 2 into the Hours Worked column (E) to track his
actual hours worked.
 12/09: He worked another 3 hours, bringing the task to 50% complete and leaving 2
hours of the original 4-hour estimate remaining. So, he entered a 2 into the column for
12/09 (K6) and added the 3 hours he actually worked to the Hours Worked column,
resulting in a value of 5 total hours worked.
 12/13 (Today): One hour of work burned down another 25% of the task (he's working a
bit faster now), and now, as of today, he has 25%—or 1 estimated hour—remaining of
the Acceleration task. He places a 1 in the 12/13 column (L6) and increases the Hours
Worked in cell E6 to 6.

As you can see, the most important data is the percent of the task remaining as represented
in the number of hours left of the original estimate. However, Archon has also recorded the
6 hours he has put in on the Acceleration task in the Hours Worked column (E) to help him
improve his task estimation in the future (right now, it looks like it's taking about twice as
long as his initial estimate).

The data from the Main worksheet is compiled into three charts that can help you better
understand your team's progress toward the deadline and each teammate's contribution.

Worksheet—Task Rank Chart
The Task Rank Chart (see Figure 14.5) shows the progress toward the goal stacked by task

269

rank. Here, you can see in two different ways that the team is behind schedule:

Figure 14.5 Burndown Chart by Task Rank

 The black On-Track line shows the average amount of work that must be completed
each workday for the team to finish on time. If the total of all the ranks is above this line,
then the team is not on track for completion; if the total of all ranks is below this line, the
team is ahead of schedule. This gives the team a good gestalt idea of their progress
toward the deadline.
 The red Burndown Velocity line uses the team's recent burndown velocity to predict
what the team will accomplish in coming days. If this line touches the baseline (i.e., 0
Estimated Work Hours) before the final date, then the team is doing well based on their
current rate of task completion. On the other hand, if it never touches the baseline, the
team is projected to not finish the project on time.

Burndown Velocity (BDV) is the current rate of progress in terms of estimated hours of
work completed per day. Cell C110 of the Main worksheet determines how many days will
be considered to determine the recent BDV (see Figure 14.2). In this case, it's two, which
is why the red line only extends backwards 2 workdays from today (back from 12/13 to
12/9 without counting the weekend days of the 10th and 11th).

Another thing that you want to see in the Task Rank Chart is the team taking care of Rank 1
(red/bottom) tasks first and leaving lower-priority tasks (Ranks 4 and 5) for later. That is
something that this team is doing well. The Rank 1 (red) area is tapering while the Rank 4
(purple) area is the same.

Worksheet—Stacked Person Chart

270

The Stacked Person Chart (see Figure 14.6) shows the progress toward the goal stacked by
individual team member. This chart can help you see how each member is contributing to
the overall deadline. On this chart, you want each team member's contribution to the whole
to be tapering in similar ways. You also want each team member's section to be roughly the
same width as the others on any given day. Here, you can tell that Archon (red) has more
assigned to him than other members of the team, and you can see that Icarus (green) has not
been completing tasks as much as other team members, because the green band of the chart
has only narrowed slightly.

Figure 14.6 Burndown Chart by Person and Stacked

Worksheet—Person Chart
In the (unstacked) Person Chart, shown in Figure 14.7, you can see the tasks of team
members relative to each other. The filled gray area in the background shows the average
amount of work that would be assigned to each team member if the workloads were exactly
equal. The black On-Track line shows how much each team member needs to accomplish
every day to be on track (if they were assigned equal amounts of work). The various
colored lines show the burndown of work for each team member.

271

Figure 14.7 Burndown Chart by Person

From this, you can see that Archon is doing really well, even though he has been assigned
more work than anyone else. Henri and Icarus have not been accomplishing enough, and
Gilbert has been working sporadically but has gotten a lot done each time he worked on the
project.

This chart is an excellent way to see what's really going on in your project and understand
who is contributing the most and who needs to push harder.

Worksheet—Daily Scrum

Having your team members meet for an in-person Scrum each day is always best, but if they
can't, this worksheet (see Figure 14.8) can help the team stay connected. As with any
Scrum, each team member is responsible for reporting three things every day:

272

Figure 14.8 The Daily Scrum worksheet of the example burndown chart

 Yesterday (Y): Each team member reports what she accomplished yesterday (or since
the last Scrum).
 Today (T): Each team member reports what she plans to work on today (or before the
next Scrum).
 Help (H): Each team member asks for help if she needs it.

The entire team should complete the Scrum report by a certain time of day each day. This
team has chosen to report by 10 a.m. each morning. If a team chose to report by 6 p.m. at the
end of each day, then their terms would instead be Today (T), Next (N), and Help (H).

The daily Scrum can provide a different kind of insight into the team than the other
worksheets of the burndown chart. For example, according to the Person chart, it looked
like Icarus hadn't done any work; however, looking at the Daily Scrum worksheet, you can
see that he has been out of town since the sprint began and just got back today. Regardless
of his being out of town, he reported in each day, and he has offered his contact info in case
anyone needs his help.

On the other hand, even though Gilbert has completed several tasks, he doesn't check in at
all on days that he's not working, and he doesn't tell us much when he does. Even though

273

he's doing a lot of work, he's not communicating well with the team, which is something that
should be addressed soon.

Looking at today's row (12/13) on the chart, you can see that Henri has yet to fill in the
Scrum today (which might be because he's out). The Daily Scrum worksheet highlights
today's row in green if it has not yet been filled out and highlights empty entries for past
days in red.

When working with teams, good communication is critical, and this worksheet can help you
achieve this. I have had several students approach me concerned because they didn't know
where their team members were or what they were working on. After implementing this
worksheet in my classes, the students who used it found that they were far less stressed
about their projects. Even if someone is unable to work for a day or two, it can be managed
as long as the rest of the team knows to expect it.

Creating Your Own Burndown Charts
Now that you're familiar with the features of the Burndown Chart Example, you can create
your own charts from the template I used to build this example chart. As with the example
chart, you can get this in two places:

 At the link: http://bit.ly/IGDPD_BDC_Template
Or
 The website for this book: http://book.prototools.net, under Chapter 14

Summary
As you move on to designing and developing your own games, keeping your development
process on track can be difficult. In my years as a developer and professor, I have found
that the Agile mindset and Scrum methodology are two of the best tools for doing so. Of
course, I can't tell you for sure whether these tools work as well for you as they have for my
students and me, but I strongly encourage you to give them a try. In the end, it is not
important whether Scrum and Agile are the perfect tools for you. The important thing is that
you find tools that do work for you and that you use them to help you stay motivated and
productive when working on your games.

In the next chapter, I'll examine the digital game industry and discuss ways in which you can
get involved. I'll also look at how to meet people at game development conferences and
what to look for in a university game program.6

1. Kent Beck, et al. "Manifesto for Agile Software Development," Agile Alliance (2001).
2. You do, of course, want to respect other people's ownership of their IP. My point here

274

http://bit.ly/IGDPD_BDC_Template
http://book.prototools.net

is that making something is more important than arguing over who should own what
percentage of it.

3. Thank you to my friend and colleague, Tom Frisina, who first introduced me to Scrum
and Agile.

4. Ken Schwaber and Mike Beedle, Agile Software Development with Scrum (Upper
Saddle River, NJ: Prentice Hall, 2002).

5. Though on rare occasions, the Product Owner is the actual client, more often it is
someone internal to the company who acts as an advocate for the client.

6. You may wonder why I used male pronouns for Archon, Henri, Icarus, and Gilbert
when I've used female pronouns throughout the rest of the book. These were the player
character names that three of my teammates and I used when we worked together on the
Skyrates game during grad school, and I put them into the burndown chart as a bit of an
homage. Regardless of what the fictional chart here might say, they were three of the
best people whom I have ever had the pleasure of working with, and I would be
honored to work with any of them again.

275

CHAPTER 15

THE DIGITAL GAME INDUSTRY

If you're taking the time to read this book and learn about prototyping games, it's
probably safe to assume that you might have some interest in joining the game
industry.

In this chapter, I present a little information about the current state of the
industry and then talk a bit about university games education programs. I give
you some tips on meeting people, networking, and looking for work. Finally, I tell
you about how to prepare for your own projects.

About the Game Industry
The most definitive thing that I can tell you about the game industry right now is that it is
changing. A lot of big names like Electronic Arts and Activision are still around, as they
have been for the last three decades, but we've also seen the rise of new startups like Riot
Games—the developer of League of Legends—which went from just a few employees in
2008 to having one of the world's most played online games today. It wasn't too long ago
that no one would have believed a cell phone could be one of the most successful game
platforms, but sales of games for Apple's iOS devices alone are now worth billions of
dollars. Because everything is changing so quickly, I'm not going to give you specific
numbers for most things. Instead, I'll point you to resources that can (and that will be
updated yearly).

Entertainment Software Association Essential Facts
The ESA (http://theesa.com) is the trade association and lobbying organization for most
large game development companies, and it was the ESA who argued before the United
States Supreme Court for games to be protected by the first amendment. The ESA releases a
yearly report on the state of the game industry called the Essential Facts that you can find by
searching for "ESA essential facts" on Google. Certainly the reports have some bias issues
(the ESA's job is to see the game industry through rose-colored glasses), but the reports are
still a good way to get an idea of what the overall industry looks like. Here are ten facts
from the Essential Facts 2016 report:1

276

http://theesa.com

1. 63% of U.S. households have at least one person who plays games at least 3
hours/week, with an average of 1.7 gamers per household. With the current number of
households in the U.S., this comes to about 125 million total gamers in the United
States.2

2. Consumers spent $23.5 billion on video games, hardware, and accessories in 2015.
3. Purchases of digital content, including games, add-on content, mobile apps,

subscriptions, and social networking games accounted for 56% of game sales in 2015
(up from 40% in 2012).

4. The average male game player is 35 years old and has been playing games for 13 years.
The average female game player is 44.

5. 26% of game players are over age 50. Based on our earlier number this means there
are more than 32 million gamers over the age of 50 in the U.S.! That's a huge untapped
market!

6. 41% of all game players are women (though, unfortunately, this is down from a peak
of 48% in 2014). Women over the age of 18 still represent a larger portion of the game-
playing population (31%) than boys age 17 or younger (17%).

7. The most frequent device on which people play games is a personal computer (56%).
Other common platforms include dedicated game consoles (53%), smartphone (36%),
wireless devices like iPads (31%), and dedicated handheld systems (17%).

8. Puzzle games dominate the market on wireless and mobile devices. The most common
types of games for wireless and mobile devices are puzzle/board/card games (38%),
action games (6%), and strategy games (6%).

9. In all, 89% of games rated by the ESRB (Entertainment Software Ratings Board) in
2012 received a rating of "E" for Everyone, "E10+" for Everyone 10+, or "T" for Teen.
(See www.esrb.org or www.pegi.info for more information on game ratings.)

10. Of the most frequent gamers, 55% are familiar with Virtual Reality (VR), and 22%
expect to purchase VR hardware within the next year.

Things That Are Changing
The things that are changing in the industry have to do with working conditions, the costs of
producing games, freemium games, and independent developers.

Working Conditions at Game Companies
If you know nothing about the game industry, you might think that working at a game
company is fun and easy. If you know a little about it, you might have heard that game
company employees routinely work 60-hour weeks with mandatory overtime for no
additional pay. Though the real story now for most companies is better than that, the stories

277

you might have heard were based on fact, and I do have friends in the industry who still
sometimes have mandatory 70-hour workweeks (10 hours/day, no weekends) during
"crunch time" on their projects, but luckily that trend has diminished greatly over the past
decade. Most companies, especially larger companies, will still ask you to work overtime
sometimes, but the stories of game developers who haven't seen their partners or kids for a
week have become rarer (though sadly, they do still exist). However, when interviewing
with any game company, you should definitely ask about their overtime policy and history
of crunch time on projects.

Rising Costs of AAA Development
Each generation of gaming consoles has seen a rise in the cost of developing a top title
(also known as a "AAA" game, pronounced "triple-a"). This was especially true with the
PlayStation 3 and Xbox 360 versus the PlayStation 2 and Xbox, and the trend has continued
for the Xbox One and PlayStation 4 as well. Teams for AAA titles are now routinely more
than 100 or 200 people, and even some apparently small teams actually have outsourced
several aspects of the game's development to other studios, each having hundreds of their
own employees. It is still unusual—but no longer unheard of—for a AAA game budget to
exceed $100 million and have a combined total team of more than 1,000 people spread
across several studios.

The effect of all of this on the game industry has been the same as the effect that budget
inflation had on the film industry: The more money that a company spends on a project, the
less willing it is to take risks. This is why in Figure 15.1 of the ESA's list of the top 20
best-selling console games of 2015, only one game (Dying Light) isn't a sequel (this
version of Minecraft is a console remake of the PC version).

Figure 15.1 The 20 top-selling video games in 2015 by units sold (according to "ESA
Essential Facts 2016")

The Rise (and Fall) of Freemium Games
According to Flurry Analytics, during a six-month period between January and June of
2011, free-to-play games rapidly overtook paid games in terms of iOS revenue.3 In January

278

of 2011, premium games (which are purchased upfront) accounted for 61% of the game
revenue on the iOS App Store. By June, that number had crashed down to 35%, with 65%
of revenue then coming from freemium games. The freemium model—where the player gets
the game for free but is asked to pay small amounts to gain gameplay advantages or
customization—catapulted Zynga from a two-person start-up to more than 2,000 employees
in just a few years. However, this model has been shown to work much better for casual
games than more traditional genres, and some developers of more traditional genres who
are now creating mobile games have chosen to return to the premium model because they
believe that their market is averse to the freemium model.

A few freemium games have done well with a more core (that is, less casual) audience of
gamers. The primary differentiating factor between these and the casual freemium games is
that many of the casual games allow and encourage players to purchase a competitive edge
in the game (i.e., pay more to win more), whereas core games like Team Fortress 2 (TF2)
only allow players to purchase aesthetic items (e.g., hats) or items that change game
mechanics without making them imbalanced (e.g., the Black Box rocket launcher for
Soldiers that has –25% clip size yet grants the Soldier +15 health whenever it hits an
enemy). In addition, nearly every item that is purchasable in TF2 can alternatively be
crafted by players from items gained through gameplay. The critical element in this is that
core players don't want to feel that someone else has bought a gameplay advantage over
them.

Whether you choose to go for freemium or premium relies largely on the genre of game you
want to develop and the market and type of players that you are seeking. Look at other
games in the market and see what the standards are, then decide whether you want to go
along with them or buck the trend.

The Rise of the Indie Scene
While AAA games have become much more expensive to create, the ubiquity of free or
cheap game development tools like Unity, GameMaker, and Unreal Engine has led to the
rise of a worldwide independent development community to an extent that has never been
seen before. As you'll see when you read the rest of this book, almost anyone can learn to
program, and dozens of developers have now proven that all you need to make a game is a
great idea, some talent, and a lot of time. Many of the most famous independent game
projects started as the passion project of a single person, including Minecraft, Spelunky,
and The Stanley Parable. IndieCade is a game conference that started in 2005 and is
dedicated exclusively to independent games. Beyond that, dozens of other conferences
either focus on independent development or have a track or contest for indie developers.4
Making video games is now easier than it has ever been, and the rest of this book can teach
you how.

279

Game Education
Over the past decade, game design and development education at the university level has
gone from a curiosity to a legitimate field of study. The Princeton Review now ranks the
top graduate and undergraduate game programs yearly, and some programs even offer Ph.D.
degrees in games and game studies.

People generally have two core questions about these programs:

 Should I enroll in a game education program?
 Which game education programs should I apply to?

Should I Enroll in a Game Education Program?
As a professor who has spent the last several years of my life teaching in these programs, I
can say that my answer to this question is a qualified yes. Game education programs offer
several clear benefits:

 You have a concentrated space and time in which to build your design and development
skills in a structured way.
 You'll be surrounded by faculty who can give you honest, meaningful feedback on your
work and peers who can become great collaborators. In addition, many of the faculty in
these programs have worked in the game industry and have connections to several game
companies.
 Many game companies actively recruit from the top schools. Being at one of them means
that you could have the chance to interview for an internship with one of your favorite
studios.
 When new employees are hired out of university game programs—especially master-
level programs—they usually enter the company at a higher level than others.
Traditionally, people got into game companies by working in QA (quality assurance) and
testing games. If they excelled at QA, they could get noticed and move up into one of the
other positions. Although this is still a very valid way to enter the industry, I have seen
new people coming out of university programs often get hired above talented people
with several years of seniority who came up through QA.
 Higher education in general will push you to grow and become a better person.

However, you should be aware of some definite caveats. School takes both time and
money. If you don't have a bachelor's degree, I personally think that you should absolutely
get one. Throughout your life, it will open more doors and grant you more opportunities
than not having one. A master's degree is much less necessary in the industry, but programs
at the master level are able to offer much more focused education and can be truly
transformative. Master's programs generally take between 2 and 3 years and can cost

280

$60,000 or more. However, as my professor Dr. Randy Pausch was fond of saying, your
time should be more of a consideration for you than the cost of education. Long-term debt
and predatory lending practices are real concerns and have raised the potential price of an
advanced degree. But even with that being the case, the most important question you should
ask yourself is whether getting an advanced degree is worth two to six years of your life
when you could potentially have been out in the industry already. When I chose to go to
Carnegie Mellon, it was because I wanted to change the trajectory of my career. I chose to
spend two years of my life paying money instead of earning it, and for me, that decision
absolutely paid off. You must do what you feel is right, of course.

Which Game Education Programs Should I Apply To?
Hundreds of universities now offer game education programs, and new ones are being
added every year. The Princeton Review's list of the top schools is generally well
respected, but picking a school that is right for you and what you want to do in the industry
is much more important. Take time to research the program and learn about the classes and
faculty. Investigate how much emphasis the program puts on the different aspects of game
development: design, art, programming, management, and so on. Do the program's faculty
currently work in the game industry, or do they focus entirely on teaching? Each school will
have certain aspects that are their strengths.

As a student, I attended Carnegie Mellon University's Entertainment Technology Center
(ETC) for my Master of Entertainment Technology degree. At its core, the ETC is based
around teamwork and client work. In the first semester (which was for me the best
educational semester I have ever experienced), each incoming student works on five
collaborative two-week assignments with a randomly selected team of peers in a class
called Building Virtual Worlds (BVW). The incoming class size is generally more than 60
students, and this helps them experience working with new people continuously throughout
the semester. In that semester, each person works about 80 hours each week on her team
assignment in addition to taking two or three other classes that supplement BVW. Then, for
the remaining three semesters, each student is assigned to a single project team for the full
semester and takes only one additional class. Most of these semester-long projects have a
real client for whom they are being produced, so ETC students learn firsthand how to
manage client expectations, work with peers, and handle internal disputes. These projects
are designed to give students several years' worth of industry experience in only two years
of grad school. The goal of the ETC is to prep game designers, producers, programmers,
and technical artists for work on industry teams.

In contrast, the Master of Fine Arts program in the Interactive Media & Games Division
(IMGD) at the University of Southern California (where I taught for four years) is
structured very differently. The size of the incoming cohort each year is generally 15 or
less, and all students take several classes together in the first year. Though there are group

281

projects, the students do several independent assignments as well. In the second year,
students are encouraged to branch out and explore their personal interests. Students take
roughly half of the classes in the second year with their cohort, but they can select the other
half of the classes from across the university. The third year in the IMGD is devoted almost
entirely to each student's work on her individual thesis project. Though each student leads a
thesis project, students very rarely work alone. Most thesis teams are 6 to 10 people in
size, and the other team members are pulled from interested students across the university.
Each thesis project also has a thesis committee composed of mentors from the industry and
academia who are interested in the project and led by a thesis chair from the IMGD faculty.
The goal of the IMGD is to "create thought leaders." It is more important to this program
that the individual students grow and produce something innovative than that they are
prepared for industry jobs.

In my current job, I teach students in the Game Design and Development minor of the Media
and Information Department at Michigan State University, the highest-ranked game minor
program in the world. Our minor focuses on prepping students to go directly into
professional jobs in the industry. One of the major advantages of the program being a minor
is that every student in the program gets major-level experience in Media & Information,
Computer Science, or Studio Art (the three most common majors in the game development
minor) as well as the best possible game design and development education available at
our university. This is very different from most other universities where the minor students
get a second-class version of games education.

As you can imagine, each of these programs benefit students in very different ways. I have
chosen these three to illustrate the point because they are the three with which I am most
familiar, but every single school is different, and you owe it to yourself to learn the goals
that each school has for its students and how it hopes to achieve them through the classes it
teaches.

Getting Into the Industry
I have condensed the content in this section from the "Networking with the Pros" talk that I
gave at the 2010 Game Developers Conference Online. If you would like to see the
expanded version, you can find the slides on the website for this book.5

Meeting People in the Industry
The best way to meet people in the game industry is to go where they are. If you're
interested in board games, this means Gen Con; if you are interested in AAA development,
this means the Game Developers Conference in San Francisco; and if you're interested in
independent game development, this means IndieCade. Many other conferences out there
are quite good, but those are the three that have the biggest draw from each of those

282

groups.6

However, being at a dev conference only means that you are co-located with game
developers. To meet them, you must find a way to go up and say hello. Some good times to
do so include parties, after a talk that they've given, and when they're working the Expo
floor. However, in each of these cases, you need to be courteous, concise, and respectful
both to the developer and especially to the other people who want to talk to her. Game
developers are busy people, and they each have a reason to be at the conference. They, too,
want to meet people, expand their networks, and talk shop with other developers. So don't
take too much of their time, don't ever make them feel trapped in a conversation with you,
and always have something to bring to the table. That is, make sure that you have something
to say that will be interesting to them before you start the conversation.

When meeting people for the first time, don't act like a fawning fan. Every game designer
from Will Wright to Jenova Chen is a regular person, and very few of them have any
interest in being idolized. Along these lines, avoid saying things like "I love you! I'm your
biggest fan!" Frankly, that's pretty damn creepy. Instead, saying things like "I really enjoyed
playing Journey" is much better. That way, you're complimenting the game—a game that
several people worked on—rather than complimenting the individual person, about whom
you actually know very little.

Of course, the very best time to meet someone new is when you're introduced. This gives
you an in as well as something to talk about (your mutual friend). However, when this
happens, you have a critical responsibility to the friend who introduced you—the
responsibility to not make her look bad. Whenever someone introduces you, she is vouching
for you, and if you do something embarrassing, it reflects badly on her.

Also, don't just focus on meeting famous game developers. Everyone at these conferences
loves games, and students and volunteers at the conference are some of the most passionate
and creative people you can talk to. Plus, who knows—anyone you meet at a dev
conference could be the next great designer everyone is talking about, and later they'll be a
great friend to have take a look at your games as you develop them.

Things to Take to the Game Conference
If you're going to meet people, you should always have business cards on you. You can put
whatever you want on the front, as long as you make sure it's legible. I usually recommend
leaving the back largely blank so that the person to whom you give the card can write notes
on it that will remind her later of what you talked about.

Other things I tend to take with me include the following:

283

 Breath mints and toothpicks. Seriously.
 A pocket tool like a small Leatherman. Being the person in the room who can fix little
things that break is nice.
 A resume. I don't carry these with me anymore—because I'm very happy with my
current job—but if you're seeking a job, you really want to have a few copies with you.

Following Up
So, you've met someone at the conference and gotten her business card. What's the next
step?

About two weeks after the conference, write the person an email. You generally want to
wait a couple of weeks because everyone is completely flooded with emails and work
when they get back from a dev conference. Your email should generally follow a format
similar to that shown in Figure 15.2.

Figure 15.2 An example letter

Send the letter and wait a couple of weeks. If you don't hear anything back, write one more
time with a lead in like "I'm willing to bet that you were pretty busy after the conference, so
I wanted to write again and make sure that you got my email." If she doesn't respond after
the second email, do not email again. You'll meet a lot of people in the game industry, and
you don't want to bother anyone or creep them out.

Interviewing

284

If everything goes well, you might have a chance to interview at the studio. Now, how do
you prepare?

Questions to Ask Before the Day of the Interview
When you interview, you'll be talking to people who are actually on game development
teams. Before the interview, the person you talk to will usually be a recruiter. Part of the
recruiter's job is to make sure that candidates are properly prepared for the interview, and
her evaluation at the end of the year will be partially based on the quality of candidates she
brings in. This means that it is in her best interest for you to be perfect for the job, and she
is more than willing to answer any questions that can help you better prepare for the
interview.

Questions to ask include:

 What would my job be? You want to know the answer to this as specifically as
possible so that you can prepare.
 On which project would I be working? This also answers whether the company is
interviewing you for a specific position or is interested in hiring good people regardless
of what project they will work on.
 What is the company culture like? Each company culture is different, particularly in
the game industry. A question like this can also lead to a discussion of things like
overtime and crunch time. You don't really need to know the answer to questions about
company culture before interviewing, but you definitely need to know them before you
sign a contract.
 What would be appropriate for me to wear to the interview? Many, many people
skip this simple but important question. In general, I tend to dress more formally than I
would on a normal workday, but for most game companies, that doesn't mean wearing a
suit (and it almost never means wearing a tie). Remember, you're not going to a nice
dinner, a party, a date, or a religious ceremony. My wife, a professional costume
designer and professor, recommends this: You want to look nice, but you want to make
sure that the focus is on your skills and mind, not on how you look.

Another thing to consider is: Though you definitely want to wear something that makes you
feel comfortable, you also want to wear something that makes the interviewers feel
comfortable. Every studio talks at some point to investors, the press, publishers, and other
people who tend to work in more formal cultures than a game development studio. One of
the things that the studio needs to know about you is whether you can be part of those
discussions or whether they would have to hide you in a back room so you don't embarrass
them when guests visit. Be sure that they place you in the former category.

285

A lot of different opinions are out there on the web about what is appropriate to wear, so
the best thing you can do is ask the recruiter. The recruiter will have seen every candidate
who comes in, and she'll know what works and what doesn't.

In addition to clothing, you should also think about making sure your hair (including any
facial hair) looks deliberate instead of accidental.

 Are there any games by other studios that I should play before the interview? You
absolutely must play games made by the studio where you're interviewing before you go
in, and if you're interviewing to work on a specific game, not having played it or its
prequels is unforgivable. This question helps you understand which other games they
think you should have played to be knowledgeable about the state of the art in their
genre.
 Can you tell me who will be interviewing me? If you know this ahead of time, you can
do some research into their background. Knowing other projects that your interviewers
worked on before coming to the current studio or other studios where they worked
previously can give you more insight into their background and more things to talk about.

Some questions you should definitely not ask include the following:

 What games has the studio made? / How long has the studio been around? The
answers to these questions are easily available online. Asking something like this makes
it seem like you haven't done your research before coming to the interview (and
consequently like you don't really care much about the interview or job).
 How much will I get paid? Though this will eventually be a very important question,
asking this of an interviewer or recruiter is inappropriate. Instead, it will be part of your
negotiations after you have been offered the job. For information on industry averages,
you can look to the Game Developer Salary Survey at GameCareerGuide.com7 or sites
like glassdoor.com.

After the Interview
After the interview, sending handwritten thank you notes to the people with whom you
spoke is best. Try to take notes throughout the day so that you can comment on something
specific to each individual. "Thank you very much for walking me through the studio and
especially for introducing me to Team X" is much better than "It was great to meet you, and
I'm glad we talked about generic things." Just like items in games, handwritten letters are
valuable because they are rare. Every month, I get thousands of emails, more than 100
printed letters through postal mail, and less than 1 handwritten thank you note. Handwritten
notes are never spam.

286

Don't Wait to Start Making Games!
Just because you're not yet a game company employee doesn't mean that you can't make
games. After you've finished this book and gotten some experience programming and
developing prototypes, you'll probably be looking for a game to work on. Here are some
tips for that time.

Join a Project
I'm sure you have a ton of great ideas for games bouncing around in your head, but the best
thing you can do if you're new to development is to join a team that already has some
experience developing a game. Working with a team of other developers—even if they're
still learning like you are—is one of the best ways to quickly grow your skills.

Start Your Own Project
After you've either gotten some experience on a team or if you just can't find a team to work
with, it's time to start creating your own games. To do so, you need five critical elements:
the right idea, the right scope, the right team, the right schedule, and the will to finish.

The Right Idea
Millions of different game ideas are out there. You need to pick one that will actually work.
It must be something that you know you won't lose interest in, something that doesn't just
copy a game you love, something that other people find interesting, and most importantly,
something that you know you can make. This leads us to…

The Right Scope
The number one thing that stops teams from finishing games is overscoping—in other
words, biting off more than you can chew. Most new developers don't understand how long
making a game can take, so their game concepts are drastically overscoped. Scoping-down
is the process of getting the game down to its bare essentials and eliminating fluff. For a
game to have good scope, you must have a true and realistic understanding of the amount of
effort needed to implement the game, and you must make sure—you must be absolutely
certain—that you have the team and the time to finish it.

Making a tiny game and expanding on it is drastically better than starting by trying to make
something huge. Remember that most games you have played took a large team of
professionals about two years and millions of dollars to make. Even indie games often take
years of work by an experienced and talented team. When you're just starting out, think
small. You can always add more to the game later.

287

The Right Team
Working on a game with someone is a long-term relationship, and you need to treat it that
way. It's also sadly true that the things that make you great friends with someone might not
be the same things that are required to make you great team members. When you're thinking
about working with people, make sure that they have similar work habits to yours, and it's
best if they tend to work at similar times of day as well. Even if you're part of a remote
team, texting or video chatting with your teammates while you work can really help.

While creating your team, you also need to have a conversation about ownership of the
intellectual property (IP) of the game. If no agreement is in place, the default is that
everyone who had anything to do with the project owns an equal share.8 IP issues are
sticky, and they might seem kind of ridiculous to talk about before any game exists, but it is
a critical conversation to have. However, the flip side of this is that I have actually seen
game teams never get started because people were bickering about the IP ownership of a
game that didn't exist. You definitely don't want to get stuck in that trap.

ROYALTY POINTS
At my company, I've been using royalty points as what I believe to be a fair way
of distributing royalties for work done on the independent games we make. The
core idea of royalty points is that everyone earns royalties for time that they
dedicate to the project throughout the entire development of the project. Here's
how it works for my teams:

 50% of any income for a project goes directly to the company. This helps us
build up cash so that we can pay people in the future (right now, people are
working exclusively for future royalties).
 The other 50% is distributed to people who worked on the project based on
their percentage of the total royalty points.
 For every 10 hours of work that someone puts in to the project, they earn 1
royalty point.
 These points accrue throughout both the development and support of the
project.
 The points are tracked in a spreadsheet that any member of the team can view
at any time (though only I can edit it).

With this royalty point system, team members directly earn royalties as they work
on the project, and the more good work they do, the larger percentage of the
royalties they will earn. If someone on the team isn't doing good work, you remove
them from the team, and they still earn royalties for the work they did do, but they

288

earn a smaller and smaller percentage relative to the other team members who are
continuing to contribute.

This also means that members of the support team could eventually have a greater
percentage of the royalty points than the original development team; this is by
design. Most small, independent projects in the past have granted a specific
percentage of royalties to each person at the beginning of the project, which makes
it very difficult to alter things in the future and adapt to a changing work situation.
I believe that royalty points allow you flexibility as a studio while still being clear
and fair to everyone involved.

The Right Schedule
In Chapter 14, "The Agile Mentality," I cover agile development practices and burndown
charts. Make sure that you read it before you start a project. Though your mileage may vary,
I have found that for my teams and the vast majority of my student teams, burndown charts
are a fantastic tool to keep them on track and aware of where each person is in her
individual development tasks. In addition, burndown charts do a fantastic job of helping
you to understand the difference between how long you estimate a task will take and how
long it actually takes you to accomplish it. By looking at the difference between the two in
the chart up to the point where you are currently, you can get a more realistic estimate of
how long completing the remaining tasks will take.

The Will to Finish
As you make progress on your project, you will come to a point where you clearly see all
the things that you could have done better. You'll see that your code is a mess, your art
could be better, and the design has some holes in it. A lot of teams get to this point
surprisingly close to the end of the project. If you are near the end, you need to push on
through. You must have the will to finish your game. If the number one killer of games is
bad scoping, the number two killer is that the last 10% of the project is always the hardest
climb. Keep pushing, because even if the game isn't perfect—and trust me, no game ever is
—even if the game isn't all you hoped, even if it is far less than what you hoped, it will be
done. You will be a game developer with a finished title, and that means a tremendous
amount to everyone you hope to work with in the future.

Summary
There is much more to be learned about the game industry than was able to fit in this single
chapter. Luckily, many websites and publications cover the game industry, and talks at
conferences often address both what it takes to join the industry and the process of starting

289

a company. A simple web search should surface several of them, and the GDC Vault
(http://gdcvault.com) is a great place to find videos of many talks.

If you do choose to start a company, be sure that you find a lawyer and an accountant that
you can trust to help you before you actually run into any bumps in the process. Lawyers
and accountants have years of training in how to build and protect companies, and having
them available to consult can make your path to incorporation much easier.

1. http://essentialfacts.theesa.com/Essential-Facts-2016.pdf. Emphasis mine.
2. Additional information from the U.S. Census Bureau:

https://www.census.gov/quickfacts/. 116,926,305 households in the U.S. * 63% * 1.7
gamers/household ≈ 125 million.

3. "Free-to-play Revenue Overtakes Premium Revenue in the App Store" by Jeferson
Valadares (Jul 07, 2011),
http://web.archive.org/web/20140108025130/http://blog.flurry.com/bid/65656/Free-
to-play-Revenue-Overtakes-Premium-Revenue-in-the-App-Store. Accessed January 29,
2017.

4. Full disclosure: Since IndieCade 2013, I have been the IndieCade Chair of Education
and Advancement and have programmed the IndieXchange and Game U (2013–15)
conference tracks. I'm honored to be part of such a fantastic organization and
conference.

5. The complete slides from the talk are available at http://book.prototools.net.
6. E3 and PAX are also famous game conferences, but you're less likely to meet actual

game developers there.
7. The salary surveys were traditionally a yearly article in Game Developer Magazine,

which had the same owners as GameCareerGuide.com. However, the magazine ceased
publication in 2013. You can still see the salary survey that was published in 2013 at
http://gamecareerguide.com/features/1279/game_developer_salary_survey_.php.

8. I am not a lawyer, and I am not trying to give legal advice. I'm just sharing my personal
understanding of the situation. If you have a friend who is a lawyer, I recommend asking
her about it or looking for information online.

290

http://gdcvault.com
http://essentialfacts.theesa.com/Essential-Facts-2016.pdf
https://www.census.gov/quickfacts/
http://web.archive.org/web/20140108025130/http://blog.flurry.com/bid/65656/Free-to-play-Revenue-Overtakes-Premium-Revenue-in-the-App-Store
http://book.prototools.net
http://gamecareerguide.com/features/1279/game_developer_salary_survey_.php

PART II

DIGITAL PROTOTYPING

16 Thinking in Digital Systems
17 Introducing the Unity Development Environment
18 Introducing Our Language: C#
19 Hello World: Your First Program
20 Variables and Components
21 Boolean Operations and Conditionals
22 Loops
23 Collections in C#
24 Functions and Parameters
25 Debugging
26 Classes
27 Object-Oriented Thinking

291

CHAPTER 16

THINKING IN DIGITAL SYSTEMS

If you've never programmed before, this chapter will be your introduction to a
new world: one where you have the ability and skills to make digital prototypes of
the games you imagine.

This chapter describes the mindset you need to have when approaching
programming projects. It gives you exercises to explore that mindset and helps
you think about the world in terms of systems of interconnected relationships and
meaning. At the conclusion of this chapter, you will be in the right mindset to
explore the challenges of the "Digital Prototyping" part of this book.

Systems Thinking in Board Games
In the first part of the book, you learned that games are created from interconnected
systems. In games, these systems are encoded into the rules of the game and into the players
themselves, meaning that all players bring certain expectations, abilities, knowledge, and
social norms to the games that they play. For example, when you see a standard pair of six-
sided dice included in the box with a new board game, you immediately start to make
assumptions about how the dice will be used in the game:

 Common assumed behaviors of 2d6 (two six-sided dice) in board games
1. Each die is rolled to generate a random number between 1 and 6 (inclusive).
2. The dice are often rolled together, especially if they are the same color and size.
3. When rolled together, the dice are usually summed. For example, a 3 on one die and

a 4 on the other would sum to a total of 7.
4. If "doubles" are rolled (that is, both dice show the same value), sometimes the player

receives a special benefit.

You also probably make assumptions about several things that will not be done with the
dice:

 Common assumed restrictions on 2d6 usage in board games

292

1. A player will not just place the dice on the values that she would prefer to have.
2. The dice must stay on the table and must land completely flat on a side to be

considered a valid roll.
3. When rolled, the dice are generally not touched for the rest of that player's turn.
4. Dice are generally not thrown at other players (or eaten).

Although exploring such simple, often unwritten, rules in detail might seem somewhat
pedantic, it serves to show how many of the rules of board games are not actually present in
the rule book; rather they are based on the shared understanding of fair play among the
players. This idea is incumbent in the concept of the magic circle, and it's a large part of
what makes it so easy for a group of children to spontaneously create a game that they all
intuitively understand how to play. Most human players carry within them massive
preconceptions about how games are played.

Computer games, however, rely on specific instructions to do absolutely everything. At
their core—regardless of how powerful they have become over the past several decades—
computers are mindless machines that follow very specific instructions billions of times
per second. Providing the computer with a semblance of intelligence by encoding your
ideas into very simple instructions for it to follow is up to you, the programmer.

An Exercise in Simple Instructions
One classic exercise for budding computer science students to help them understand how to
think in terms of very simple instructions involves telling another person how to stand up
from a prone position. You'll need a friend for this.

Ask your friend to lie on his back on the floor, and ask him to only follow your exact
instructions to the letter. Your goal is to give your friend instructions that will move him
into a standing position; however, you cannot use any complex commands like "stand up."
Instead, you must only use the kind of simple commands that you might imagine giving to a
robot. Examples of the level of detail you could offer him are:

 Bend your left elbow closed 90 degrees.
 Extend your right leg toward the doorway.
 Place your left hand on the ground with your palm facing downward.
 Point your right arm at the television.

In reality, even these simple instructions are drastically more complex than anything that
could be sent to most robots, and they're pretty open to interpretation. However, for the
sake of this exercise, this level of simplicity will suffice.

293

Give it a try.

How long did it take you to give your friend the right instructions to stand up? If you and
your friend try to follow both the rules and the spirit of the exercise, it will take quite a
while. If you try it with different people, you'll find that it takes much, much longer if your
friend doesn't know ahead of time that you have the end goal of getting him into a standing
position.

How old were you the first time you were asked by a member of your family to set the table
for a meal? I think I was only about four when my parents decided that I could handle that
complex task with my only instruction being "Please set the table for dinner." Based on the
exercise that you just completed, imagine how many simple instructions you would have to
give to a person to recreate the complex task of setting the table; yet children are often able
to do this before they start elementary school.

What This Means to Digital Programming
Now, of course, I didn't give you that exercise to discourage you. In fact, the following two
chapters are meant to be really inspirational! Rather, I gave it to help you understand the
mentality of computers and to set up several metaphors for aspects of computer
programming. Let's take a look.

Computer Language
When I gave you the list of four example commands that you could give, I was outlining the
parameters of the language that you could use to talk to your friend. Obviously, this was a
pretty loose language definition. Throughout this book, you will use the programming
language C# (pronounced "see sharp"), and thankfully, its language definition is far more
specific. You will explore C# throughout the chapters in this part of the book, but suffice to
say that I have taught thousands of students several different programming languages over
more than a decade, and my experience has shown me that C# is one of the best languages
for people to learn as their first programming language. Though learning it requires slightly
more diligence than learning simpler languages like Processing or JavaScript, it gives
learners a far better understanding of core development concepts that will help them
throughout their game prototyping and development careers, and it enforces good coding
practices that will eventually make their code development faster and easier.

Code Libraries
In the previous exercise, you can see that being able to tell your friend to "stand up" would
have been much easier than going through the trouble of having to give so many low-level
commands. In that case, "stand up" would have been a multipurpose high-level instruction

294

that you could have used to tell your friend what you wanted regardless of the starting
position that he was in. Similarly, "please set the table" is a common, high-level instruction
that generates the desired outcome regardless of what meal is being prepared, how many
people will be eating, or even what household you are in. In C#, collections of high-level
instructions for common behaviors are called code libraries, and hundreds of them are
available to you as a C# and Unity developer.

The most common code library that you will use is the collection of code that tailors C# to
work properly with the Unity development environment. In your code, this extremely
powerful library will be imported under the name UnityEngine. The UnityEngine
library includes code for the following:

 Awesome lighting effects like fog and reflections
 Physics simulations that cover gravity, collisions, and even cloth simulation
 Input from mouse, keyboard, gamepad, and touch-based tablets
 Hundreds of other things

In addition, there are thousands of free (and paid) code libraries out there to help make
your coding easier. If the thing you want to do is pretty common (e.g., moving an object
across the screen smoothly over the course of one second), there's a good chance that
someone has already written a great code library to do so (in this case, the free library
iTween by Bob Berkebile, http://itween.pixelplacement.com/ is pretty good).

The prevalence of great code libraries for Unity and C# means that you can concentrate on
writing code for the new, unique aspects of your games rather than reinventing the wheel
every time you start a new game project. In time, you will also start collecting commonly
used bits of your own code into libraries that you will use across multiple projects. In this
book, you will start doing so through a code library called ProtoTools that will grow in
capability across several projects.

Development Environment
The Unity game development environment is an essential part of your development
experience. You can best think of the Unity application as an environment in which to
collect and compose all the assets that you create for a game. In Unity, you will bring
together 3D models, music and audio clips, 2D graphics and textures, and finally the C#
scripts that you author. None of these assets are created directly within Unity; rather, Unity
is where they are all composed together into a cohesive computer game. You will also use
Unity to position game objects in three-dimensional space, handle user input, set up a
virtual camera in your scene, and finally compile all of these assets together into a working,
executable game. Chapter 17, "Introducing the Unity Development Environment" discusses

295

http://itween.pixelplacement.com/

the capabilities of Unity extensively.

Breaking Down Complex Problems into Simpler Ones
One of the key things you must have noticed in the exercise is that the exclusion from giving
complex commands like "stand up" meant that you needed to think about breaking complex
commands down into smaller, more discrete commands. Although this activity was difficult
in the exercise, in your programming, you will find the skill of breaking complex tasks into
simpler ones to be one of the greatest tools that you have for tackling the challenges that you
face and helping you make the games you want one small piece at a time. I use this skill
every day in the development of my games, and I promise that it will serve you well. As an
example, let's break down the Apple Picker game that you will make in Chapter 28,
"Prototype 1: Apple Picker" into simple commands.

Game Analysis: Apple Picker
Apple Picker is the first prototype that you will make in this book. It is based on the game
play of the classic Activision game Kaboom!, which Larry Kaplan designed and Activision
published in 1981.1 Many clones of Kaboom! have been made through the years, and ours is
a somewhat less violent version. In the original game, the player moved buckets back and
forth in an attempt to catch bombs being dropped by a "Mad Bomber." In this version, the
player uses a basket to collect apples that are falling from a tree (see Figure 16.1).

Figure 16.1 The Apple Picker game you will make in Chapter 28

In this analysis, you will look at each of the GameObjects2 in Apple Picker, analyze each
of their behaviors, and break down those behaviors to simple commands in flowchart form.
This demonstrates how simple commands can lead to complex behavior and fun gameplay.

296

I recommend searching for "play Kaboom!" online to see whether you can find an online
version of the game to play before digging into this analysis, but the game is simple enough
that doing so is not necessary. You can also find a version of the Apple Picker game
prototype on the http://book.prototools.net website under Chapter 16, although the Apple
Picker game is only a single endless level, whereas Kaboom! had eight distinct difficulty
levels.

Apple Picker Basic Gameplay
The player controls the three baskets at the bottom of the screen and can move them left and
right using the mouse. The apple tree moves back and forth randomly while dropping
apples, and the player must use her baskets to catch the apples before they hit the ground.
For each apple that the player catches, she earns points, but if even a single apple hits the
ground, it and all other remaining apples disappear, and the player loses a basket. When the
player loses all three baskets, the game is over. (The original Kaboom! game had a few
other rules about the number of points earned per bomb [apple] and the progression of the
various levels, but those are unimportant for this analysis.)

Apple Picker GameObjects
In Unity terminology, any object in the game—usually meaning anything that you see on
screen—is a GameObject. We can also use this term in discussing the elements shown in
the screenshot in Figure 16.2. For consistency with later Unity projects, I capitalize the
name of all GameObjects (e.g., Apples, Baskets, and AppleTree) in the following list.

Figure 16.2 Apple Picker with GameObjects labeled

A. Baskets: Controlled by the player, the Baskets move left and right following the

297

http://book.prototools.net

player's mouse movements. When a Basket collides with an Apple, the Apple is
caught, and the player gains points.

B. Apples: The Apples are dropped by the AppleTree and fall straight down. If an
Apple collides with any of the three Baskets, the Apple is caught and disappears from
the screen (granting the player some points). If an Apple passes off the bottom of the
screen, it disappears, and it causes all other Apples on screen to disappear as well.
This destroys one of the Baskets (starting with the top Basket). When this is resolved,
the AppleTree starts dropping Apples again.

C. AppleTree: The AppleTree moves left and right randomly while dropping Apples.
The Apples are dropped at a regular interval, so the only randomness in the behavior
is the left and right movement.

Apple Picker GameObject Action Lists
This analysis does not consider the increasing difficulty levels that are present in the
original Kaboom! game. Instead the focus is on the moment-to-moment actions taken by
each GameObject.

Basket Actions
Basket actions include the following:

 Move left and right following the player's mouse.
 If any Basket collides with an Apple, catch the Apple.3

That's it! The Baskets are very simple.

Apple Actions
Apple actions include the following:

 Fall down.
 If an Apple hits the bottom of the screen, the end of the round is triggered.4

The Apples are also very simple.

AppleTree Actions
AppleTree actions include the following:

 Move left and right randomly.

298

 Drop an Apple every 0.5 seconds.

The AppleTree is pretty simple, too.

Apple Picker GameObject Flowcharts
A flowchart is often a good way to think about how the flow of actions and decisions works
in your game. Let's look at some for Apple Picker. Though the following flowcharts refer to
things like adding points and ending the round, right now, just look at the actions that take
place in a single round and don't worry about how those kinds of scoring and round actions
actually work.

Basket Flowchart
In Figure 16.3 shows the behavior of the Basket outlined in a flowchart. The game loops
through this flowchart every frame (which is at least 30 times every second). This is shown
by the oval that is at the top left of the chart. Boxes in the flowchart contain actions (e.g.,
Match Left/Right Mouse Movement), and diamonds contain decisions. See the sidebar
"Frames in Computer Games" to learn more about what constitutes a frame.

Figure 16.3 Basket flowchart

299

FRAMES IN COMPUTER GAMES
The term frame comes from the world of film. Historically, films were composed
of strips of celluloid containing thousands of individual pictures (known as
frames). When those pictures were shown in quick succession (at either 16 or 24
frames per second [fps]), it produced the illusion of movement. Later, on
televisions, the movement was constructed from a series of electronic images
projected onto the screen, which were also called frames (and operated at about
30 fps in the United States).

When computer graphics became fast enough to show animation and other moving
images, each individual image shown on the computer screen was also called a
frame. In addition, all the computation that takes place leading up to showing that
image on screen is also part of that frame. When Unity runs a game at 60 fps, it is
not only creating and displaying a new image on screen 60 times per second. In
that time, it is also calculating the tremendous amount of math required to properly
move objects between one frame to the next.

Figure 16.3 shows a flowchart representation of the computation that is involved
in moving the Basket from one frame to the next.

Apple Flowchart
The Apple has a pretty simple flowchart as well (see Figure 16.4). Remember that the
collision between the Apple and the Basket is part of the Basket behavior, so it does not
need to be handled in the Apple flowchart.

300

Figure 16.4 Apple flowchart

AppleTree Flowchart
The AppleTree flowchart is slightly more complex (see Figure 16.5) because the
AppleTree has two decisions to make each frame:

301

Figure 16.5 AppleTree flowchart

 Does it change direction?
 Does it drop an Apple?

The decision of whether to change direction could just as easily come before or after the
actual movement. For the purposes of this chapter, either would have worked.

Summary
As you've now seen, digital games can be broken down into a set of very simple decisions
and commands. This task is implicit in how I approached creating the prototypes for this
book, and it is something that you will do yourself when you approach your own game
design and development projects.

Chapter 28, "Prototype 1: Apple Picker," expands on this analysis and shows how to
convert these action lists into lines of code that make your Baskets move, your Apples fall,
and your AppleTrees run around like a Mad Bomber dropping Apples.

302

1. http://en.wikipedia.org/wiki/Kaboom!_(video_game)
2. A GameObject is Unity's name for an object that is active in a game. Each GameObject

can contain many components like a 3D model, texture information, collision
information, C# code, and so on.

3. Making this collision and reaction part of the Apple actions would also be possible, but
I have chosen to make it part of Basket.

4. The end of a round causes all the Apples on screen to disappear and deletes one of the
Baskets before starting the next round, but that does not need to be part of the Apple
action list. It will be handled instead by an ApplePicker script that will manage overall
game elements.

303

http://en.wikipedia.org/wiki/Kaboom!_(video_game)

CHAPTER 17

INTRODUCING THE UNITY DEVELOPMENT
ENVIRONMENT

This is the start of your programming adventure.

In this chapter, you download Unity, the game development environment that you
will use throughout the rest of this book. The chapter covers why Unity is a
fantastic game development tool for any budding game designer or developer and
addresses why I've chosen C# as the language for you to learn.

You also take a look at the sample project that ships with Unity, learn about the
various window panes in the Unity interface, and move these panes into a logical
arrangement that will match the examples you see in the rest of the book.

Downloading Unity
First things first—let's start downloading Unity. The installation size of Unity is more than 1
GB, so depending on your Internet speed, this could take anywhere from a few minutes to a
couple of hours. After you've gotten this process started, we can move on to talking about
Unity.

As of this writing, the latest major version of Unity is Unity 2017. Under the current Unity
release plan, a new version is released every 90 days. Regardless of version, Unity is
always available for free from Unity's store:

http://store.unity.com

This should take you to a page that with links to several different versions of Unity (see
Figure 17.1). Unity is available for both Windows and macOS, and it is nearly identical on
both platforms. The free Personal version can handle everything that is covered in this
book. Click the green Try Personal button in the Personal column to start the process. Then
click the Download Installer button on page that appears. Unity makes relatively frequent
changes to their store, but this process should stay largely the same.

304

http://store.unity.com

Figure 17.1  The web page to download Unity

This causes your computer to download the Unity Download Assistant, a small program
(less than 1MB) that will download the rest of Unity when you run it. You can find the Unity
Download Assistant in your Downloads folder.

On macOS
To install Unity on macOS, follow these steps:

1. Open the UnityDownloadAssistant-x.x.x.dmg file that was downloaded (where the x.x.x
represents the Unity version to be installed). A folder opens.

2. Double-click the Unity Download Assistant.app inside this folder to launch it (see
Figure 17.2A).

305

Figure 17.2  Installation steps for macOS

3. macOS asks whether you're sure you want to launch this application, because it was
downloaded from the Internet. Click Open to confirm (see Figure 17.2B).

4. On the Install, activate and get creating with Unity screen that appears, click
Continue.

5. To install Unity, you must agree to the terms of service by clicking Agree.
6. On the screen shown in Figure 17.2C, be sure to check the following options:

 Unity x.x.x—The current Unity version
 Documentation—Trust me, you'll definitely need this!
 Standard Assets—A number of useful assets that ship with Unity. Includes some nice
particle effects, terrain stuff, etc.
 Example Project—We will look at this later in the chapter.
 WebGL Build Support—This is now the only way to get your Unity projects online,
and you will use it later in the book.

You might need to enter the account password for your macOS or Windows PC to install.
7. The Download Assistant asks you where to install Unity. I recommend your main hard

drive because you want Unity to be quickly accessible. Click Continue.

The Download Assistant will start its long process of downloading. With the options I
recommended, my download size was about 3GB, so this might take a while.

On Windows
To install Unity on Windows, follow these steps:

306

1. Open the UnityDownloadAssistant-x.x.x.exe app that was downloaded (where the x.x.x
represents the Unity version to be installed).

2. Windows asks whether you want to allow this app to make changes to your PC. Click
Yes to confirm (see Figure 17.3A).

Figure 17.3 Installation steps for Windows

3. On the first screen of the installer, click Next >.
4. To install Unity, you must check the box next to I accept the terms of the License

Agreement, and then click Next >.
5. You should probably be running a 64-bit version of Windows by now, so select 64-bit

on the next screen. However, if you are still running 32-bit Windows, choose 32-bit. To
make sure, open Windows Settings and choose the System icon (which looks like a
computer). Then click About in the listing on the left. Beside the heading System type,
you should see either 64-bit or 32-bit (see Figure 17.3B). After selecting a version,
click Next >.

6. On the screen shown in Figure 17.3C, be sure to check the following options:1

 Unity x.x.x—The current Unity version
 Documentation—Trust me, you'll definitely need this!
 Standard Assets—A number of useful assets that ship with Unity. Includes some nice
particle effects, terrain stuff, etc.
 Example Project—We look at this in this chapter.
 WebGL Build Support—This is now the only way to get your Unity projects online,
and you use it later in the book.

7. The Download Assistant asks you where to install Unity. I recommend the default

307

location of C:\Program Files\Unity. Click Next >.

The Download Assistant will start its long process of downloading. With the options I
recommended, you might be downloading about 3GB of data, so it could take a long time.
While you wait, you should read the next section Introducing Our Development
Environment.

Introducing Our Development Environment
Before you can begin prototyping in earnest, you must first become familiar with Unity, our
chosen development environment. You can think of Unity itself as a synthesis program;
although you will bring all the elements of your game prototypes together in Unity,
production of the actual assets is usually done in other programs. You program in
MonoDevelop; model and texture in a 3D modeling program like Maya, Autodesk 3ds Max,
or Blender; edit images in a photo editor such as Affinity Photo, Photoshop, or GIMP; and
edit sound in an audio program such as Pro Tools or Audacity. Throughout the tutorials in
this book, you'll be spending most of your time writing C# (pronounced "see-sharp") code
in MonoDevelop and managing your project and scene in Unity. Because Unity will be so
important to your process, please carefully follow the Setting Up the Unity Window
Layout instructions later in this chapter.

Why Choose Unity?
There are many game development engines out there, but I focus on Unity for several
reasons:

 Unity is free: With the free Personal version of Unity, you can create and sell games
that run on a multitude of platforms. As of the writing of this edition of the book, there
are very few features of Unity Plus or Unity Pro that are not included for free in Unity
Personal. The one caveat is that if you work for a company or organization that made
more than $100,000 last year, you must purchase Unity Plus ($35/month), and if your
organization made more than $200,000 last year, you must purchase Unity Pro
($125/month). The Plus and Pro versions do allow you slightly better analytics, the
ability to set the splash screen when your app launches, more concurrent players in
multiplayer games, and a dark editor skin, but that's about it. For a game designer
learning to prototype, the free version is really all that you need.

Tip
UNITY PRICING Unity has made several changes to its licensing and pricing
structure since the first edition of the book was written, so I recommend

308

exploring the current pricing structure at http://store.unity.com.

 Write once, deploy anywhere: The free version of Unity can build applications for
macOS, PC, the Internet via WebGL, Linux, iOS, Apple tvOS, Android, Samsung TV,
Tizen, Windows Store, and more—all from the same code and files. This kind of
flexibility is at the core of Unity; in fact, it's what the product and company are named
for. Professionals can even use Unity to create games for the PlayStation 4, Xbox One,
and several other game consoles.
 Great support: In addition to excellent documentation, Unity has an incredibly active
and supportive development community. Millions of developers use Unity, and many of
them contribute to the discussions on Unity forums across the web. The official Unity
forum is at https://forum.unity3d.com/.
 It's awesome!: My students and I have joked that Unity has a "make awesome" button.
Although this is not strictly true, there are several phenomenal features built in to Unity
that will make your games both play and look better by simply checking an option box.
Unity engineers have already handled a lot of the difficult game programming tasks for
you. Collision detection, physics simulation, pathfinding, particle systems, draw call
batching, shaders, the game loop, and many other tough coding issues are already
solved. All you need to do is make a game that takes advantage of them!

Why Choose C#?
Within Unity, you have the choice to use one of two programming languages: JavaScript or
C#.

JavaScript
JavaScript is often seen as a language for beginners; it's easy to learn, the syntax is
forgiving and flexible, and it's also used for scripting web pages. JavaScript was initially
developed in the mid-1990s by Netscape as a "lite" version of the Java programming
language. It was used as a scripting language for web pages, although that often meant that
various JavaScript functions worked fine in one web browser but didn't work at all in
another. The syntax of JavaScript was the basis for HTML5 and is very similar to Adobe
Flash's ActionScript 3. Despite all of this, JavaScript's flexibility and forgiving nature is
actually the thing that makes it an inferior language for this book. As one example,
JavaScript uses weak typing, which means that if you were to create a variable (or
container) named bob, you could put anything you wanted into that variable: a number, a
word, an entire novel, or even the main character of your game. Because the JavaScript
variable bob wouldn't have a variable type, Unity would never really know what kind of
thing bob was, and bob could change at any time. Flexibilities like this in JavaScript make

309

http://store.unity.com
https://forum.unity3d.com/

scripting more tedious and prevent programmers from taking advantage of some of the most
powerful and interesting features of modern languages.

C#
C# was developed in 2000 as Microsoft's response to Java. It took a lot of the modern
coding features of Java and put them into a syntax that was much more familiar to and
comfortable for traditional C++ developers. This means that C# has all the capabilities of a
modern language. For you experienced programmers, these features include function
virtualization and delegates, dynamic binding, operator overloading, lambda expressions,
and the powerful LINQ query language among many others. For those of you new to
programming, all you really need to know is that working in C# from the beginning will
make you a better programmer and prototyper in the long run. In my prototyping class at the
University of Southern California, I taught using both JavaScript and C#, and I found that
students who were taught C# consistently produced better game prototypes, exhibited
stronger coding practices, and felt more confident about their programming abilities than
their peers who had been taught JavaScript in prior semesters of the class.

RUNTIME SPEED OF EACH LANGUAGE
If you've had some experience programming, you might assume that C# code in
Unity would execute faster than code written in JavaScript. This assumption
would come from the understanding that C# code is usually compiled whereas
JavaScript is interpreted (meaning that compiled code is converted into a
computer's machine language by a compiler as part of the coding process, whereas
interpreted code is translated on-the-fly as the player is playing the game, making
interpreted code generally slower; this is discussed more in Chapter 18,
"Introducing Our Language: C#"). However, in Unity, every time you save a file of
either C# or JavaScript code, Unity imports it, converts either of the two
languages to the same Common Intermediate Language (CIL), and then compiles
that CIL into machine language. So, regardless of the language you use, your Unity
game prototypes will execute at the same speed.

On the Daunting Nature of Learning a Language
There's no way around it: Learning a new language is tough. I'm sure that's one of the
reasons that you bought this book rather than just trying to tackle things on your own. Just
like Spanish, Japanese, Mandarin, French, or any other human language, some things in C#
won't make any sense at first, and there are places that I'm going to tell you to write
something that you don't immediately understand. There will also probably be a point

310

where you are just starting to understand some things about the language but feel utterly
confused by the language as a whole (which is the exact same feeling you would have if you
took one semester of Spanish class and then tried to watch soap operas on Telemundo).
This feeling comes for almost all of my students about halfway through the semester, and by
the end of the semester, every one of them feels much more confident and comfortable with
both C# and game prototyping.

Rest assured, this book is here for you, and if you read it in its entirety, you will emerge
with not only a working understanding of C# but also several simple game prototypes that
you can use as foundations on which to build your own projects. The approach that I take in
this book comes from many semesters of experience teaching "nonprogrammers" how to
find the hidden coder within themselves and, more broadly, how to convert their game
ideas into working prototypes. As you'll see throughout this book, that approach is
composed of three steps:

1. Concept introduction: Before asking you to code anything for each project, I'll tell you
what we're doing and why. This general concept of what you're working toward in each
tutorial gives you a framework on which to hang the various coding elements that I
introduce in the chapter.

2. Guided tutorial: I guide you step by step through a tutorial that demonstrates these
concepts in the form of a playable game. Unlike some other tutorials you may have seen,
I have you compile and test the game throughout the process so that you can identify and
repair bugs (problems in the code) as you go, rather than trying to fix all of them at the
end. Additionally, I'll even guide you to create some bugs so that you can see the errors
they cause and become familiar with them; this will make it easier to deal with
encountering your own bugs later.

3. Lather, rinse, repeat: In many tutorials, I ask you to repeat something. For instance, in
Chapter 30, "Prototype 3: Space SHMUP"—a top-down shooter game like Galaga—the
tutorial guides you through the process of making one single enemy type, and then in
Chapter 31, "Prototype 3.5: Space SHMUP Plus," it leads you to create three others.
Don't skip this part! This repetition can really drive the concept home and help your
understanding solidify later.

pro tip
90% OF BUGS ARE JUST TYPOS. I've spent so much time helping students
fix bugs that now I can very quickly spot a typo in code. The most common
include the following:

 Misspellings: If you type even one letter wrong, the computer won't have any
idea what you're talking about.

311

 Capitalization: To your C# compiler, A and a are two completely different
letters, so variable, Variable, and variAble are all completely
different words.
 Missing semicolons: Just like almost every sentence in English should end in
a period, nearly every statement in C# should end in a semicolon (;).
Leaving the semicolon out often causes an error on the next line. FYI: It's a
semicolon because the period was needed for decimal numbers and what's
called dot syntax in variable referencing (e.g., varName.x).

Earlier, I mentioned that most of my students feel confused and daunted by C# at about the
midway point of the semester, and it's at exactly that time that I assign them the Classic
Games Project. They are asked to faithfully recreate the mechanics and game feel of a
classic game over the course of four weeks. Some great examples have included Super
Mario Bros., Metroid, Castlevania, Pokemon, and even Crazy Taxi.2 By being forced to
work things out on their own, to schedule their own time, and to dig deeply into the inner
workings of these seemingly simple games, the students come to realize that they understand
much more C# than they thought, and this is when everything really falls into place. The key
component here is that the thought process changes from "I'm following this tutorial" to "I
want to do this—now how do I make it happen?" At the end of this book, you will be
prepared to tackle your own game projects (or your own Classic Game Project, if you
want). The tutorials in this book can be a fantastic starting point on which to build your own
games.

Launching Unity for the First Time
When you first launch Unity, you must set up some things.3

1. On Windows, you might be asked to allow Unity to communicate through the firewall to
the Internet. You should allow this.

2. You will be asked to sign into your Unity Account. If you don't have one, create it now.
3. In the next screen, choose Unity Personal and click Next. A License agreement screen

appears.
4. You will not be allowed to install Unity Personal if the company or organization you

represent earned more than $100,000 in gross revenue in the previous fiscal year. As a
reader of this book, you should probably choose "I don't use Unity in a professional
capacity" and click Next.

5. Click the Getting started tab at the top of the Unity screen and check out the video
there. It gives you a little information about getting started. Don't worry if this is all a
little fast. We'll be going over it.

312

The Example Project
To access the example project, do the following:4

1. Click the Projects tab in the Unity launch window, and you should see a Standard
Assets Example Project listed. Click the name of this example project; it should open.

2. When the project opens, you should see something like Figure 17.4. Click the Play
button to play this scene (highlighted by a light blue rectangle in Figure 17.4).

Figure 17.4 The Example Project open in Unity with the Play button highlighted in light
blue

While playing, you can press Esc at any time to open the menu of various scenes. When I
played, there was a bug with the Characters > First Person Character scene where the
mouse cursor would disappear during playback of that scene (probably intentional) but then
not reappear upon switching to another scene (probably a bug), so I recommend playing the
First Person Character scene last. You can then press Esc to get your mouse cursor back
and click the Play button again to stop.

To be honest, I think that the Unity 4 example project, Angry Bots, did a much better job of
showing off the engine, but this project does show you some of the breadth of what Unity
can do.

To see video of more exciting games made with Unity, I recommend going to Unity's
YouTube channel either by searching online for "YouTube Unity" or by going directly to
https://www.youtube.com/user/Unity3D and looking for the "Made with Unity" group of
videos.

313

https://www.youtube.com/user/Unity3D

Setting Up the Unity Window Layout
The last thing you need to do before you start actually making things in Unity is to get your
environment laid out properly. Unity is very flexible, and one of those flexibilities is that it
allows you to arrange its window panes however you like. You can see several window
layouts by choosing various options from the Layout pop-up menu in the top-right corner of
the Unity window (see Figure 17.5).

Figure 17.5 Position of the Layout pop-up menu and selection of the 2 by 3 layout

1. Choose 2 by 3 from the Layout pop-up menu shown in Figure 17.5. This is the starting
point for making your custom layout.

2. Before doing anything else, make the Project pane look a little cleaner. Click on the
options pop-up for the Project pane (shown in the blue rectangle in Figure 17.6) and
choose One Column Layout. This converts the Project pane to the hierarchical list view
used throughout this book.

314

Figure 17.6  Choosing the One Column Layout for the Project pane

Unity enables you to both move window panes around and adjust the borders between
them. As shown in Figure 17.7, you can move a pane by dragging its tab (the arrow cursor)
or adjust a border between panes by dragging the border between them (the left-right resize
arrow).

Figure 17.7  Two types of cursors for moving and resizing Unity's window panes

When you drag a pane by its tab, a small ghosted version appears (see Figure 17.8). Some
locations cause the pane to snap into place. When this happens, the ghosted version of the
tab jumps to the snapped location.

315

Figure 17.8  Ghosted and snapped panes when moving them around the Unity window

3. Play around with moving the window panes—using dragging and resizing—until your
window looks like Figure 17.9.

Figure 17.9  Proper layout for the Unity window—but it's still missing something

4. The last thing to add is the Console pane. From the menu bar, choose Window >
Console, and drag the Console pane below the Hierarchy pane. This puts the Console
pane below the Hierarchy pane but not below the Project pane.

5. Click the tab at the top of the Project pane and drag it to the right. You should see it
snap into position over the left half of the Hierarchy pane. Release the mouse button,
and you should see something similar to the final layout shown in Figure 17.10.

316

Figure 17.10  Final layout of the Unity window, including the Console pane

6. Now you just need to save this layout in the Layout pop-up menu so that you don't have
to go through all that again. Click the Layout pop-up menu and choose Save Layout…,
as shown in Figure 17.11.

Figure 17.11  Saving the layout

7. Save this layout with the name Game Dev, using the technique on your platform that
pushes the layout name to the top of the menu. On macOS, that would be putting a space
before the G. On a Windows machine, that would be putting an underscore before the G.
By putting a space or an underscore at the beginning of the name, you make sure that this
layout is sorted to the top of the menu. Now, any time you need to return to this layout,
you can simply choose it from this pop-up menu.

317

Learning Your Way Around Unity
Before you can really get into coding things, you need to get to know the various window
panes that you've just arranged. Refer to Figure 17.10 as you read about each pane:

 Scene pane: The Scene pane allows you to navigate around your scene in 3D and to
select, move, rotate, and scale objects.
 Game pane: The Game pane is where you preview your actual gameplay; it's the
window in which you played the Example Project. This pane also shows you the view
from the Main Camera in your scene.
 Hierarchy pane: The Hierarchy pane shows you every GameObject that is included in
your current scene. For now, you can think of each scene as a level of your game.
Everything that exists in your scene, from the camera to your player-character, is a
GameObject.
 Project pane: The Project pane contains all the assets that are part of your project. An
asset is any kind of file that is part of your project, including images, 3D models, C#
code, text files, sounds, and fonts among many others. The Project pane is a reflection of
the contents of the Assets folder within your Unity project folder on your computer hard
drive. These assets are not necessarily in your current scene.
 Inspector pane: When you click on an asset in the Project pane or a GameObject in the
Scene or Hierarchy panes you can see and edit information about it in the Inspector
pane.
 Console pane: The Console pane enables you to see messages from Unity about errors
or bugs in your code as well as messages from yourself that will help you understand the
inner workings of your own code.5 You will use the Console pane extensively in Chapter
19, "Hello World: Your First Program," and Chapter 20, "Variables and Components."

Summary
That's it for setup. Now, let's move on to actually developing! As you've seen in this
chapter, Unity can create some pretty stunning visuals and compelling gameplay. In the next
chapter, you'll write your first Unity program.

1. You may be tempted to also install Microsoft Visual Studio Community, but I
recommend against this for now. Visual Studio is a more robust code editor than
MonoDevelop (which is included with Unity), and it is now available to install along
with Unity. But I do not recommend it because this entire book uses MonoDevelop
examples. However, if you have a lot of experience using Visual Studio already, you
might want to give it a try.

2. One of my favorite classic games to recreate is The Legend of Zelda, and that is what

318

you'll do in Chapter 35, "Prototype 7: Dungeon Delver."
3. Of course, with Unity releasing new versions every 90 days, these steps could change.

If anything is drastically different, you can always find the latest information on the
website for this book: http://book.prototools.net.

4. These instructions are for the Unity 5.6 Example Project. Hopefully Unity will release a
better one soon.

5. Unity's print() and Debug.Log() functions allow you to print messages to the
Console pane.

319

http://book.prototools.net

CHAPTER 18

INTRODUCING OUR LANGUAGE: C#

This chapter introduces you to the key features of C# and describes some
important reasons why I chose it as the language for this book. It also examines
the basic syntax of C#, explaining what is meant by the structure of some simple
C# statements.

By the end of this chapter, you will better understand C# and be ready to tackle
the more in-depth chapters that follow.

Understanding the Features of C#
As covered in Chapter 16, "Thinking in Digital Systems," programming consists of giving
the computer a series of simple commands, and C# is the language through which we will
do so. However, many different programming languages exist out there, each of which has
benefits and drawbacks. Some of the features of C# are that it is:

 A compiled language
 Managed code
 Strongly typed
 Function based
 Object oriented

Each of these features is described further in the following sections, and each will help you
in various ways.

C# Is a Compiled Language
When most people write computer programs, they are not actually writing in a language that
the computer itself understands. In fact, each computer chip on the market has a slightly
different set of very simple commands that it understands, known as machine language.
This language is very, very fast for the chip to execute, but it is incredibly difficult for a
person to read. For example, the machine language line

320

000000 00001 00010 00110 00000 100000

would certainly mean something to the right computer chip, but it means next to nothing to
human readers. You might have noticed, however, that every character of that machine code
is either a 0 or 1. That's because all the more complex types of data—numbers, letters, and
so on—have been converted down to individual bits of data (i.e., ones or zeros). If you've
ever heard of people programming computers using punch cards, this is exactly what they
were doing: For most formats of binary punch cards, physically punching a hole in card
stock represented a one, and an unpunched hole represented a zero.

For people to be able to write code more easily, human-readable programming languages
—sometimes called authoring languages—were created. You can think of an authoring
language as an intermediate language meant to act as a go-between from you to the
computer. Authoring languages like C# are logical and simple enough for a computer to
interpret while also being close enough to written human languages to allow programmers
to easily read and understand them.

There is also a major division in authoring languages between compiled languages such as
BASIC, C++, C#, and Java, and interpreted languages such as JavaScript, Perl, PHP, and
Python (see Figure 18.1).

Figure 18.1 A simple taxonomy of programming languages

In an interpreted language, authoring and executing code is a two-step process:

 The programmer writes the code.
 Then, each time any player plays the game, the code is converted from the authoring
language to machine language in real time on the player's machine.

321

The good thing about this is that it enables code portability, because the authoring code can
be interpreted specifically for the type of computer on which it is running. For example, the
JavaScript of a given web page will run on almost any modern computer regardless of
whether the computer is running macOS, Windows, Linux, or one of many mobile operating
systems like iOS, Android, Windows Phone, and so on. However, this flexibility also
causes the code to execute more slowly due to the time required to interpret the code on the
player's computer, the authoring language not being well optimized for the device on which
it will run, and a host of other reasons. Because the same interpreted code is run on all
devices, optimizing for the specific device on which it happens to be running is impossible.
This is the reason why 3D games created in an interpreted language like JavaScript
generally run much more slowly than those created in a compiled language, even when
running on the same computer.

In a compiled language, such as C#, the programming process comprises three separate
steps:

 The programmer writes the code in an authoring language like C#.
 A compiler converts the code from the authoring language to a compiled application in
machine language for a specific kind of machine.
 The computer executes the compiled application.

This added middle process of compilation converts the code from the authoring language
into an executable (that is, an application or app) that a computer can run directly without
needing an interpreter. Because the compiler has both a complete understanding of the
program and a complete understanding of the execution platform on which the program will
run, it is able to incorporate many optimizations into the process. In games, these
optimizations translate directly into higher frame rates, more detailed graphics, and more
responsive interactions. Most high-budget games are authored in a compiled language
because of this optimization and speed advantage, but this means that a different executable
must be compiled for each execution platform.

In many cases, compiled authoring languages are only suited for specific execution
platforms. For instance, Objective-C is Apple Computer's proprietary authoring language
for making applications for both macOS and iOS. This language is based on C (a
predecessor of C++), but it includes a number of features that are unique to macOS or iOS
development. Similarly, XNA was a flavor of C# developed by Microsoft specifically to
enable students to author games for both Windows-based personal computers and the Xbox
360.

As mentioned in Chapter 17, "Introducing the Unity Development Environment," Unity uses
either C# or a JavaScript flavor named UnityScript to create games. Either of these
languages are compiled into a Common Intermediate Language (CIL) in an additional

322

compilation step, and that CIL is then compiled to target any number of platforms, from iOS
to Android to macOS, Windows PC, game consoles such as the PlayStation and Xbox, and
even interpreted languages such as WebGL (a specific form of JavaScript used in web
pages). This additional CIL step ensures that Unity programs can be compiled across many
platforms regardless of whether they are written in C# or UnityScript.

The ability to write once and compile anywhere is not unique to Unity, but it is one of Unity
Technologies' core goals for the Unity game engine, and it is better integrated into Unity
than any other game development software I have seen. However, as a game designer, you
will still need to think seriously about the design differences between a game meant for a
handheld phone controlled by touch, a game meant to run on a personal computer controlled
by mouse and keyboard, or a game built for virtual or augmented reality, so you will usually
have slightly different code for the different platforms.

C# Is Managed Code
More traditional compiled languages such as BASIC, C++, and Objective-C require
programmers to directly manage computer memory, obliging a programmer to manually
allocate and de-allocate memory any time she creates or destroys a variable.1 If a
programmer doesn't manually de-allocate RAM in these languages, her programs will have
a "memory leak" and eventually allocate more than the maximum amount of the computer's
RAM, causing it to crash.

Luckily for us, C# is managed code, which means that the allocation and de-allocation of
memory is handled automatically.2 You can still cause memory leaks in managed code, but
it is more difficult to do so accidentally.

C# Is Strongly Typed
Later chapters cover variables in more detail, but there are a couple of things that you
should know about them now. First, a variable is just a named container for a value. For
instance, in algebra, you might have seen an expression like this:

x = 5

In this one line, you have created a variable, named it x, and assigned it the value 5. Later,
if I asked you the value of x+2, I'm sure you could tell me that the answer is 7 because you
remember that x was holding the value 5 and know to add 2 to that value. That is exactly
what variables do for you in programming.

In most interpreted languages, like JavaScript, a single variable can hold any kind of data.
The variable x could hold the number 5 one minute, an image the next, and a sound file

323

thereafter. This capability for a single variable to hold any type of value is what is meant
when we say that a programming language is weakly typed.

C#, in contrast, is strongly typed. This means that when you initially create a variable, you
must tell it at that moment what kind of value it can hold:

int x = 5;

In the preceding statement, you have created a variable named x that it is exclusively
allowed to hold int values (that is, positive or negative numbers without a decimal point),
and assigned it the integer value 5. Although it might seem like strong typing would make
programming more difficult, the use of strong typing enables the compiler to make several
optimizations and makes it possible for the authoring environment, MonoDevelop, to
perform real-time syntax checking on the code you write (much like the grammar checking
that is performed by Microsoft Word). This also enables and enhances code-completion, a
technology in MonoDevelop that enables it to predict the words you're typing and provide
you with valid completion options based on the other code that you've written. With code-
completion, if you're typing and see MonoDevelop suggest the correct completion of the
word, you simply press Tab to accept the suggestion. When you've become used to this, it
can save you hundreds of keystrokes every minute.

C# Is Function-Based
In the early days of programming, a program was composed of a single series of
commands. These programs were run directly from beginning to end much like the
directions you would give to a friend who was trying to drive to your house:

1. From school, head north on Vermont.
2. Head west on I-10 for about 7.5 miles.
3. At the intersection with I-405, take the 405 south for 2 miles.
4. Take the exit for Venice Blvd.
5. Turn right onto Sawtelle Blvd.
6. My place is just north of Venice on Sawtelle.

As authoring languages improved, repeatable sections were added to programming in the
form of things like loops (a section of code that repeats itself) and subroutines (an
otherwise inaccessible section of code that is jumped to, executed, and then returned from).

The development of procedural languages (i.e., those that make use of functions)3 allowed
programmers to name chunks of code and thereby encapsulate functionality (that is, group a
series of actions under a single function name). For example, if in addition to giving

324

someone detailed directions to your house as described in the preceding list, you also
asked him to pick up some milk for you on the way, he would know that if he saw a grocery
store on the way, he should stop the car, get out, walk to find milk, pay for it, return to his
car, and continue on his way to your house. Because your friend already knows how to buy
milk, you just need to request that he do so rather than giving him explicit instructions for
every tiny step. This could look something like this:

"If you see a store on the way, could you please BuySomeMilk()?"

This statement encapsulates all the instructions to buy milk into the single function named
BuySomeMilk(). You can do the same thing in any procedural language. When the
computer is processing C# and encounters a function name followed by parentheses, it will
call that function (that is, it will execute all the actions encapsulated in the function). You
will learn much more about functions in Chapter 24, "Functions and Parameters."

The other fantastic thing about functions is that after you have written the code for the
function BuySomeMilk() one time, you should never have to write it again. Even if
you're working on a completely different program, you can often copy and paste functions
like BuySomeMilk() and reuse them without having to write the whole thing again from
scratch. The C# script named Utils.cs that you will see in several of the tutorials in this
book includes several reusable functions.

C# Is Object-Oriented
Many years after functions were invented, the idea of Object-Oriented Programming
(OOP) was created. In OOP, not only functionality but also data are encapsulated together
into something called an object, or more correctly a class. This is covered extensively in
Chapter 26, "Classes," but here's a metaphor for now.

Consider a group of various animals. Each animal has specific information that it knows
about itself. Some examples of this data could be its species, age, size, emotional state,
level of hunger, current location, and so on. Each animal also has certain things that it can
do: eat, move, breath, etc. The data about each animal are analogous to variables in code,
and the actions that the animal can perform are analogous to functions.

Before OOP, an animal represented in code could hold information (i.e., variables) but
could not perform any actions. Those actions were performed by functions that were not
directly connected to the animal. A programmer could write a function named Move() that
could move any kind of animal, but she would have to write several lines of code in that
function that determined what kind of animal it was and what type of movement was
appropriate for it. For example, dogs walk, fish swim, and birds fly. Any time the
programmer added a new animal, she was required to change Move()to accommodate the

325

new type of locomotion, and Move() would thereby grow larger and more complex with
the addition of each new animal.

Object orientation changed all of this by introducing the ideas of classes and class
inheritance. A class combines both variables and functions into one whole object. In OOP,
instead of having a huge Move() function that can handle any animal, a much smaller and
more specific Move() function is attached to each animal. This eliminates the need for you
to expand Move() every time you add a new type of animal, and it eliminates the need for
all the type-checking of animal types in the non-OOP version of Move(). Instead, each
new animal class is given its own small Move() function when it is created.

Object orientation also includes the concept of class inheritance. This enables classes to
have subclasses that are more specific, and it allows the subclasses to either inherit or
override functions in their superclasses. Through inheritance, a single Animal class could
be created that included declarations of all the data types that are shared by all animals.
This class would also have a Move()function, but it would be nonspecific. In subclasses
of Animal, like Dog or Fish, the function Move() could be overridden to cause
specific behavior like walking or swimming. This is a key element of modern game
programming, and it will serve you well when you want to create something like a basic
Enemy class that is then further specified into various subclasses for each individual
enemy type that you want to create.

Reading and Understanding C# Syntax
Just like any other language, C# has a specific syntax that you must follow. Take a look at
these example statements in English:

 The dog barked at the squirrel.
 At the squirrel the dog barked.
 The dog at the squirrel. barked
 barked The dog at the squirrel.

Each of these English statements has the same words and punctuation, but they are in a
different order, and the punctuation and capitalization is changed. Because you are familiar
with the English language, you can easily tell that the first is correct and the others are just
wrong. Another way of examining this is to look at it more abstractly as just the parts of
speech:

 [Subject] [verb] [object].
 [Object] [subject] [verb].
 [Subject] [object]. [verb]

326

 [verb] [Subject] [object].

When parts of speech are rearranged like this, doing so alters the syntax of the sentence,
and the latter three sentences are incorrect because they have syntax errors.

Just like any language, C# has specific syntax rules for how statements must be written.
Let's examine this simple statement in detail:

int x = 5;

As explained earlier, this statement does several things:

 Declares a variable named x of the type int
Any time a statement starts with a variable type, the second word of the statement
becomes the name of a new variable of that type (see Chapter 20, "Variables and
Components"). This is called declaring a variable.
 Assigns x the value 5
The = symbol is used to assign values to variables (which is also called initializing a
variable if it is the first time that any value has been assigned to the variable). When you
do this, the variable name is on the left, and the value assigned is on the right.
 Ends with a semicolon (;)
Every simple statement in C# must end with a semicolon (;). This is similar in use to the
period at the end of sentences in the English language.

note
Why not end C# statements with a period? Computer programming languages are
meant to be very clear. The period is not used at the end of statements in C#
because it is already in use in numbers as a decimal point (for example, the
period in 3.14159). For clarity, the only use of the semicolon in C# is to end
statements.

Now, let's add a second simple statement:

int x = 5;
int y = x * (3+ x);

The second line does the following:

 Declares a variable named y of the type int

327

 Adds 3 + x (which is 3 + 5, for a result of 8)
Just like in algebra, order of operations follows parentheses first, meaning that 3+x is
evaluated first because it is surrounded by parentheses. The sum is 8 because the value
of x was set to 5 in the previous statement. In Appendix B, "Useful Concepts," you can
read the section Operator Precedence and Order of Operations, to learn more about
order of operations in C#, but the main thing to remember for your programs is that if
you have any doubt about the order in which things will occur, you should use
parentheses to remove that doubt (and increase the readability of your code).
 Multiplies x * 8 (x is 5, so the result is 40)
If there had been no parentheses, the order of operations would have handled
multiplication and division before addition and subtraction. This would have resulted in
x * 3 + 5, which would become 5 * 3 + 5, then 15 + 5, and finally 20.
 Assigns the value 40 to y
 Ends with a semicolon (;)
This chapter finishes with a breakdown of one final couplet of C# statements. In this
example, the statements are now numbered. Line numbers can make referencing a
specific line in code much simpler, and my hope is that they will make it easier for you
to read and understand the code in this book when you're typing it into your computer.
The important thing to remember is that you do not need to type the line numbers into
MonoDevelop. MonoDevelop automatically numbers (and renumbers) your lines as you
work:

Click here to view code image

1 string greeting = " Hello World!";
2 print(greeting);

These two statements deal with strings (a series of characters like a word or sentence)
rather than integers. The first statement (numbered 1):

 Declares a variable named greeting of the type string
string is another type of variable just like int.
 Assigns the string value "Hello World!" to greeting
The double quotes around "Hello World!" tell C# that the characters in between
them are to be treated as a string literal and not interpreted by the compiler to have any
additional meaning. Putting the string literal "x = 10" in your code will not assign the
value 10 to x because the compiler knows to ignore all string literals between quotes
and does not try to interpret them as C# code.
 Ends with a semicolon (;)

The second statement (numbered 2):

328

 Calls the function print()
As discussed earlier, functions are named collections of actions. When a function is
called, the function executes the actions it contains. As you might expect, print()
contains actions that will output a string to the Console pane. Any time you see a word in
code followed by parentheses, it is either calling or defining a function. Writing the
name of a function followed by parentheses calls the function, causing that functionality
to execute. You'll see an example of defining a function in the next chapter.
 Passes greeting to print()
Some functions just do things and don't require parameters, but many require that you
pass something in. Any variable placed between the parentheses of a function call is
passed into that function as an argument. In this case, the string greeting is passed
into the function print(), and the characters Hello World! are output to the
Console pane.
 Ends with a semicolon (;)

Every simple statement ends with a semicolon.

Summary
 Now that you understand a little about C# and about Unity, it's time to put the two
together into your first program. The next chapter takes you through the process of
creating a new Unity project, making a few C# scripts, adding some simple code to
those scripts, and manipulating 3D GameObjects.

1. Memory allocation is the process of setting aside a certain amount of Random-Access
Memory (RAM) in the computer to enable it to hold a chunk of data. While computers
now often have hundreds of gigabytes (GB) of hard drive space, they still usually have
less than 20GB of RAM. RAM is much faster than hard drive memory, so all
applications pull assets like images and sounds from the hard drive, allocate some
space for them in RAM, and then store them in RAM for fast access.

2. One disadvantage of managed code is that it makes controlling exactly when memory is
deallocated and reclaimed very difficult. Instead, memory is automatically reclaimed in
a process called garbage collection. This can sometimes lead to a hitch in the frame
rate of a game on less powerful devices such as cell phones, but it's usually not
noticeable.

3. There are also functional languages like Lisp, Scheme, Mathematica (Wolfram
Language), and Haskell, but for these functional languages, "functional" means
something different than the capabilities we have to write functions in C#.

329

CHAPTER 19

HELLO WORLD: YOUR FIRST PROGRAM

Welcome to coding.

By the end of this chapter, you'll have created your own new project and written
your first bits of code. We start with the classic "Hello World" project that has
been a traditional first program to write in a new language since long before I
started coding, and then we move on to something with more of a Unity flair to it.

Creating a New Project
Now that you have the Unity window set up properly (from the previous chapter), it's time
to start writing your own code. Not surprisingly, you start this by creating a new project.

Appendix A, "Standard Project Setup Procedure," contains detailed instructions that show
you how to set up Unity projects for the chapters in this book. At the start of each project,
you will see a sidebar like the one here. Please follow the directions in the sidebar to
create the project for this chapter.

SET UP THE PROJECT FOR THIS CHAPTER
Following the standard project setup procedure in Appendix A, create a new
project in Unity.

 Project name: Hello World
 Scene name: (none yet)
 C# Script names: (none yet)

You should read the whole procedure in Appendix A; but for now, you only need
to create the project. You learn to create the scene and C# scripts as part of this
chapter.

330

When you create a project in Unity, you're actually making a folder that will hold all the
files that make up your project. When Unity has finished creating the project, the new
project comes with an open scene containing only a Main Camera and a Directional Light
in the Project pane. Before doing anything else, save your scene by choosing File > Save
Scene from the menu bar. Unity automatically chooses the correct place to save the scene,
so just name it _Scene_0 and click Save.1 Now your saved scene appears in the Project
pane.

Right-click on the background of the Project pane and choose Reveal in Finder (or Show in
Explorer for Windows) as shown in Figure 19.1.

Figure 19.1 The blank canvas of a new Unity project (showing Reveal in Finder in the
Project pane pop-up menu)

Tip
Performing a right-click on a mouse or trackpad in macOS is not as
straightforward as it is on a Windows PC. For information on how to do so,
check out the Right-Click on Macintosh section of Appendix B, "Useful
Concepts."

Selecting Reveal in Finder opens a Finder window (or Explorer window) showing you the
contents of your Project folder (see Figure 19.2).

331

Figure 19.2 The project folder for Hello World as it appears in the macOS Finder

As you can see in the image in Figure 19.2, the Assets folder holds everything that appears
in the Project pane inside of Unity. In theory, you can use the Assets folder and the Project
pane interchangeably (for example, if you drop an image into the Assets folder, it appears
in the Project pane and vice versa), but I highly recommend working exclusively with the
Project pane rather than the Assets folder. Making changes in the Assets folder directly can
occasionally lead to problems, and the Project pane is generally safer. In addition, it is very
important that you not touch the Library, ProjectSettings, or Temp folders. Doing so could
cause unexpected behavior from Unity and could possibly damage your project.

Switch back to Unity now.

Warning
NEVER CHANGE THE NAME OF YOUR PROJECT FOLDER WHILE
UNITY IS RUNNING If you change the name of the project folder or move it to
another location while Unity is running, Unity will crash in a very ungraceful
way. Unity does a lot of file management in the background while it's running, and
changing a folder name on it will almost always cause a crash. If you want to
change your project folder name, quit Unity, change the folder name, and launch
Unity again.

Making a New C# Script
It is time. Now you're going to write your first chunk of code (later chapters cover a lot
more about C#, but for now, just copy what you see here):

1. Click the Create button in the Project pane and choose Create > C# Script (as shown

332

in Figure 19.3). This adds a new script to the Project pane, and its name will
automatically be highlighted for you to change.

Figure 19.3 Creating a new C# script and viewing that script in MonoDevelop

2. Name this script HelloWorld (make sure there's no space between the two words) and
press Return to set the name.

3. Double-click the name or the icon of the HelloWorld script (in the Project pane) to
launch MonoDevelop, our C# editor. When you first open it, your script should already
look exactly like the one in Figure 19.3 except for line 8.

4. On line 9 of this script, press Tab twice, and enter the code print("Hello
World"); as shown in the code listing that follows. Make sure to spell and capitalize
everything correctly and to put a semicolon (;) at the end of the line.

Your HelloWorld script should now look exactly like the following code listing. In code
listings throughout the book, anything new that you need to type or modify is in bold
weight, and code that is already there is in normal weight.

Each line in the code listing also has a line number preceding it. As you can see in Figure
19.3, MonoDevelop automatically shows you line numbers for your code, so you do not
need to type them yourself. The line numbers are just here in the book to help make the code
listings easier to read.

Click here to view code image

1 using System.Collections;
2 using System.Collections.Generic;
3 using UnityEngine;
4
5 public class HelloWorld : MonoBehaviour {
6
7 // Use this for initialization

333

8 void Start () {
9 print("Hello World!");
10 }
11
12 // Update is called once per frame
13 void Update () {
14
15 }
16 }

note
Your version of MonoDevelop might automatically add extra spaces in some
parts of the code. For example, it might have added a space between print and
(in line 9 of the Start() function. This is okay, and you shouldn't be too
concerned about it. In general, though capitalization matters tremendously to
programming, spaces are more flexible. A series of several spaces (or several
line breaks/returns) is interpreted by the C# compiler as just one space, so you
can add extra spaces and returns if it makes your code more readable (though
extra returns might make your line numbers different from those in the code
listings).

You should also not be too upset if your line numbers differ from the ones in the
examples. As long as the code is the same, the line numbers don't matter.

5. Now, save this script by choosing File > Save from the MonoDevelop menu bar and
switch back to Unity.

This next part's a bit tricky, but you'll soon be used to it because you will do it so often in
Unity.

6. Click and hold on the name of the HelloWorld script in the Project pane, drag it over on
top of the Main Camera in the scene Hierarchy pane, and release the mouse button as
shown in Figure 19.4. When you drag the script, the words HelloWorld (Monoscript)
will follow the mouse, and when you release the mouse button over Main Camera, the
HelloWorld (Monoscript) words will disappear.

334

Figure 19.4 Attaching the HelloWorld C# script to the Main Camera in the Hierarchy pane

Dragging the HelloWorld script onto Main Camera attaches the script to Main Camera as a
component. All objects that appear in the scene Hierarchy pane (for example, Main
Camera) are known as GameObjects, and GameObjects are made up of components. If you
now click Main Camera in the Hierarchy pane, you should see HelloWorld (Script) listed
as one of Main Camera's components in the Inspector pane. As you can see in Figure 19.5,
the Inspector pane shows several components of the Main Camera, including its Transform,
Camera, GUILayer, Flare Layer, Audio Listener, and HelloWorld (Script). Later chapters
cover GameObjects and components in much more detail.2

Figure 19.5 The HelloWorld script now appears in the Inspector pane for Main Camera
(highlighted in red)

7. Now, click the Play button (the triangle facing to the right at the top of the Unity
window) and watch the magic!

The script printed Hello World! to the Console pane, as shown in Figure 19.6. Notice that it

335

also printed Hello World! to the small gray bar at the bottom-left corner of the screen. This
probably isn't the most magical thing that's ever happened in your life, but you have to start
somewhere. As a wise old man once said, you've taken your first step into a larger world.

Figure 19.6 Hello World! printed to the Console pane

Start() Versus Update()
Now try moving the print() function call from the Start() method to the Update()
method.

1. Go back to MonoDevelop and edit your code as shown in the following code listing.
Click here to view code image

 1 using System.Collections;
 2 using System.Collections.Generic;
 3 using UnityEngine;
 4
 5 public class HelloWorld : MonoBehaviour {
 6
 7 // Use this for initialization
 8 void Start () {
 9 // print("Hello World!"); // This line is now ignored.
10 }
11
12 // Update is called once per frame
13 void Update () {
14 print("Hello World!");
15 }
16 }

Adding the two forward slashes (//) to the beginning of line 9 converts everything on line

336

9 that follows the slashes to a comment. Comments are completely ignored by the computer
and are used to either disable code (as you are now doing to line 9) or to leave messages
for other humans reading the code (as you can see on lines 7 and 12). Adding two slashes
before a line (as you've done to line 9) is referred to as commenting out the line. Be sure to
type the statement print("Hello World!"); into line 14 to make it part of the
Update() function.

2. Save the script (replacing the original version) and try clicking the Unity Play button
again.

You'll see that Hello World! is now printed many, many times in rapid succession (see
Figure 19.7). You can click the Play button again to stop execution now, and you'll see that
Unity stops generating Hello World! messages.

Figure 19.7 Update() causes Hello World! to be printed once every frame

Start() and Update() are both special functions in Unity's version of C#. Start()
is called once on the first frame that an object exists, whereas Update() is called every
frame,3 hence the single message of Figure 19.6 versus the multiple messages of Figure
19.7. Unity has a whole list of these special functions that are called at various times. I
cover many of them later in the book.

Tip
In Figure 19.7, you can see that the same Hello World! message is repeated many
times. If you select the Collapse button of the Console pane (indicated by the
mouse arrow in Figure 19.7) all of these Hello World! messages will be
collapsed to a single line with a count of how many times that same message has

337

been sent to the Console pane. This might make it easier for you to pick out any
unique messages that post.

Making Things More Interesting
Now, it is time to add more Unity style to your first program. In this example, you're going
to create many, many copies of a cube. Each of these cube copies will independently
bounce around and react to physics. This exercise demonstrates both the speed at which
Unity runs and the ease with which it enables you to create content.

Start by creating a new scene:

1. Choose File > New Scene from the menu bar. You won't notice much of a difference
because you didn't really have much in _Scene_0 other than the script on the camera, but
if you click the Main Camera, you can see that it no longer has a script attached, and the
Unity window's title bar has changed from _Scene_0.unity - to Untitled -.

2. As always, the first thing you should do is save this new scene. Choose File > Save
Scene from the menu bar and name this _Scene_1.

3. Choose GameObject > 3D Object > Cube from the menu bar to place a GameObject
named Cube in the Scene pane (and in the Hierarchy pane). If it's difficult to see Cube in
the Scene pane, try double-clicking its name in the Hierarchy pane, which should focus
the scene on Cube. For more information, read the "Changing the Scene View" sidebar
later in this chapter that covers how to manipulate the view of the Scene pane.

4. Click Cube in the Hierarchy pane, and you should see it selected in the Scene pane and
see its components appear in the Inspector pane (see Figure 19.8). The primary purpose
of the Inspector pane is to enable you to view and edit the components that make up any
GameObject. This Cube GameObject has Transform, Mesh Filter, Box Collider, and
Mesh Renderer components:

338

Figure 19.8 The new Cube GameObject visible in the Scene and Hierarchy panes

 Transform: The Transform component sets the position, rotation, and scale of the
GameObject. This is the only component that is required for every GameObject. While
looking at this, make sure that the Cube's Position X, Y, and Z values are set to 0.
 Cube (Mesh Filter): The Mesh Filter component gives the GameObject its three-
dimensional shape, which is modeled as a mesh composed of triangles. 3D models in
games are generally a surface that is hollow inside. Unlike a real egg (which is filled
with a yolk and albumen), a 3D model of an egg would just be a mesh simulating an
empty eggshell. The Mesh Filter component attaches a 3D model to the GameObject.
In the case of Cube, the Mesh Filter is using a simple 3D cube model that is built into
Unity, but you can also import complex 3D model assets into the Project pane to bring
more complex meshes into your game.
 Box Collider: Collider components enable a GameObject to interact with other
objects in the physics simulation that Unity runs. The PhysX physics engine in Unity
uses several different kinds of colliders, including Sphere, Capsule, Box, and Mesh (in
increasing order of computational complexity; i.e., a Mesh Collider is much more
difficult for the computer to calculate than a Box Collider). A GameObject with a
collider component (and no Rigidbody component) acts as an immovable object in
space that other GameObjects can run into.
 Mesh Renderer: Whereas the Mesh Filter provides the actual geometry of the
GameObject, the Mesh Renderer component makes that geometry visible. Without a
renderer, nothing in Unity will appear on screen. Renderers work with the Main
Camera to convert the 3D geometry of the Mesh Filter into the pixels you actually see
on screen.

5. Now you're going to add one more component to this GameObject: a Rigidbody. With

339

the Cube still selected in the hierarchy, choose Component > Physics > Rigidbody from
the menu bar, and you'll see a Rigidbody component added to the Inspector:
 Rigidbody: The Rigidbody component tells Unity that you want physics to be
simulated for this GameObject. This includes physical forces like gravity, friction,
collisions, and drag. A Rigidbody enables a GameObject with a Collider component
to move through space. Without a Rigidbody, even if the GameObject is moved by
adjusting its transform, the Collider component of the GameObject will not move
reliably. You should attach a Rigidbody component to any GameObject that you want
to both move and properly collide with other colliders.

6. Click the Play button; the box falls due to gravity.

All the physical simulations in Unity are based on the metric system. This means that:

 1 unit of distance = 1 meter (for example, the units for the position of a transform).
 1 unit of mass = 1 kilogram (for example, the units of mass of a Rigidbody).
 The default gravity of –9.8 = 9.8 m/s2 in the downward (negative y) direction.
 An average human character is about 2 units (2 meters) tall.

7. Click the Play button again to stop the simulation.

Your scene came with a Directional Light already included. This is why the box is lit so
brightly. For now, this is all you need, you'll learn more about lights in later chapters.

Making a Prefab
It's time to make Cube into a prefab. A prefab is a reusable element in a project that can be
instantiated (cloned into existence) any number of times. You can think of a prefab as a
mold for a GameObject, and each GameObject made from that prefab is called an instance
of the prefab (hence the word instantiate). To make the prefab, click Cube in the Hierarchy
pane, drag it over to the Project pane, and release the mouse button (see Figure 19.9).

340

Figure 19.9 Making Cube into a prefab

You'll see that a couple of things have just happened:

 A prefab named Cube has been created in the Project pane. You can tell it's a prefab by
the blue cube icon next to it. (The prefab icon is always a cube regardless of the shape
of the prefab itself.)
 The name of the Cube GameObject in the Hierarchy has turned blue. If a GameObject
has a blue name in the Hierarchy it means that that GameObject is an instance of a prefab
(which is like a copy made from the prefab mold).

Just for the sake of clarity, rename the Cube prefab in the Project pane to Cube Prefab.

1. Click once on the Cube prefab to select it, and then click a second time to rename it
(you can also try pressing Return (or F2 on PC) after it's selected to rename it) and then
change the name to Cube Prefab. You'll see that because the instance in the Hierarchy
panel had the default name Cube, its name changes as well. If you had renamed the
instance in the Hierarchy to be different from the name of the prefab, the instance name
would not have been affected.

2. Now that the prefab is set up, you don't actually need the instance of Cube in the scene
any more. Click Cube Prefab in the Hierarchy pane (not the Project pane!).
Choose Edit > Delete from the menu bar; the cube disappears from your scene.

It's time to get your hands dirty with some more code:

3. Choose Assets > Create > C# Script from the menu bar and rename the newly created
script CubeSpawner (making sure that it has two capital letters and no spaces in the

341

name).
4. Double-click the CubeSpawner script to open MonoDevelop, add the bolded code

shown here, and save it:
Click here to view code image

 1 using System.Collections;
 2 using System.Collections.Generic;
 3 using UnityEngine;
 4
 5 public class CubeSpawner: MonoBehaviour {
 6 public GameObject cubePrefabVar;
 7
 8 // Use this for initialization
 9 void Start () {
10 Instantiate(cubePrefabVar);
11 }
12
13 // Update is called once per frame
14 void Update () {
15
16 }
17 }

Note
In addition to adding spaces—as was mentioned in an earlier note—some
versions of MonoDevelop also remove extra spaces when you add the semicolon
to the end of a line or when you press Return/Enter after doing so. That's okay as
well. In my code listings, you'll often see lines—like line 6 in the preceding code
listing—where I have added tabs before the name of a variable/field (e.g.,
cubePrefabVar). I do this because I think lining up all the field names makes
it easier to read, but sometimes as you're typing it, MonoDevelop will remove
those extra spaces or tabs that cause the alignment. Don't worry about this; the
presence or lack of those extra spaces won't affect the code at all.

5. As with the previous script, you must attach this script to a GameObject in the scene for
the code of this script to be executed. In Unity, drag the CubeSpawner script over to
Main Camera as shown in Figure 19.4.

6. Click Main Camera in the Hierarchy pane. You'll see that a Cube Spawner (Script)
component has been added to the Main Camera GameObject (see Figure 19.10).

342

Figure 19.10 The CubeSpawner script component in the Inspector pane for Main Camera

You can also see a variable called Cube Prefab Var in this component (though it really
should be cubePrefabVar, as explained in the nearby warning). That comes from the
public GameObject cubePrefabVar; statement you typed on line 6. In general,
if a variable of a script is labeled "public", it will appear in the Inspector pane.

Warning
VARIABLE NAMES LOOK DIFFERENT IN THE INSPECTOR Someone
at Unity thought it would look nice to change the capitalization and spacing of
variable names in the Inspector pane. I have no idea why this has lasted into the
current version, but it means that your variable names like cubePrefabVar
will incorrectly appear in the Inspector as Cube Prefab Var. Be careful to always
refer to your variable names properly in your programming and please ignore the
strange capitalization and spacing that you see in the Inspector. Throughout the
book, I refer to variables by their proper name in code rather than the names that
appear in the Inspector.

7. As you can see in the Inspector, cubePrefabVar currently has no value assigned.
Click the circular target to the right of the cubePrefabVar value (as shown by the
arrow cursor in Figure 19.10) to open the Select GameObject dialog box from which
you can select a prefab to assign to this variable. Make sure that the Assets tab is
selected. (The Assets tab shows GameObjects in your Project pane, whereas the Scene
tab shows GameObjects in your Hierarchy.) Double-click Cube Prefab to select it (see
Figure 19.11).

Figure 19.11 Selecting Cube Prefab for the cubePrefabVar variable of the
CubeSpawner script

343

8. Now you can see in the Inspector that the value of cubePrefabVar is Cube Prefab from
the Project pane. To double-check this, click the value Cube Prefab in the Inspector, and
you will see that Cube Prefab is highlighted yellow in the Project pane.

9. Click the Play button. You'll see that a single Cube Prefab(Clone) GameObject is
instantiated in the Hierarchy. Just like you saw in the Hello World script, the Start()
function is called once, and it creates a single instance (or clone) of the Cube Prefab.

10. Now switch to MonoDevelop, comment out the Instantiate(cubePrefabVar
) call on line 10 in the Start() function, and add an Instantiate(
cubePrefabVar); statement to line 15 in the Update() function, as shown in
the following code.

Click here to view code image

 1 using System.Collections;
 2 using System.Collections.Generic;
 3 using UnityEngine;
 4
 5 public class CubeSpawner: MonoBehaviour {
 6 public GameObject cubePrefabVar;
 7
 8 // Use this for initialization
 9 void Start () {
10 Instantiate(cubePrefabVar);
11 }
12
13 // Update is called once per frame
14 void Update () {
15 Instantiate(cubePrefabVar);
16 }
17 }

11. Save the CubeSpawner script, switch back to Unity, and click Play again. As shown in
Figure 19.12, this gives you cubes galore.4

344

Figure 19.12 Creating a new instance of the CubePrefab every Update() quickly adds
up to a lot of cubes!

This is an example of the power of Unity. Very quickly, you were able to get up to speed
and make something cool and interesting. Now, add some more objects to the scene for the
cubes to interact with:

1. Click Play again to stop playback.
2. In the Hierarchy, click the Create pop-up menu and choose 3D Object > Cube. Rename

this cube Ground.
3. With the Ground object selected in the Scene pane or Hierarchy pane, press the W, E,

or R to translate (move), rotate, or scale the GameObject. This shows gizmos (the
arrows, circles, and such shown around the cube in Figure 19.13) around Ground.

Figure 19.13 The translate (position), rotate, and scale gizmos. Q, W, E, R, and T are the
keys that select each tool. The T tool is used for positioning 2D and GUI GameObjects.

345

In translation (W) mode, clicking and dragging on one of the arrows moves the cube
exclusively along the axis of that arrow (X, Y, or Z). The colored elements of the rotation
and scale gizmos lock the transformation to a specific axis in similar ways. See the
"Changing the Scene View" sidebar for information about how to use the hand tool shown
in Figure 19.13.

4. Try moving Ground to a Y position of –4 and setting its scale in the X and Z dimensions
to 10. Throughout the book, I suggest positions, rotations, and scales using this format.

Ground (Cube) P:[0, –4, 0] R:[0, 0, 0] S:[10, 1, 10]

Ground here is the name of the GameObject, and (Cube) is the type of the GameObject. P:[
0, –4, 0] means to set the X position to 0, the Y position to –4, and the Z position to 0.
Similarly, R:[0, 0, 0] means to keep the X, Y, and Z rotations all set to 0. S:[10, 1, 10]
means to set the X scale to 10, the Y scale to 1, and the Z scale to 10. You can either use the
tools and gizmos to make these changes or just type them into the Transform component of
the GameObject's Inspector.

Feel free to play around with this and add more objects. The instances of Cube Prefab will
bounce off of the static objects that you put into the scene (see Figure 19.14). As long as
you don't add a Rigidbody to any of the new shapes, they should be static (i.e., solid and
immovable). When you're done, be sure to save your scene!

Figure 19.14 The scene with static shapes added

CHANGING THE SCENE VIEW

346

The first tool on the toolbar shown in Figure 19.13—known as the hand tool—is
used to manipulate the view shown in the Scene pane. The Scene pane has its own
invisible scene camera that is different from the Main Camera in the Hierarchy.
The hand tool has several different abilities. Select the hand tool (by either
clicking it or pressing Q on your keyboard) and try the following:

 Left-dragging (that is, clicking and dragging using the left mouse button) in the
Scene pane moves the position of the scene camera without changing the
position of any of the objects in the scene. To be technical, the scene camera is
moved in a plane perpendicular to the direction that the camera is facing (that
is, perpendicular to the camera's forward vector).
 Right-dragging in the Scene pane rotates the scene camera to look in the
direction of your drag. The scene camera stays in the same position when right-
dragging.
 Holding the Option key (or Alt key on a PC) changes the cursor over the Scene
pane from a hand to an eye, and left-dragging with the Option key held causes
the Scene view to rotate around objects in the Scene pane (this is known as
orbiting the camera around the scene). When Option+left-dragging, the position
of the scene camera changes, but the location that the scene camera is looking at
does not.
 Scrolling with the scroll wheel on your mouse causes the scene camera to
zoom in and out of the scene. You can also zoom by Option+right-dragging in
the Scene pane.

The best way to get a feel for the hand tool is to try moving around the scene using
the different methods described in this sidebar. After you have played with it a
little, it should become second nature to you.

Summary
In about 20 pages, you've gone from nothing to having a working Unity project with a little
programming in it. Admittedly, this project was pretty small, but I hope that it has served to
show you the raw speed at which Unity can operate as well as the speed at which you can
get something running in Unity.

The next chapter will continue your introduction to C# and Unity by introducing you to
variables and increasing your knowledge of the most common components that can be
added to a GameObject.

347

1. The underscore (_) at the beginning of the scene name _Scene_0 causes the scene to be
sorted to the top of the Project pane (on macOS).

2. If you accidentally attached more than one HelloWorld (Script) component to Main
Camera, you can always remove any extras by clicking the small gear-shaped icon to
the right of the "HelloWorld (Script)" name and choosing Remove Component from the
pop-up menu.

3. As discussed earlier in the book (particularly in Chapter 16, "Thinking in Digital
Systems"), a frame occurs every time that Unity redraws the screen, which typically
happens anywhere from 30 to 200 times per second.

4. You might be wondering why these cubes are flying all over the place rather than falling
straight down. If so, good question! This is happening because the cubes spawn right on
top of each other, and the PhysX physics system decides that it needs to move them
away from each other (because Unity Colliders should not be able to occupy the same
space), so it gives them a velocity that causes them to move away from each other
quickly.

348

CHAPTER 20

VARIABLES AND COMPONENTS

This chapter introduces you to many of the variable and component types used
throughout Unity C# programming. By the end of the chapter, you will understand
several common types of C# variables and some important variable types that are
unique to Unity.

This chapter also introduces you to Unity's GameObjects and components. Any
object in a Unity scene is a GameObject, and the components that a
GameObject contains enable everything from the positioning of a GameObject
to physics simulation, special effects, displaying a 3D model on screen, character
animation, and more.

Introducing Variables
To recap a bit of Chapter 18, "Introducing Our Language: C#," a variable is just a name that
can be defined to be equal to a specific value. This concept comes from the study of
algebra. In algebra, for instance, you can be given the definition:

x = 5

This defines the variable x to be equal to the value 5. In other words, it assigns the value 5
to the name x. If you later encounter the definition:

y = x + 2

Then you know that the value of the variable y is 7 (because x = 5 and 5 + 2 = 7). x and y
are called variables because their value can be redefined at any time, and the order in
which these definitions occur matters. Take a look at these definitions. (I include comments
after double slashes [//] in the following lines to help explain what each statement is
doing.)

Click here to view code image

x = 10 // x is now equal to the value 10
y = x – 4 // y is now 6 because 10-4 = 6

349

x = 12 // x is now equal to the value 12, but y is still 6
z = x + 3 // z is now 15 because 12+3 = 15

After this sequence of definitions, the values assigned to x, y, and z are 12, 6, and 15,
respectively. As you can see, even though x changed value, y was not affected because y is
defined as the value 6 before x is assigned the new value 12, and y is not retroactively
affected.

Strongly Typed Variables in C#
Instead of being able to be assign any kind of value to any variable, C# variables are
strongly typed, meaning that they can only accept a specific type of value. This is necessary
because the computer needs to know how much space in memory to allocate to each
variable. A large image can take up many megabytes or even gigabytes of space, whereas a
Boolean value (which can only hold either a 1 or a 0) only really requires a single bit.
Even just a single megabyte is equivalent to 8,388,608 bits!

Declaring and Assigning Variables in C#
In C#, you must both declare and assign a value to a variable for it to have a usable value.

Declaring a variable creates it and gives it a name and type. However, this does not give
the variable a value (though some simple variable types do have default values).

Click here to view code image

bool bravo; // Declares a variable named bravo of the bool (Boolean) type
int india; // Declares a variable named india of the int (integer) type
float foxtrot; // Declares a variable named foxtrot of the float (number) type
char charlie; // Declares a variable named charlie of the char (character)
type

Assigning a variable gives that variable a value. Here are some examples of how to use
these declared variables:

Click here to view code image

bravo = true ;
india = 8;
foxtrot = 3.14f ; // The f makes this numeric literal a float, as described
later
charlie = 'c' ;

Whenever you write a specific value in your code (e.g., true, 8, or 'c'), that specific
value is called a literal. In the preceding code listing, true is a bool literal, 8 is an int
(integer) literal, 3.14f is a float literal, and 'c' is a char literal. By default,

350

MonoDevelop shows these literals in a bright orange color (though true is colored teal
on some computers for esoteric reasons), and each variable type has certain rules about
how its literals are represented. Check out each of the variable types in the following
sections for more information on this.

Declaration Before Assignment
You must first declare a variable before you can assign a value to it, although this is often
done on the same line:
Click here to view code image

string sierra = "Mountain" ;

Initializing C# Variables Before Accessing Them
The first time you ever assign a value to a new variable is called initializing the variable.
Some simple variable types (like the bool, int, float, etc. in the example lines above) come
with a default value when they are declared (respectively false, 0, and 0f). More
complex variable types (e.g., GameObject, List, etc.) default to null, a non-initialized
state, and are not fully usable until they have been initialized.

In general, even if a simple variable comes with a default value, Unity complains and
throws a compiler error1 if you try to access (i.e., read) a variable that has been declared
but has not yet been initialized.

Important C# Variable Types
Several different types of variables are available to you in C#. The following are a few
important ones that you'll encounter frequently. All of these basic C# variable types begin
with a lowercase letter, whereas most Unity data types begin with an uppercase letter. For
each, I've listed information about the variable type and an example of how to declare and
define the variable.

bool: A 1-Bit True or False Value
The term bool is short for Boolean. At their heart, all variables are composed of bits that
you can set to either true or false. A bool is 1 bit in length, making it the smallest possible
variable.2

Bools are extremely useful for logic operations like if statements and other conditionals,
which the next two chapters cover. In C#, bool literals are limited to the lowercase
keywords true and false:

351

bool verified = true ;

int: A 32-Bit Integer
Short for integer, an int can store a single integer number (integers are numbers without any
fractional value like 5, 2, and –90). Integer math is very accurate and very fast. An int in
Unity can store a number between –2,147,483,648 and 2,147,483,647 with 1 bit used for
the positive or negative sign of the number and 31 bits used for the numerical value. An int
can hold any integer value between these two numbers (inclusive, meaning that an int could
also hold either number, not just those in between):
Click here to view code image

int nonFractionalNumber = 12345;

float: A 32-Bit Decimal Number
A floating-point number,3 or float, is the most common form of decimal number used in
Unity. It is called "floating point" because it is stored using a system similar to scientific
notation. Scientific notation is the representation of numbers in the form a × 10b (for
example, 300 would be written 3 × 102, and 12,345 would be written 1.2345 × 104).
Floating-point numbers are stored in a similar format as a × 2b. When a computer stores a
number as a float in memory, 1 bit represents whether the number is positive or negative,
23 bits are allocated to the significand (the a part of the number), and 8 are allocated to the
exponent to which the number is raised or lowered (the b part). This storage method
compromises the precision of very large numbers and any number between 1 and –1 that is
difficult to represent as a power of 2. For instance, there is no way to accurately represent
1/3 using a float.4

Most of the time, the imprecise nature of floats doesn't matter much in your games, but it
can cause small errors in things like collision detection; so in general, keeping objects in
your game larger than 1 unit and smaller than several thousand units in size will make
collisions a little more accurate. Float literals must be either a whole number or a decimal
number followed by an f. This is because C# assumes that any decimal literal without a
trailing f is a double (which is a float data type with double the precision) instead of the
single-precision floats that Unity uses. Floats are used in all built-in Unity functions instead
of doubles to enable the fastest possible calculation, though this comes at the expense of
accuracy:

Click here to view code image

float notPreciselyOneThird = 1.0f /3.0f ;

One way to handle this float inaccuracy is to use the Mathf.Approximately()

352

comparison function described in the Mathf: A Library of Mathematical Functions section
later in this chapter. This function returns true if two float values are very close to each
other.

Tip
If you see the following compile-time error in your code
Click here to view code image

error CS0664: Literal of type double cannot be implicitly converted to
type 'float'. Add suffix 'f' to create a literal of this type

it means that somewhere you have forgotten to add the f after a float literal.

char: A 16-Bit Single Character
A char is a single character represented by 16 bits of information. Chars in Unity's C# use
Unicode5 values for storing characters, enabling the representation of more than 110,000
different characters from more than 100 different character sets and languages (including,
for instance, all the characters in Simplified Chinese). A char literal is surrounded by
single-quote marks (apostrophes):

char theLetterA = 'A' ;

string: A Series of 16-Bit Characters
A string is used to represent everything from a single character to the text of an entire book.
The theoretical maximum length of a string in C# is more than 2 billion characters, but most
computers will encounter memory allocation issues long before that limit is reached. To
give some context, the full version of Shakespeare's play Hamlet comprises a little more
than 175,000 characters,6 including stage directions, line breaks, and so on. This means that
Hamlet could be repeated more than 12,000 times in a single string. A string literal is
surrounded by double-quote marks:
Click here to view code image

string theFirstLineOfHamlet = "Who's there?" ;

Bracket Access and Strings
Bracket access can be used to read the individual chars of a string:
Click here to view code image

353

char theCharW = theFirstLineOfHamlet[0]; // W is the 0th char in the string

char theChart = theFirstLineOfHamlet[6]; // t is the 6th char in the string

Placing a number in brackets after the variable name retrieves the character in that position
of the string (without affecting the original string). When you use bracket access, counting
starts with the number 0; so in the preceding example, W is the 0th character of the first line
of Hamlet, and t is the 6th character. You will encounter bracket access much more in
Chapter 23, "Collections in C#."

Tip
If you see any of the following compile-time errors in your code
Click here to view code image

error CS0029: Cannot implicitly convert type 'string' to 'char'
error CS0029: Cannot implicitly convert type 'char' to 'string'
error CS1012: Too many characters in character literal
error CS1525: Unexpected symbol '<internal>'

it usually means that somewhere you have accidentally used double quotes (" ")
for a char literal or single quotes (' ') for a string literal. String literals always
require double quotes, and char literals always require single quotes.

class: The Definition of a New Variable Type
A class defines a new type of variable that you can best think of as a collection of both
variables and functionality. All the Unity variable types and components listed in the
"Important Unity Variable Types" section later in this chapter are examples of classes.
Chapter 26, "Classes," covers classes in much greater detail.

The Scope of Variables
In addition to variable type, another important concept for variables is scope. The scope of
a variable refers to the range of code in which the variable exists and is understood. If you
declare a variable in one part of your code, it might not have meaning in another part. I
cover this complex issue throughout this book. If you want to learn about it progressively,
just read the book in order. If you want to get a lot more information about variable scope
right now, you can read the section Variable Scope in Appendix B, "Useful Concepts."

Naming Conventions

354

The code in this book follows a number of rules governing the naming of variables,
functions, classes, and so on. Although none of these rules are mandatory, following them
makes your code more readable not only to others who try to decipher it but also to yourself
if you ever need to return to it months later and hope to understand what you wrote. Every
coder follows slightly different rules—my personal rules have even changed over the years
—but the rules I present here have worked well for both me and my students, and they are
consistent with most C# code that I've encountered in Unity:

CAMEL CASE
camelCase is a common way of writing variable names in programming. It allows
the programmer or someone reading her code to easily parse long variable names.
Here are some examples:

 aVeryLongNameThatIsEasierToReadBecauseOfCamelCase
 variableNamesStartWithALowerCaseLetter
 ClassNamesStartWithACapitalLetter

The key feature of camelCase is that it allows multiple words to be combined into
one with a medial capital letter at the beginning of each original word. It is named
camel-Case because it looks a bit like the humps on a camel's back.

 Use camelCase for pretty much everything (see the camelCase sidebar).
 Variable names should start with a lowercase letter (e.g., someVariableName).
 Function names should start with an uppercase letter (e.g., Start(), Update()).
 Class names should start with an uppercase letter (e.g., GameObject,
ScopeExample).
 Private variable names often start with an underscore (e.g., _hiddenVariable).
 Static variable names are often all caps with snake_case (e.g., NUM_INSTANCES). As
you can see, snake_case combines multiple words with an underscore in between them.

For your later reference, I repeat and expand on this information in the Naming
Conventions section of Appendix B.

Important Unity Variable Types
Unity has a number of variable types that you will encounter in nearly every project. All of
these variable types are actually classes and follow Unity's naming convention that all class

355

types start with an uppercase letter.7 For each of the Unity variable types, you will see
information about how to create a new instance of that class (see the nearby sidebar on
class instances) followed by listings of important variables and functions for that data type.
For most of the Unity classes listed in this section, the variables and functions are split into
two groups:

 Instance variables and functions: These variables and functions are tied directly to a
single instance of the variable type. If you look at the Vector3 information that follows,
you will see that x, y, z, and magnitude are all instance variables of Vector3, and
each one is accessed by using the name of a Vector3 variable, a period, and then the
name of the instance variable (for example, position.x). Each Vector3 instance can
have different values for these variables. Similarly, the Normalize() function acts on
a single instance of Vector3 and sets the magnitude of that instance to one. Instance
variables are often referred to as fields, and instance functions are referred to as
methods.
 Static class variables and functions: Static variables are tied to the class definition
itself rather than being tied to an individual instance. These are often used to store
information that is the same across all instances of the class (for example, Color.red
is always the same red color) or to act on multiple instances of the class without
affecting any of those instances (for example, Vector3.Cross(v3a, v3b) is
used to calculate the cross product of two Vector3s and return that value as a new
Vector3 without changing either v3a or v3b).

For more information on any of these Unity types, check out the Unity documentation links
referenced in the footnotes.

CLASS INSTANCES AND STATIC FUNCTIONS
Just like the prefabs that you saw in Chapter 19, "Hello World: Your First
Program," classes can also have instances. An instance of any class (also known
as a member of the class) is a data object that is of the type defined by the class.

For example, you could define a class Human, and everyone you know would be
an instance of that class. Several functions are defined for all humans (for
example, Eat(), Sleep(), Breathe()).

Just as you differ from all other humans around you, each instance of a class
differs from the other instances. Even if two instances have perfectly identical
values, they are stored in different locations in computer memory and seen as two
distinct objects. (To continue the human analogy, you could think of them as
identical twins.) Class instances are referred to by reference, not value. This

356

means that if you are comparing two class instances to see whether they are the
same, the thing that is compared is their location in memory, not their values (just
as two identical twins are different people, even though they have the same DNA).

Referencing the same class instance using different variables is possible, of
course. Just as the person I might call "daughter" would also be called
"granddaughter" by my parents, a class instance can be assigned to any number of
variable names yet still be the same data object, as is shown in the following
code:

Click here to view code image

1 using System.Collections;
2 using System.Collections.Generic;
3 using UnityEngine;
4
5 // Defining the class Human
6 public class Human {
7 public string name;
8 public Human partner;
9 }
10
11 public class Family : MonoBehaviour {
12 // public variable declaration
13 public Human husband;
14 public Human wife;
15
16 void Start() {
17 // Initial state
18 husband = new Human();
19 husband.name = "Jeremy Gibson" ;
20 wife = new Human ();
21 wife.name = "Melanie Schuessler" ;
22
23 // My wife and I get married
24 husband.partner = wife;
25 wife.partner = husband;

26
27 // We change our names
28 husband.name = "Jeremy Gibson Bond";
29 wife.name = "Melanie Schuessler Bond";
30

31 // Because wife.partner refers to the same instance as husband,
32 // the name of wife.partner has also changed
33 print(wife.partner.name);
34 // prints "Jeremy Gibson Bond"
35 }
36 }

357

Creating static functions on the class Human that are able to act on one or more
instances of the class is also possible. The static function Marry() allows you to
set any two humans to be each other's partner with a single function, as shown in
the following code.

Click here to view code image

33 print(wife.partner.name);
34 // prints "Jeremy Gibson Bond"
35 }
36 // This code goes between lines 35 and 36 in the previous code
listing
37 // In the process, line 36 becomes line 42
38 static public void Marry(Human h0, Human h1) {
39 h0.partner = h1;
40 h1.partner = h0;
41 }
42 }

With this function, replacing lines 23 and 24 from the initial code listing with the
single line Human.Marry(wife, husband); would now be possible.
Because Marry() is a static function, you can use it almost anywhere in your
code. You will learn more about static functions and variables later in the book.

Vector3: A Collection of Three Floats
Vector38 is a very common data type for working in 3D. It is used most often to store the
three-dimensional position of objects in Unity. Follow the URL in the footnote for more
detailed information about Vector3s.
Click here to view code image

Vector3 position = new Vector3 (0.0f ,3.0f ,4.0f); // Sets the x, y, & z
values

Vector3 Instance Variables and Functions
As a class, each Vector3 instance also contains a number of useful built-in values and
functions:
Click here to view code image

print(position.x); // 0.0, The x value of the Vector3
print(position.y); // 3.0, The y value of the Vector3
print(position.z); // 4.0, The z value of the Vector3
print(position.magnitude); // 5.0, The distance of the Vector3 from 0,0,0
 // Magnitude is another word for "length".
position.Normalize(); // Sets the magnitude of position to 1, meaning that the

358

 // x, y, & z values of position are now [0.0, 0.6, 0.8]

Vector3 Static Class Variables and Functions
In addition, several static class variables and functions are associated with the Vector3
class itself:
Click here to view code image

print(Vector3.zero); // (0,0,0), Shorthand for: new Vector3(0, 0, 0)
print(Vector3.one); // (1,1,1), Shorthand for: new Vector3(1, 1, 1)
print(Vector3.right); // (1,0,0), Shorthand for: new Vector3(1, 0, 0)
print(Vector3.up); // (0,1,0), Shorthand for: new Vector3(0, 1, 0)
print(Vector3.forward); // (0,0,1), Shorthand for: new Vector3(0, 0, 1)
Vector3.Cross(v3a, v3b);// Computes the cross product of the two Vector3s
Vector3.Dot(v3a, v3b); // Computes the dot product of the two Vector3s

This is only a sampling of the fields and methods affiliated with Vector3. To find out more,
check out the Unity documentation referenced in the footnote.

Color: A Color with Transparency Information
The Color9 variable type can store information about a color and its transparency (alpha
value). Colors on computers are mixtures of the three primary colors of light: red, green,
and blue. These are different from the primary colors of paint you might have learned as a
child (red, yellow, and blue) because color on a computer screen is additive, rather than
subtractive. In a subtractive color system like paint, mixing more and more different colors
together moves the mixed color toward black (or a really dark, muddy brown). By contrast,
in an additive color system (like a computer screen, theatrical lighting design, or HTML
colors on the Internet), adding more and more colors together results in a brighter and
brighter colors until the final mixed color is eventually white. The red, green, and blue
components of a color in C# are stored as floats that range from 0.0f to 1.0f with 0.0f
representing none of that color channel and 1.0f representing as much of that color
channel as possible. A fourth float named alpha sets the transparency of the Color. A color
with an alpha of 0.0f is fully transparent, and a color with an alpha of 1.0f is fully
opaque:
Click here to view code image

// Colors are defined by floats for the Red, Green, Blue, and Alpha channels
Color darkGreen = new Color (0f ,0.25f ,0f); // If no alpha info is passed in,
 // the alpha value is assumed to
 // be 1 (fully opaque)
Color darkRedTranslucent = new Color (0.25f ,0f ,0f ,0.5f);

As you can see, there are two different ways to define a color: one with three parameters
(red, green, and blue) and one with four parameters (red, green, blue, and alpha).10

359

Color Instance Variables and Functions
You can reference each channel of a color through instance variables:
Click here to view code image

print(Color.yellow.r); // 1, The red value of the yellow Color
print(Color.yellow.g); // 0.92f, The green value of the yellow Color
print(Color.yellow.b); // 0.016f, The blue value of the yellow Color
print(Color.yellow.a); // 1, The alpha value of the yellow Color

Color Static Class Variables and Functions
Several common colors are predefined in Unity as static class variables:
Click here to view code image

// Primary Colors: Red, Green, and Blue
Color.red = new Color (1 , 0 , 0 , 1); // Solid red
Color.green = new Color (0 , 1 , 0 , 1); // Solid green
Color.blue = new Color (0 , 0 , 1 , 1); // Solid blue

// Secondary Colors: Cyan, Magenta, and Yellow
Color.cyan = new Color (0 , 1 , 1 , 1); // Cyan, a bright greenish blue
Color.magenta = new Color (1 , 0 , 1 , 1);// Magenta, a pinkish purple
Color.yellow = new Color (1 , 0.92f , 0.016f , 1); // A nice-looking yellow
// As you can imagine, a standard yellow would be new Color(1,1,0,1), but in
// Unity's opinion, this yellow looks better.

// Black, White, and Clear
Color.black = new Color (0 , 0 , 0 , 1); // Solid black
Color.white = new Color (1 , 1 , 1 , 1); // Solid white
Color.gray = new Color (0.5f , 0.5f , 0.5f , 1)// Gray
Color.grey = new Color (0.5f ,0.5f , 0.5f , 1) // British spelling of gray
Color.clear = new Color (0 , 0 , 0 , 0); // Completely transparent

Quaternion: Rotation Information
Explaining the inner workings of the Quaternion11 class is far beyond the scope of this
book, but you will use them often to set and adjust the rotation of objects through the
Quaternion GameObject.transform.rotation, which is part of every
GameObject. Quaternions define rotations in a way that avoids gimbal lock, a problem with
standard X, Y, Z (or Euler, pronounced "oiler") rotations where one axis can align with
another and limit rotation possibilities. Most of the time, you will define a Quaternion by
passing in Euler rotations and allowing Unity to convert them into the equivalent
Quaternion:
Click here to view code image

QuaternionlookUp45Deg = Quaternion.Euler(-45f , 0f , 0f);

360

In cases like this, the three floats passed into Quaternion.Euler() are the number of
degrees to rotate around the X, Y, and Z axes (respectively colored red, green, and blue in
Unity). GameObjects, including the Main Camera in a scene, are initially oriented to be
looking down the positive Z axis. The rotation in the preceding code would rotate the
camera –45 degrees around the red X axis, causing it to then be looking up at a 45° angle
relative to the positive Z axis. If that last sentence was confusing, don't worry about it too
much right now. Later, you can try going into Unity and changing the X, Y, and Z rotation
values in the Transform Inspector for a GameObject and see how it alters the object's
orientation.

Quaternion Instance Variables and Functions
You can also use the instance variable eulerAngles to cause a Quaternion to return its
rotation information to you in Euler angles as a Vector3:
Click here to view code image

print(lookUp45Deg.eulerAngles); // (-45, 0, 0), the Euler rotation

Mathf: A Library of Mathematical Functions
Mathf12 isn't really a variable type as much as a fantastically useful library of math
functions. All the variables and functions attached to Mathf are static; you cannot create an
instance of Mathf. Far too many useful functions are available in the Mathf library to list
here, but a few include the following:
Click here to view code image

Mathf.Sin(x); // Computes the sine of x
Mathf.Cos(x); // .Tan(), .Asin(), .Acos(), & .Atan() are also available
Mathf.Atan2(y, x); // Gives you the angle to rotate around the z-axis to
 // change something facing along the x-axis to face

 // instead toward the point x, y.13

print(Mathf.PI); // 3.141593; the ratio of circumference to diameter
Mathf.Min(2, 3, 1); // 1, the smallest of the three numbers (float or int)
Mathf.Max(2, 3, 1); // 3, the largest of the three numbers (float or int)
Mathf.Round(1.75f); // 2, rounds up or down to the nearest number
Mathf.Ceil(1.75f); // 2, rounds up to the next highest integer number
Mathf .Floor(1.75f); // 1, rounds down to the next lowest integer number
Mathf.Abs(-25); // 25, the absolute value of -25

Mathf.Approximately(a, b); // Compares approximate equality of two floats

Mathf.Approximately() is a great tool to help you deal with float inaccuracy
because (unlike ==) it returns true if two floats are so close to each other that float
inaccuracy could cause them to appear to be unequal. This method is not used in this book
because we don't compare two floats using == in any code examples, but in your work, if
you're ever comparing two floats for equality, use Mathf.Approximately() instead

361

of ==.

Screen: Information about the Display
Screen14 is another library like Mathf that can give you information about the specific
computer screen that your Unity game is using. This works regardless of device, so Screen
provides you accurate info whether you're on a PC, macOS, an iOS device, an Android
device, or WebGL:
Click here to view code image

print(Screen.width); // Prints the width of the screen in pixels
print(Screen.height); // Prints the height of the screen in pixels

SystemInfo: Information about the Device
SystemInfo15 provides specific information about the device on which the game is running.
It includes information about operating system, number of processors, graphics hardware,
and more. I recommend following the link in the footnote to learn more.
Click here to view code image

print(SystemInfo.operatingSystem); // Mac OS X 10.8.5, for example

GameObject: The Type of Any Object in the Scene
GameObject16 is the base class for all entities in Unity scenes. Anything you see on screen
in a Unity game is a subclass of the GameObject class. GameObjects can contain any
number of different components, including all of those referenced in the next section: Unity
GameObjects and Components. However, GameObjects also have a few important
variables beyond what is covered there:
Click here to view code image

GameObject gObj = new GameObject ("MyGO"); // Creates a new GameObject named
MyGO
print(gObj.name); // MyGO, the name of the GameObject gObj
Transform trans = gObj.GetComponent<Transform >(); // Defines trans to be a
 // reference to the Transform
 // Component of gObj
Transform trans2 = gObj.transform; // A shortcut to access the same Transform
gObj.SetActive(false); // Makes gObj inactive, rendering it invisible and
 // preventing it from running code.

The method17 gObj.GetComponent<Transform>() shown here is of particular
importance because it can enable you to access any of the components attached to a
GameObject. You will sometimes see methods with angle brackets <> like
GetComponent<>(). These are called generic methods because they are a single

362

method designed to be used with many different data types. In the case of
GetComponent<Transform>(), the data type is Transform, which tells
GetComponent<>() to find the Transform component of the GameObject and return it
to you. You can also use it to get any other component of the GameObject by typing that
component type inside the angle brackets instead of Transform. Examples include the
following:

Click here to view code image

Renderer rend = gObj.GetComponent<Renderer >(); // Gets the Renderer component
Collider coll = gObj.GetComponent<Collider >(); // Gets the Collider component
HelloWorld hwInstance = gObj.GetComponent<HelloWorld >();

As shown in the third line of the preceding code listing, you can also use
GetComponent<>() to return the instance of any C# class that you've attached to the
GameObject. If there were an instance of the HelloWorld C# script class attached to gObj,
then gObj.Getcomponent <HelloWorld>() would return it. This technique is
used several times throughout this book.

Unity GameObjects and Components
As mentioned in the previous section, all on-screen elements in Unity are GameObjects,
and all GameObjects contain one or more components (a Transform component is always
included). When you select a GameObject in either the Hierarchy pane or the Scene pane of
Unity, the components of that GameObject display in the Inspector pane, as shown in Figure
20.1.

363

Figure 20.1 The Inspector pane showing various important components

Transform: Position, Rotation, and Scale
Transform18 is a mandatory component that is present on all GameObjects. Transform
handles critical GameObject information like position (the location of the GameObject),
rotation (the orientation of the GameObject), and scale (the size of the GameObject).
Though the information is not displayed in the Inspector pane, Transform is also
responsible for the parent/child relationships in the Hierarchy pane. When one object is the
child of another, it moves with that parent object as if attached to it.

MeshFilter: The Model You See
A MeshFilter19 component attaches a 3D mesh in your Project pane to a GameObject. To
see a model on screen, the GameObject must have both a MeshFilter that handles the actual
3D mesh information and a MeshRenderer that combines that mesh with a shader or
material and displays the image on screen. The MeshFilter creates a skin or surface for a
GameObject, and the MeshRenderer determines the shape, color, and texture of that surface.

Renderer: Allows You to See the GameObject
A Renderer20 component—in most cases, a MeshRenderer—allows you to see the

364

GameObject in the Scene and Game panes. The MeshRenderer requires a MeshFilter to
provide 3D mesh data as well as at least one Material if you want it to look like anything
other than an ugly magenta blob (Materials apply textures to objects, and when no Material
is present, Unity defaults to solid magenta to alert you to the problem). Renderers bring the
MeshFilter, the Material(s), and lighting together to show the GameObject on screen.

Collider: The Physical Presence of the GameObject
A Collider21 component enables a GameObject to have a physical presence in the game
world and collide with other objects. Unity has four different kinds of Collider
components, which I've arranged below in order of their speed. Calculating whether
another object has collided with a Sphere Collider is extremely fast, but calculating
whether an object has collided with a Mesh Collider is much slower:

 Sphere Collider:22 The fastest collision shape to calculate. A ball or sphere.
 Capsule Collider:23 A pipe with spheres at each end. The second fastest type.
 Box Collider:24 A rectangular solid. Useful for crates and other boxy things.
 Mesh Collider:25 A collider formed from a 3D mesh. Although useful and accurate,
mesh colliders are much, much slower than any of the other three. Also, only Mesh
Colliders with Convex set to true can collide with other Mesh Colliders.

Physics and collision are handled in Unity via the NVIDIA PhysX engine. Although this
does usually provide very fast and accurate collisions, be aware that all physics engines
have limitations, and even PhysX sometimes has issues with fast-moving objects or thin
walls.

Later chapters of this book cover Colliders in much more depth. You can also learn more
about them from the Unity documentation.

Rigidbody: The Physics Simulation
The Rigidbody26 component controls the physics simulation of your GameObject. The
Rigidbody component simulates acceleration and velocity every FixedUpdate27 (generally
every 50th of a second) to update the position and rotation of the Transform component over
time. It also uses the Collider component to handle collisions with other GameObjects. The
Rigidbody component can also model things like gravity, drag, and various forces like wind
and explosions. Set isKinematic to true if you want to directly set the position of
your GameObject without using the physics provided by Rigidbody.

365

Warning
For the position of a Collider component to move with its GameObject, the
GameObject must have a Rigidbody. Otherwise—as far as Unity's PhysX physics
simulation is concerned—the collider will not move. In other words, if a
Rigidbody is not attached, the GameObject will appear to move across the
screen, but in PhysX, the location of the Collider component will not be updated,
and therefore the physical presence of the GameObject will remain in the original
location.

Script: The C# Scripts That You Write
All C# scripts are also GameObject components. One of the benefits of scripts being
components is that you can attach more than one script to each GameObject, a capability
that you will take advantage of in some of the tutorials in Part III of this book. Later in the
book, you will read much more about Script components and how to access them.

warning
VARIABLE NAMES WILL CHAGE IN THE INSPECTOR In Figure 20.1,
you can see that the name of the script is Scope Example (Script), but that breaks
the naming rules for classes, because class names cannot have spaces in them.

The actual script name in my code is a single word in camelCase:
ScopeExample. I'm not sure why exactly, but in the Inspector, the spelling of
class and variable names is changed from their actual spelling in the C# scripts
you write by the following rules:

 The class name ScopeExample becomes Scope Example (Script).
 The variable trueOrFalse becomes True Or False.
 The variable graduationAge becomes Graduation Age.
 The variable goldenRatio becomes Golden Ratio.

This is an important distinction, and it has confused some of my students in the
past. Even though the names appear differently in the Inspector, the variable
names in your code have not been changed. Throughout the book, I refer to
variables by their names as they are written in code, regardless of how they
appear in the Inspector.

366

Summary
This was a long chapter with a lot of information in it, and you might need to read it again
or refer to it later after you've had some more experience with code. However, all of this
information will prove invaluable to you as you continue through this book and as you start
writing your own code. After you understand the GameObject/Component structure of Unity
and how to take advantage of the Unity Inspector to set and modify variables, you'll find
that your Unity coding moves a lot faster and more smoothly.

1. In Chapter 18, "Introducing Our Language: C#," you read that C# is a compiled
language. A compiler error is one that is found during the compilation process when
Unity is trying to interpret the C# code that you've written. Chapter 25, "Debugging,"
covers errors and error types in more detail.

2. Because of the way that modern computers and C# handle memory, a single bool now
actually uses 32 to 64 bits of memory, but the actual true/false value of the bool could
potentially be stored in a single bit.

3. http://en.wikipedia.org/wiki/Floating_point
4. This floating point precision issue is also the reason that positions and rotations in the

Unity Transform component that should be zero sometimes appear as a very complex
number that is not exactly zero.

5. http://en.wikipedia.org/wiki/Unicode
6. http://shakespeare.mit.edu/hamlet/full.html
7. To be more correct, some of these Unity variable types are classes, and others are

structs. A struct is similar to a class in most respects, and you won't be writing them in
this book, so I've chosen to refer to everything as classes.

8. http://docs.unity3d.com/Documentation/ScriptReference/Vector3.html
9. http://docs.unity3d.com/Documentation/ScriptReference/Color.html

10. The ability of the new Color() function to accept either three or four different
arguments is called function overloading, and you can read more about it in Chapter
24, "Functions and Parameters."

11. http://docs.unity3d.com/Documentation/ScriptReference/Quaternion.html
12. http://docs.unity3d.com/Documentation/ScriptReference/Mathf.html
13. http://docs.unity3d.com/Documentation/ScriptReference/Mathf.Atan2.html
14. http://docs.unity3d.com/Documentation/ScriptReference/Screen.html
15. http://docs.unity3d.com/Documentation/ScriptReference/SystemInfo.html
16. http://docs.unity3d.com/Documentation/ScriptReference/GameObject.html
17. Function and method have the same basic meaning. The only difference is that function

is the word for a standalone function whereas method refers to a function that is part of
a class.

367

http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/Unicode
http://shakespeare.mit.edu/hamlet/full.html
http://docs.unity3d.com/Documentation/ScriptReference/Vector3.html
http://docs.unity3d.com/Documentation/ScriptReference/Color.html
http://docs.unity3d.com/Documentation/ScriptReference/Quaternion.html
http://docs.unity3d.com/Documentation/ScriptReference/Mathf.html
http://docs.unity3d.com/Documentation/ScriptReference/Mathf.Atan2.html
http://docs.unity3d.com/Documentation/ScriptReference/Screen.html
http://docs.unity3d.com/Documentation/ScriptReference/SystemInfo.html
http://docs.unity3d.com/Documentation/ScriptReference/GameObject.html

18. http://docs.unity3d.com/Documentation/Components/class-Transform.html
19. http://docs.unity3d.com/Documentation/Components/class-MeshFilter.html
20. http://docs.unity3d.com/Documentation/Components/class-MeshRenderer.html
21. http://docs.unity3d.com/Documentation/Components/comp-DynamicsGroup.html
22. http://docs.unity3d.com/Documentation/Components/class-SphereCollider.html
23. http://docs.unity3d.com/Documentation/Components/class-CapsuleCollider.html
24. http://docs.unity3d.com/Documentation/Components/class-BoxCollider.html
25. http://docs.unity3d.com/Documentation/Components/class-MeshCollider.html
26. http://docs.unity3d.com/Documentation/Components/class-Rigidbody.html
27. In Unity, an Update happens every visual frame (often ranging between 30-300

times/second depending on the speed of your computer), whereas a FixedUpdate
happens on a regular, fixed schedule (at a default of 50 times/second regardless of the
platform). Physics engines work better with a fixed update schedule, hence the
difference between the two.

368

http://docs.unity3d.com/Documentation/Components/class-Transform.html
http://docs.unity3d.com/Documentation/Components/class-MeshFilter.html
http://docs.unity3d.com/Documentation/Components/class-MeshRenderer.html
http://docs.unity3d.com/Documentation/Components/comp-DynamicsGroup.html
http://docs.unity3d.com/Documentation/Components/class-SphereCollider.html
http://docs.unity3d.com/Documentation/Components/class-CapsuleCollider.html
http://docs.unity3d.com/Documentation/Components/class-BoxCollider.html
http://docs.unity3d.com/Documentation/Components/class-MeshCollider.html
http://docs.unity3d.com/Documentation/Components/class-Rigidbody.html

CHAPTER 21

BOOLEAN OPERATIONS AND CONDITIONALS

Most people have heard that computer data is, at its base level, composed
entirely of 1s and 0s—bits that are either true or false. However, only
programmers really understand how much of programming is about boiling a
problem down to a true or false value and then responding to it.

In this chapter, you learn about Boolean operations like AND, OR, and NOT; you
learn about comparison statements like >, <, ==, and !=; and you come to
understand conditionals like if and switch. These all lie at the heart of
programming.

Booleans
As you learned in the previous chapter, a bool is a variable that can hold a value of either
true or false. Booleans were named after George Boole, a mathematician who worked
with true and false values and logical operations (now known as "Boolean operations").
Though computers did not exist at the time of his research, computer logic was
fundamentally based on it.

In C# programming, bools are used to store simple information about the state of the game
(e.g., bool gameOver = false;) and to control the flow of the program through the
if and switch statements covered later in this chapter.

Boolean Operations
Boolean operations allow programmers to modify or combine bool variables in meaningful
ways.

! (The NOT Operator)
The ! (either pronounced "not" or "bang") operator reverses the value of a bool. False
becomes true, and true becomes false:
Click here to view code image

369

print(!true); // Outputs: false
print(!false); // Outputs: true
print(!(!true)); // Outputs: true (the double negative of true is true)

! is also sometimes referred to as the logical negation operator to differentiate it from ~
(the bitwise not operator), which is explained in the "Bitwise Boolean Operators and Layer
Masks" section of Appendix B, "Useful Concepts."

&& (The AND Operator)
The && operator returns true only if both operands are true:1

Click here to view code image

print(false && false); // false
print(false && true); // false
print(true && false); // false
print(true && true); // true

|| (The OR Operator)
The || operator returns true if either operand is true as well as if both are true:
Click here to view code image

print(false || false); // false
print(false || true); // true
print(true || false); // true
print(true || true); // true

Shorting Versus Non-Shorting Boolean Operators
The standard forms of AND and OR (&& and ||) are shorting operators, which means that
after the operator has determined the return value, it returns that value without executing the
rest of the code. For example, the code false && SomeFunction() would never
call SomeFunction() because once the false was evaluated, the && would know that
its return value would be false and would short before evaluating SomeFunction().
There are also non-shorting versions of AND and OR (& and |) that will evaluate both
sides of the operator regardless of the value of the first. The following code listing includes
several examples of how this works.

Tip
In the following code listing, a double slash followed by a lowercase letter (e.g.,
// a) to the right of a line indicates that there is an explanation of that line
following the code listing. Throughout the book, the explanations usually appear

370

at the end of the code listing, though in this example, they are included in the
middle of the code to ease you into it.

Click here to view code image

 1 // This function prints "--true" and returns a true value.
 2 bool printAndReturnTrue() {
 3 print("--true");
 4 return(true);
 5 }
 6
 7 // This function prints "--false" and returns a false value.
 8 bool printAndReturnFalse() {
 9 print("--false");
10 return(false);
11 }
12
13 void ShortingOperatorTest() {
14 // Lines 15, 17, 19, & 21 make use of the shorting && and || operators
15 bool andTF = (printAndReturnTrue() && printAndReturnFalse()); // a
16 print("andTF: "+andTF); // Output: "--true --false andTF: false"

a. This line prints --true and --false before setting andTF to false. Because
the first argument that the shorting && operator evaluates is true, it must also evaluate
the second argument to determine that the result is false.

Click here to view code image

17 bool andFT = (printAndReturnFalse() && printAndReturnTrue()); // b
18 print("andFT: "+andFT); // Output: " --false andFT: false"

b. This line only prints --false before setting andFT  to false.  Because the first
argument that the shorting && operator evaluates is false, it returns false without
evaluating the second argument at all. On this line, printAndReturnTrue() is
not executed.

Click here to view code image

19 bool orTF = (printAndReturnTrue() || printAndReturnFalse()); // c
20 print("orTF: "+orTF); // Output: "--true orTF: true"

c. This line only prints --true before setting orTF to true. Because the first
argument that the shorting || operator evaluates is true, it returns true without
evaluating the second.

Click here to view code image

21 bool orFT = (printAndReturnFalse() || printAndReturnTrue()); // d
22 print("orFT: "+orFT); // Output: "--false --true orTF: true"

d. This line prints --false and --true before setting orFT to true. Because the

371

first argument that the shorting || operator evaluates is false, it must evaluate the
second argument to determine which value to return.

Click here to view code image

23 // Lines 24 and 26 use the non-shorting & and | operators
24 bool nsAndFT = (printAndReturnFalse() & printAndReturnTrue()); // e
25 print("nsAndFT: "+nsAndFT); // Output: "--false --true nsAndFT: false"

e. The non-shorting & operator evaluates both arguments regardless of the value of the
first argument. This line prints --false and --true before setting nsAndFT to
false.

Click here to view code image

26 bool nsOrTF = (printAndReturnTrue() | printAndReturnFalse()); // f
27 print("nsOrTF: "+nsOrTF); // Output: "--true --false nsOrTF: false"
28 }

f. The non-shorting | operator evaluates both arguments regardless of the value of the
first argument. This line prints --true and --false before setting nsOrTF to
true.

Knowing about both shorting and non-shorting operators is useful when writing your code.
Shorting operators (&& and ||) are much more commonly used, but & and | can be used
when you want to ensure that you evaluate all the arguments of a Boolean operator.

If you want, I recommend entering this code into Unity and running the debugger to step
through the behavior and really understand what is happening. To learn about the fantastic
debugger in MonoDevelop and Unity, read Chapter 25, "Debugging."

Bitwise Boolean Operators
| and & are sometimes referred to as bitwise OR and bitwise AND because they can also be
used to perform bitwise operations on integers. These are useful for a few esoteric things
having to do with collision detection in Unity that you can learn more about in the Bitwise
Boolean Operators and Layer Masks section of Appendix B, "Useful Concepts."

Combination of Boolean Operations
Combining various Boolean operations in a single line is often useful:
Click here to view code image

bool tf = true || false && false;

However, you must take care when doing so because order of operations extends to
Boolean operations as well. In C#, the order of operations for Boolean operations is as
follows:

372

! NOT
& Non-shorting AND / Bitwise AND
| Non-shorting OR / Bitwise OR
&& AND
|| OR

This means that the previous line would be interpreted by the compiler as
Click here to view code image

bool tf = true || (false && false);

The && comparison is executed before the || comparison every time. Had you ignored
order of operations and interpreted this line left-to-right, you might have expected the result
to be false (e.g., (true || false) && false is false), but without any parentheses,
the line actually evaluates to true!

Tip
Regardless of the order of operations, you should use parentheses for clarity in
your code as often as possible. Good readability is essential in your code if you
ever plan to work with someone else (or even if you want to read the same code
yourself weeks or months later). I code by a simple rule: If there's any chance at
all that something might be misunderstood later, I use parentheses and add
comments to clarify what I am doing in the code and how it will be interpreted by
the computer.

Logical Equivalence of Boolean Operations
The depths of Boolean logic are beyond the scope of this book, but suffice it to say, you can
accomplish some very interesting things by combining Boolean operations. In the examples
of logic rules that follow, a and b are bool variables. These rules hold true regardless of
whether a and b are true or false and regardless of whether the shorting or non-shorting
operators are used:

 Associativity: (a & b) & c is the same as a & (b & c)
 Commutativity: (a & b) is the same as (b & a)
 Distributivity of AND over OR: a & (b | c) is the same as (a & b) | (
a & c)
 Distributivity of OR over AND: a | (b & c) is the same as (a | b) & (

373

a | c)
 (a & b) is the same as !(!a | !b)
 (a | b) is the same as !(!a & !b)

If you're interested in more of these equivalencies and how they could be used, you can find
many resources about Boolean logic online.

Comparison Operators
In addition to comparing Boolean values to each other, you can also create a Boolean value
by using comparison operators on any other values.

== (Is Equal To)
The equality comparison operator checks to see whether the values of any two variables or
literals are equivalent to each other. The result of this operator is a Boolean value of either
true or false.

Warning
DON’T CONFUSE = AND == New coders are often confused by the
difference between the assignment operator (=) and the equality operator (==).
The assignment operator (=) is used to set the value of a variable whereas the
equality operator (==) is used to compare two values. Consider the following
code listing:
Click here to view code image

1 bool f = false;
2 bool t = true;
3 print(f == t); // prints: False
4 print(f = t); // prints: True

On line 3, f is compared to t, and because they are not equal, false is
returned and printed. However, on line 4, f is assigned the value of t, causing
the value of f to now be true, and true is printed.

Confusion is also sometimes an issue when talking about the two operators. To
avoid confusion, I usually pronounce i=5; as "i equals 5," and I pronounce
i==5; as "i is equal to 5."

Click here to view code image

374

 1 int i0 = 10;
 2 int i1 = 10;
 3 int i2 = 20;
 4 float f0 = 1.23f;
 5 float f1 = 3.14f;
 6 float f2 = Mathf.PI;
 7
 8 print(i0 == i1); // Outputs: True
 9 print(i1 == i2); // Outputs: False
10 print(i2 == 20); // Outputs: True
11 print(f0 == f1); // Outputs: False
12 print(f0 == 1.23f); // Outputs: True
13 print(f1 == f2); // Outputs: False // a

a. The comparison in line 13 is false because Math.PI is far more accurate than 3.14f,
and == requires that the values be exactly equivalent.

See the "Testing Equality by Value or Reference" sidebar for more detailed information
about how equality is handled for several different variable types.

TESTING EQUALITY BY VALUE OR REFERENCE
Unity's version of C# compares most simple data types by value. This means that
as long as the values of the two variables are the same, they will be seen as
equivalent. This works for all of the following data types:

 bool
 int
 float
 char
 string
 Vector3
 Color
 Quaternion

However, with more complex variable types like GameObject, Material,
Renderer, and so on, C# instead checks equality by reference. When comparing
equality by reference, it does not compare whether the values of the two variables
are equal but instead checks to see whether the references of the two variables are
equal. In other words, it checks to see whether the two variables are referencing
(or pointing to) the same single object in the computer's memory. In the following
example of comparison by reference, boxPrefab is a pre-existing variable that
references a GameObject prefab.

375

Click here to view code image

1 GameObject go0 = Instantiate<GameObject>(boxPrefab);
2 GameObject go1 = Instantiate<GameObject>(boxPrefab);
3 GameObject go2 = go0;
4 print(go0 == go1); // Output: false
5 print(go0 == go2); // Output: true

Even though the two instantiated boxPrefabs assigned to the variables go0 and
go1 have the same values (they have the exact same default position, rotation, and
so on) the == operator sees them as different because they are actually two
different objects, and therefore reside in two different places in memory. go0 and
go2 are seen as equal by == because they both refer to the exact same object.
Let's continue the previous code:

Click here to view code image

6 go0.transform.position = new Vector3(10, 20, 30);
7 print(go0.transform.position); // Output: (10.0, 20.0, 30.0)
8 print(go1.transform.position); // Output: (0.0, 0.0, 0.0)
9 print(go2.transform.position); // Output: (10.0, 20.0, 30.0)

Here, the position of go0 is changed. Because go1 is a different GameObject
instance, its position remains the same. However, because go2 and go0
reference the same GameObject instance, go2.transform.position
reflects the change as well.

Next, we'll change the position of go1 to match that of go0 (which is the same
GameObject as that referenced by go2).

Click here to view code image

10 go1.transform.position = new Vector3(10, 20, 30);
11 print(go0.transform == go1.transform); // Output:
false
12 print(go0.transform.position == go1.transform.position); // Output:
true

The transforms of the go0 and go1 are not equal, but their positions are
equivalent because the Vector3 positions are being compared by value.

!= (Not Equal To)
The inequality operator returns true if two values are not equal and false if they are equal. It
is the opposite of ==. When comparing objects by reference, != returns true when the two
objects point to different locations in memory. (For the remaining comparisons, literal

376

values will be used in the place of variables for the sake of clarity and space.)
Click here to view code image

print(10 != 10); // Outputs: False
print(10 != 20); // Outputs: True
print(1.23f != 3.14f); // Outputs: True
print(1.23f != 1.23f); // Outputs: False
print(3.14f != Mathf.PI); // Outputs: True

> (Greater Than) and < (Less Than)
> returns true if the value on the left side of the operator is greater than the value on the
right:
Click here to view code image

print(10 > 10); // Outputs: False
print(20 > 10); // Outputs: True
print(1.23f > 3.14f); // Outputs: False
print(1.23f > 1.23f); // Outputs: False
print(3.14f > 1.23f); // Outputs: True

< returns true if the value on the left side of the operator is less than the value on the right:

Click here to view code image

print(10 < 10); // Outputs: False
print(20 < 10); // Outputs: False
print(1.23f < 3.14f); // Outputs: True
print(1.23f < 1.23f); // Outputs: False
print(3.14f < 1.23f); // Outputs: False

The characters < and > are also sometimes referred to as angle brackets, especially when
they are used as tags in languages like HTML and XML or in generic functions in C#.
However, when they are used as comparison operators, they are always called greater
than and less than. Comparing objects by reference using >, <, >=, or <= is not possible.

>= (Greater Than or Equal To) and <= (Less Than or Equal
To)
>= returns true if the value on the left side is greater than or equivalent to the value on the
right:
Click here to view code image

print(10 >= 10); // Outputs: True
print(10 >= 20); // Outputs: False
print(1.23f >= 3.14f); // Outputs: False
print(1.23f >= 1.23f); // Outputs: True

377

print(3.14f >= 1.23f); // Outputs: True

<= returns true if the value on the left side is less than or equal to the value on the right:
Click here to view code image

print(10 <= 10); // Outputs: True
print(10 <= 20); // Outputs: True
print(1.23f <= 3.14f); // Outputs: True
print(1.23f <= 1.23f); // Outputs: True
print(3.14f <= 1.23f); // Outputs: False

Conditional Statements
Conditional statements can be combined with Boolean values and comparison operators to
control the flow of your programs. This means that a true value can cause the code to follow
one path while a false value can cause it to follow another. The two most common forms of
conditional statements are if and switch.

if Statements
An if statement only executes the code inside its braces {} if the value inside its
parentheses () evaluates to true:
Click here to view code image

if (true) {
 print("The code in the first if statement executed.");
}
if (false) {
 print("The code in the second if statement executed.");
}
// The output of this code will be:
// The code in the first if statement executed.

The code inside the braces {} of the first if statement executes, yet the code inside the
braces of the second if statement does not.

note
Statements enclosed in braces do not require a semicolon after the closing brace.
Other statements that have been covered all require a semicolon at the end:
Click here to view code image

float approxPi = 3.14159f; // There's the standard semicolon

Compound statements (that is, those surrounded by braces) do not require a
semicolon after the closing brace:

378

Click here to view code image

if (true) {
 print("Hello"); // This line needs a semicolon.
 print("World"); // This line needs a semicolon.
} // No semicolon required after the closing
brace!

The same is true for any compound statement surrounded by braces.2

Combining if Statements with Comparison and Boolean
Operations
You can combine Boolean operators with if statements to react to various situations in
your game:
Click here to view code image

bool night = true;
bool fullMoon = false;

if (night) {
 print("It's night.");
}
if (!fullMoon) {
 print("The moon is not full.");
}
if (night && fullMoon) {
 print("Beware werewolves!!!");
}
if (night && !fullMoon) {
 print("No werewolves tonight. (Whew!)");
}

// The output of this code will be:
// It's night.
// The moon is not full.
// No werewolves tonight. (Whew!)

And, of course, you can also combine if statements with comparison operators:
Click here to view code image

if (10 == 10) {
 print(“10 is equal to 10.”);
}
if (10 > 20) {
 print(“10 is greater than 20.”);
}
if (1.23f <= 3.14f) {
 print(“1.23 is less than or equal to 3.14.”);

379

}
if (1.23f >= 1.23f) {
 print(“1.23 is greater than or equal to 1.23.”);
}
if (3.14f != Mathf.PI) {
 print(“3.14 is not equal to “+Mathf.PI+“.”);
 // + can be used to concatenate strings with other data types.
 // When this happens, the other data type is converted to a string.
}

// The output of this code will be:
// 10 is equal to 10.
// 1.23 is less than or equal to 3.14.
// 1.23 is greater than or equal to 1.23.
// 3.14 is not equal to 3.141593.

Warning
AVOID USING = IN AN if STATEMENT As I mentioned in the previous
warning, == is a comparison operator that determines whether two values are
equivalent. = is an assignment operator that assigns a value to a variable. If you
accidentally use = in an if statement, the result will actually be an assignment
instead of a comparison.

Sometimes Unity catches this by giving you an error about not being able to
implicitly convert a value to a Boolean. You get that error from this code:

Click here to view code image

float f0 = 10f;
if (f0 = 10) {
 print("f0 is equal to 10.");
}

Other times, Unity gives you a very polite warning stating that it found an = in an
if statement and asking whether you really meant to type ==. Sometimes,
however, Unity might not give you any warning, so you need to be careful and
watch out for this yourself.

if…else Statements
Many times, you will want to do one thing if a value is true and another if it is false. At
these times, you add an else clause to the if statement:
Click here to view code image

380

bool night = false;

if (night) {
 print(“It’s night.”);
} else {
 print(“It’s daytime. What are you worried about?”);
}

// The output of this code will be:
// It’s daytime. What are you worried about?

In this case, because night is false, the code in the else clause is executed.

if…else if...else Chains
Having a chain of else clauses is also possible:
Click here to view code image

bool night = true;
bool fullMoon = true;

if (!night) { // Condition 1 (evaluates to false)
 print(“It’s daytime. What are you worried about?”);
} else if (fullMoon) { // Condition 2 (evaluates to true)
 print(“Beware werewolves!!!”);
} else { // Condition 3 (not evaluated)
 print(“It’s night, but the moon is not full.”);
}

// The output of this code will be:
// Beware werewolves!!!

Once any condition in the if…else if…else chain evaluates to true, all subsequent
conditions are no longer evaluated (the rest of the chain is shorted). In the previous listing,
Condition 1 is false, so Condition 2 is checked. Because Condition 2 is true, the computer
will completely skip Condition 3 and not evaluate it.

Nesting if Statements
Nesting if statements inside of each other for more complex behavior is also possible:
Click here to view code image

bool night = true;
bool fullMoon = false;

if (!night) {
 print(“It’s daytime. What are you worried about?”);
} else {
 if (fullMoon) {
 print(“Beware werewolves!!!”);

381

 } else {
 print(“It’s night, but the moon is not full.”);
 }
}

// The output of this code will be:
// It’s night, but the moon is not full.

switch Statements
A switch statement can take the place of several if…else statements, but it has some
strict limitations:

 Switch statements can only compare for equality.
 Switch statements can only compare a single variable.
 Switch statements can only compare that variable against literals (not other variables).

Here is an example:
Click here to view code image

int num = 3;

switch (num) { // The variable in parentheses (num) is the one being compared
 case (0): // Each case is a literal number that is compared against num
 print(“The number is zero.”);
 break; // Each case must end with a break statement.
 case (1):
 print(“The number is one.”);
 break;
 case (2):
 print(“The number is two.”);
 break;
 default: // If none of the other cases are true, default will happen
 print(“The number is more than a couple.”);
 break;
} // The switch statement ends with a closing brace.

// The output of this code is:
// The number is more than a couple.

If one of the cases holds a literal with the same value as the variable being checked, the
code in that case is executed until the break is reached. When the computer hits the
break, it exits the switch and does not evaluate any other cases.

Having one case "fall through" to the next is also possible, but only if no lines of code exist
between the case lines (e.g., cases 3, 4, and 5 in the following code listing):
Click here to view code image

int num = 4;

382

switch (num) {
 case (0):
 print(“The number is zero.”);
 break;
 case (1):
 print(“The number is one.”);
 break;
 case (2):
 print(“The number is a couple.”);
 break;
 case (3):
 case (4):
 case (5):
 print(“The number is a few.”);
 break;
 default:
 print(“The number is more than a few.”);
 break;
}

// The output of this code is:
// The number is a few.

In the previous code, if num is equal to 3, 4, or 5, the output will be The number is a
few.

Knowing what you know about combining conditionals and if statements, you might
question when switch statements are used, because they have so many limitations. They
are used quite often to deal with the different possible states of a GameObject. For
instance, if you made a game where the player could transform into a person, bird, fish, or
wolverine, you might have a chunk of code that looked like this:
Click here to view code image

string species = “fish”;
bool onLand = false;

// Each different species type will move differently
public function Move() {
 switch (species) {
 case (“person”):
 Run(); // Calls a function named Run()
 break;
 case (“bird”):
 Fly();
 break;
 case (“fish”):
 if (!onLand) {
 Swim();
 } else {
 FlopAroundPainfully();
 }
 break;
 case (“wolverine”):

383

 Scurry();
 break;
 default:
 print(“Unknown species type: “+species);
 break;
 }
}

In the preceding code, the player (as a fish in water) would Swim(). It's important to note
that the default case here is used to catch any species that the switch statement isn't
ready for and that it will output information about any unexpected species it comes across.
For instance, if species were somehow set to "lion", the output would be:
Click here to view code image

Unknown species type: lion

In the preceding code syntax, you also see the names of several functions that are not yet
defined (e.g., Run(), Fly(), Swim()). The next chapter covers the creation of your own
functions.3

Summary
Though Boolean operations might seem a bit dry, they form a big part of the core of
programming. Computer programs are full of hundreds, even thousands, of branch points
where the computer can do either one thing or another, and these all boil down in some way
to Booleans and comparisons. As you continue through the book, you might want to return to
this section from time to time if you're ever confused by any comparisons in the code you
see.

1. I have inserted additional spaces in several of these code listings to help make them
more readable. Remember that any number of spaces are interpreted by C# as a single
space.

2. I can only think of a single common instance when this is not the case: a special form of
array initialization.

3. For some pretty esoteric reasons, having a different named function for each kind of
movement like this is not great code style. However, the reasons for this are beyond the
scope of this book. After you’ve read this book, check out Robert Nystrom’s website
and book, Game Programming Patterns (http://gameprogrammingpatterns.com) for
some great information on good programming strategies.

384

http://gameprogrammingpatterns.com

CHAPTER 22

LOOPS

Computer programs are usually designed to do the same thing repeatedly. In a
standard game loop, the game draws a frame to the screen, takes input from the
player, considers that input, and then draws the next frame, repeating this
behavior at least 30 times every second.

A loop in C# code causes the computer to repeat a certain behavior several times.
This could be anything from looping over every enemy in the scene and
considering the AI of each to looping over all the physics objects in a scene and
checking for collisions. By the end of this chapter, you'll understand all you need
to know about loops, and in the next chapter, you'll learn how to use them with
various C# collections.

Types of Loops
C# has only four kinds of loops: while, do…while, for, and foreach. Of those,
you'll be using for and foreach much more often than the others because they are
generally safer and more adaptable to the challenges you'll encounter while making games:

 while loop: The most basic type of loop. Checks a condition before each loop to
determine whether to continue looping.
 do…while loop: Similar to the while loop, but checks a condition after each loop to
determine whether to continue looping.
 for loop: A loop statement that includes an initial statement, a variable that increments
with each iteration, and an end condition. The most commonly used loop structure.
 foreach loop: A loop statement that automatically iterates over every element of an
enumerable object or collection. This chapter contains some discussion of foreach,
and I cover it more extensively in the next chapter as part of the discussion of C#
collections, such as List and array.

Set Up a Project
In Appendix A, "Standard Project Setup Procedure," detailed instructions show you how to

385

set up Unity projects for the chapters in this book. At the start of each project chapter, you
will also see a sidebar like the one here. Please follow the directions in the sidebar to
create the project for this chapter.

SET UP THE PROJECT FOR THIS CHAPTER
Following the standard project setup procedure, create a new project in Unity. For
information on the standard project setup procedure, see Appendix A.

 Project name: Loop Examples
 Scene name: _Scene_Loops
 C# Script names: Loops

Attach the script Loops to the Main Camera in the scene.

while Loops
The while loop is the most basic loop structure. However, this also means that it lacks the
safety of using a more modern form of loop. In my coding, I almost never use while loops
because of the danger that using one could create an infinite loop.

The Danger of Infinite Loops
An infinite loop occurs when a program enters a loop and is unable to escape it. Let's write
one to see what happens. Open the Loops C# script in MonoDevelop (by double-clicking it
in the Project pane), add the following bolded code (lines 7–9), and delete any extra lines
from the default script.
Click here to view code image

 1 using System.Collections;
 2 using System.Collections.Generic;
 3 using UnityEngine;
 4
 5 public class Loops : MonoBehaviour {
 6 void Start () {
 7 while (true) {
 8 print("Loop");
 9 }
10 }
11 }

Save this script by choosing File > Save from the MonoDevelop menu bar. Switch back to

386

Unity and click the triangular Play button at the top of the Unity window. See how nothing
happens… see how nothing happens forever? In fact, you're probably going to have to force
quit Unity now (see the sidebar for instructions). What you have just encountered is an
infinite loop, and as you can see, an infinite loop will completely freeze Unity. It is lucky
that we all run multithreaded computer operating systems now, because in the old days of
single-threaded systems, infinite loops wouldn't just freeze a single application, they would
freeze the entire computer and require a restart.

So, what happened there that caused the infinite loop? To discover that, take a look at the
while loop.
Click here to view code image

7 while (true) {
8 print("Loop");
9 }

Everything within the braces of a while loop will be executed repeatedly as long as the
condition clause within the parentheses is true. On line 7, the condition is always true, so
the line print("Loop"); will repeat infinitely.

But, you might wonder, if this line was repeating infinitely, why did you never see "Loop"
printed in the Console pane? Though the print() function was called many times
(probably hundreds of thousands or even millions of times before you decided to force quit
Unity), you were never able to see the output in the Console pane because Unity was
trapped in the infinite while loop and was unable to redraw the Unity window (which
would have needed to happen for you to see the changes to the Console pane).

HOW TO FORCE QUIT AN APPLICATION
On macOS

Implement a force quit by doing the following:

1. Press Command-Option-Esc on the keyboard. The Force Quit window appears.
2. Find the application that is misbehaving. Its name is often followed by "(not

responding)" in the applications list.
3. Click that application name in the list, and then click Force Quit. You might need

to wait a few seconds for the force quit to happen.

On Windows

Implement a force quit by doing the following:

387

1. Press Shift+Ctrl+Esc on the keyboard. The Windows Task Manager appears.
2. Find the application that is misbehaving.
3. Click that application and then click End Task. You might need to wait a few

seconds for the force quit to happen.

If you force quit Unity while it is running, you will lose any work that you've done
since your last save. Because you must constantly save C# scripts, they shouldn't be
an issue, but you might have to redo unsaved changes made to your scene. For
example, in _Scene_Loops, if you did not save the scene after adding the Loops C#
script to the Main Camera, you will need to attach it to the Main Camera again.

A More Useful while Loop
Open the Loops C# script in MonoDevelop and modify it to read as follows:
Click here to view code image

 1 using System.Collections;
 2 using System.Collections.Generic;
 3 using UnityEngine;
 4
 5 public class Loops : MonoBehaviour {
 6 void Start () {
 7 int i=0;
 8 while (i<3) {
 9 print("Loop: "+i);
10 i++; // See the sidebar on Increment and Decrement Operators
11 }
12 }
13 }

Save your code, switch back to Unity and click Play. This time, Unity does not get stuck in
an infinite loop because the while condition clause (i<3) eventually becomes false. The
output from this program to the console (minus all the extra stuff Unity throws in) is as
follows:

Loop: 0
Loop: 1
Loop: 2

That is because it calls print(i) every time the while loop iterates. It's important
to note that the condition clause is checked before each iteration of the loop.

Tip

388

In most of the examples in this chapter, the iteration variable used will be named
i. The variable names i, j, and k are often used by programmers as iteration
variables (i.e., the variable that increments in a loop), and as a result, they are
rarely used in any other code situations. Because these variables are created and
destroyed so often in various loop structures, you should generally avoid using
the variable names i, j, or k for anything else.

INCREMENT AND DECREMENT OPERATORS
Line 10 of the code listing for the "more useful" while loop is the first instance
in this book of the increment operator (++), which increases the value of the
variable adjacent to it by 1. So, if i=5, then the i++; statement would set the
value of i to 6.

There is also a decrement operator (--), which decreases the value of the
variable by 1.

The increment and decrement operators can be placed either before or after the
variable name, and doing so causes the statement to be treated differently (i.e.,
++i and i++ act slightly differently). The difference is in whether the initial
value is returned (i++) or whether the incremented value is returned (++i).
Here's an example to clarify.

Click here to view code image

 6 void Start() {
 7 int i = 1;
 8 print(i); // Output: 1
 9 print(i++); // Output: 1
10 print(i); // Output: 2
11 print(++i); // Output: 3
12 }

As you can see, line 8 prints the current value of i, which is 1. Then, on line 9, the
post-increment operator i++ first returns the current value of i, which is printed
(resulting in the 1), and then increments the i, setting its value to 2.

Line 10 prints the current value of i, which is 2. Then, on line 10, the pre-
increment operator ++i first increments the value of i from 2 to 3 and then
returns it to the print function, which prints a 3.

389

do...while Loops
A do…while loop works in the same manner as a while loop, except that the condition
clause is checked after each iteration. This guarantees that the loop will run at least once.
Modify the code to read as follows:
Click here to view code image

 1 using System.Collections;
 2 using System.Collections.Generic;
 3 using UnityEngine;
 4
 5 public class Loops : MonoBehaviour {
 6 void Start () {
 7 int i=10;
 8 do {
 9 print("Loop: "+i);
10 i++;
11 } while (i<3);
12 }
13 }

Make sure that you change line 7 of the Start() function to int i=10;. Even though
the while condition is not ever true (10 is never less than 3), the loop still goes through a
single iteration before testing the condition clause on line 11. Had i been initialized to 0
here as it was in the while loop example, the console output would have looked the same,
so we set i=10 in line 7 to demonstrate that a do…while loop will always run at least
once regardless of the value of i. You must always place a trailing semicolon (;) after the
condition clause in a do…while loop.

Save this script and try it out in Unity to see the result.

for Loops
In both the while and do…while examples, you needed to declare and define a variable
i, increment the variable i, and then check the condition clause on the variable i; and each
of these actions was performed by a separate statement. The for loop handles all of these
actions in a single line. Write the following code in the Loops C# script, and then save and
run it in Unity.
Click here to view code image

 1 using System.Collections;
 2 using System.Collections.Generic;
 3 using UnityEngine;
 4
 5 public class Loops : MonoBehaviour {
 6 void Start() {
 7 for (int i=0; i<3; i++) {
 8 print("Loop: "+i);

390

 9 }
10 }
11 }

The for loop in this example sends the same output to the Console pane as was sent by the
preceding "more useful" while loop, yet it does so in fewer lines of code. The structure of
a for loop requires an initialization clause, a condition clause, and an iteration clause to
be valid. In the preceding example, the three clauses are shown in bold here:

Initialization clause: for (int i=0; i<3; i++) {
Condition clause: for (int i=0; i<3; i++) {
Iteration clause: for (int i=0; i<3; i++) {

The initialization clause (int i=0;) is executed before the for loop begins. It
declares and defines a variable that is scoped locally to the for loop. This means that, the
earlier int i will cease to exist when the for loop is complete. For more information on
variable scoping, see the Variable Scope section of Appendix B, "Useful Concepts."

The condition clause (i<3) is checked before the first iteration of the for loop (just as
the condition clause is checked before the first iteration of a while loop). If the condition
clause is true, the code between the braces of the for loop is executed.

After an iteration of the code between the braces of the for loop has completed, the
iteration clause (i++) is executed (i.e., after print("Loop: "+i); has executed
once, i++ is executed). Then the condition clause is checked again, and if the condition
clause is still true, the code in the braces is executed again, and the iteration clause is
executed again. This continues until the condition clause evaluates to false, and then the
for loop ends.

Because for loops mandate that each of these three clauses be included and that they all be
on the same line, avoiding writing infinite loops is easier when working with for loops.

Warning
DON’T FORGET THE SEMICOLONS BETWEEN EACH CLAUSE OF
THE for STATEMENT Separating the initialization, condition, and iteration
clauses with semicolons is critical. This is because each is an independent clause
that must be terminated by a semicolon like any independent clause in C#. Just as
most lines in C# must be terminated by a semicolon, so must the independent
clauses in a for loop.

391

The Iteration Clause Doesn't Have to Be ++
Though the iteration clause is commonly an increment statement like i++, it doesn't have to
be. Any operation can be used in the iteration clause.

Decrement
One of the most common alternate iteration clauses is counting down rather than counting
up. You do this by using a decrement operator in a for loop.

Click here to view code image

 6 void Start() {
 7 for (int i=5; i>2; i--) {
 8 print("Loop: "+i);
 9 }
10 }

The output to the Console pane would be as follows:

Loop: 5

Loop: 4

Loop: 3

foreach Loops
A foreach loop is kind of like an automatic for loop to use on anything that is
enumerable. In C#, most collections of data are enumerable, including strings (which are a
collection of chars) and the Lists and arrays covered in the next chapter. Try this example in
Unity.
Click here to view code image

 1 using System.Collections;
 2 using System.Collections.Generic;
 3 using UnityEngine;
 4
 5 public class Loops : MonoBehaviour {
 6 void Start() {
 7 string str = "Hello";
 8 foreach(char chr in str) {
 9 print(chr);
10 }
11 }
12 }

The Console output prints a single char from the string str on each iteration, resulting in:

392

H
e
l
l
o

The foreach loop guarantees that it will iterate over all the elements of the enumerable
object. In this case, it iterates over each character in the string "Hello." I cover
foreach loops further in the next chapter as part of the discussion of Lists and arrays.1

Jump Statements within Loops
A jump statement is any statement that causes code execution to jump to another location in
the code. One example that has already been covered is the break statement at the end of
each case in a switch statement.

The break Statement
break statements can also be used to prematurely break out of any kind of loop structure.
To see an example, change your Start() function to read as follows:
Click here to view code image

 6 void Start() {
 7 for (int i=0; i<10; i++) {
 8 print(i);
 9 if (i==3) {
10 break;
11 }
12 }
13 }

Note that in this code listing, I have omitted lines 1-5, and the final line containing only a
closing brace } (which was line 12 in prior listings), because they should not be changed
from the lines in previous code listings. Those lines should still be there, and you should
just replace the foreach loop from lines 7–10 of the preceding foreach code listing
with lines 7–12 of this code listing.

Run this in Unity, and you get this output:

0
1
2
3

The break statement exits the for loop prematurely. You can also use break to break
out of while, do…while, and foreach statements.

393

Code examples: Console output from that code:
Click here to view code image

for (int i=0; i<10; i++) { 0
 print(i); 1
 if (i==3) { 2
 break;
 } 3
}

int i = 0; 0
while (true) { 1
 print(i); 2
 if (i > 2) break; // a 3
 i++;
}

int i = 3; 3
do { 2
 print(i);
 i--;
 if (i==1) break; // b
} while (i > 0);

foreach (char c in "Hello") { H
 if (c == 'l') { e
 break;
 }
 print(c);
}

The following lettered paragraphs refer to lines in the preceding code that are marked with
// a and // b to the right of the line (these have been bolded in the code listing for
emphasis).

a. This line shows the single-line version of an if statement. If there is only one line,
the braces are not necessary.

b. This code only outputs 3 and 2 because on the second iteration of the loop, the i--
decrement reduces i to 1. Then the condition clause of the if statement is true, and
the break statement is executed, breaking out of the do…while loop.

Take the time to look at each of the preceding code examples, and make sure you understand
why each generates the output shown in the column on the right. If any look confusing, type
the code into Unity and then run through it with the debugger. (See Chapter 25,
"Debugging.")

394

The continue Statement
continue is used to force the program to skip the remainder of the current iteration and
continue to the next.

Code: Output:
Click here to view code image

for (int i=0; i<=360; i++) { 0
 if (i % 90 != 0) { 90
 continue; 180
 } 270
 print(i); 360
}

In the preceding code, any time that i%90 != 0 (i.e., any time that i/90 has a remainder
other than 0), the continue statement will cause the for loop to move on to the next
iteration, skipping the print(i); line. You can also use the continue statement to
skip to the next iteration of while, do…while, and foreach loops.

% – MODULUS OPERATOR
The line if (i % 90 != 0) { in the code listing for the continue jump
statement is the first instance in this book of the C# modulus operator (%).
Modulus (or mod) returns the remainder of dividing one number by another. For
example, 12 % 10 would return a value of 2 because the remainder of 12/10 is 2.

You can also use mod with floats, so 12.4f % 1f would return 0.4f, the
remainder when 12.4 is divided by 1. However, when you use mod with floats, it
is susceptible to standard float inaccuracy, so 12.4f % 1f might give you a
result of 0.3999996f or something similar.

Summary
Understanding loops is one of the key elements of becoming a good programmer. However,
it's fine if not all of this makes perfect sense now. After you start using loops in the
development of some actual game prototypes, they will become clearer to you. Just make
sure that you are actually typing each code example into Unity and running it to help with
your understanding of the material.

Also remember that in my coding, I commonly used for and foreach but rarely or never
use while and do…while because of the danger of infinite loops.

395

In the next chapter, you will learn about arrays, Lists, and other forms of ordered
collections of similar items, and you will see how loops are used to iterate over these
collections.

1. Though this shouldn't be a concern for you now, you should be aware that foreach
loops are less performant than other kinds, meaning that they run slightly more slowly
and that they generate more allocated memory garbage that will need to be
automatically collected and managed by the computer. If you're working on a speed- or
memory-critical game on a weaker computer like a mobile phone, you might want to
avoid foreach loops. Additionally, foreach loops do not guarantee that they will
iterate over a collection (i.e., array, List, etc.) in the expected order, though usually they
do.

396

CHAPTER 23

COLLECTIONS IN C#

C# collections enable you to act on several similar things as a group. For example,
you could store all the enemy GameObjects in a List and loop over that List each
frame to update all of their positions and states.

This chapter covers three important types of these collections in detail: Lists,
arrays, and Dictionaries. By the end of this chapter, you will understand how
these collection types work and which to use in various situations.

C# Collections
A collection is a group of objects that are referenced by a single variable. In regular life,
collections would be things like a group of people, a pride of lions, a parliament of rooks,
or a murder of crows. Just like these animal grouping terms, the collections you'll use in C#
can only hold a single type of data (e.g., you couldn't include a tiger in a pride of lions),
though some rarely used collections do allow multiple data types. The array type is built in
to C# at a low level, whereas the other collection types in this chapter rely on the
System.Collections.Generic code library to work, as described later in the chapter.

Commonly Used Collections
The following is a brief overview of some of the most commonly used collections. If a
collection is described in more depth later in this chapter, an asterisk (*) appears after the
name of the collection type.

 array*: An array is an indexed, ordered list of objects. You must set the length of an
array when defining it, and it cannot be altered, which differentiates it from the more
flexible List type. I capitalize the word array only when referring to the C# class Array,
which is different from the primitive arrays of data described in this chapter. As the
most basic type of collection, arrays have few special class functions. However, arrays
do have numeric bracket access, meaning that objects can be added to and read from the
array using the array name and [] like:

Click here to view code image

397

stringArray[0] = "Hello";
stringArray[1] = "World";
print(stringArray[0]+" "+stringArray[1]); // Output: Hello World

 List*: Lists are similar to arrays, except they are flexible in length and very slightly
slower for performance. In this book, I capitalize List when referring to the C# type to
help distinguish it from the common usage of the word "list." The List is the most
commonly used collection in this book. Lists can use numeric bracket access like arrays.
Lists also include the following methods:

 new List<T>()—Declares a new List of the type T1

 Add(X) —Adds an object X of the type T to the end of the List
 Clear()—Removes all objects from the List
 Contains(X)—Returns true if the object X (of the type T) is in the List
 Count—Property2 that returns the number of objects in the List
 IndexOf(X)—Returns the numeric index of where the object X exists in the List. If
the object X is not in the List, -1 is returned.

 Remove(X)—Removes the object X from the List
 RemoveAt(#)—Removes the object that is at the index # from the List

 Dictionary*: Dictionaries enable you to associate key/value pairs, where an object is
stored based on a particular key. A real-world example of this is a library, where the
key of the Dewey Decimal system allows readers to access the value of the individual
books. Unlike all other collections in this chapter, Dictionaries are declared with two
types (the key type and value type).3 Values can be added to and read from the
Dictionary using bracket access (e.g., dict["key"]). Dictionaries include the
following methods:

 new Dictionary<Tkey, Tvalue>()—Declares a new Dictionary with key
and value types

 Add(TKey, TValue)—Adds the object TValue to the Dictionary with the key
TKey

 Clear()—Removes all objects from the Dictionary
 ContainsKey(TKey)—Returns true if the key TKey is in the Dictionary
 ContainsValue(TValue)—Returns true if the value TValue is in the Dictionary
 Count—Property that returns the number of key/value pairs in the Dictionary
 Remove(TKey)—Removes the value at key TKey from the Dictionary.

 Queue: As a first-in, first-out (FIFO) ordered collection, a Queue is similar to a line
you might stand in at an amusement park. Objects are added to the end of the Queue with
Enqueue() and removed from the beginning of the Queue with Dequeue(). Queues
include the following methods:

398

 Clear()—Removes all objects from the Queue
 Contains(X)—Returns true if X is in the Queue
 Count—Property that returns the number of objects in the Queue
 Dequeue()—Removes and returns the object at the beginning of the Queue
 Enqueue(X)—Adds the object X to the end of the Queue
 Peek()—Returns the object at the beginning of the Queue without removing it

 Stack: As a first-in, last-out (FILO) ordered collection, a Stack is similar to a stack of
cards. Objects are added to the top of the Stack with Push() and removed from the top
of the Stack with Pop(). Stacks include the following methods:

 Clear()—Removes all objects from the Stack
 Contains(X)—Returns true if X is in the Stack
 Count—Property that returns the number of objects in the Stack
 Peek()—Returns the object at the top of the Stack without removing it
 Pop()—Removes and returns the object at the top of the Stack
 Push(X)—Adds the object X to the top of the Stack

Because Lists are the most used collection in this book, I'll start with them and then cover
both Dictionaries and arrays in detail.

SET UP A PROJECT FOR THIS CHAPTER
Following the standard project setup procedure, create a new project in Unity. If
you need a refresher on the standard project setup procedure, see Appendix A,
"Standard Project Setup Procedure."

 Project name: Collections Project
 Scene name: _Scene_Collections
 C# script names: ArrayEx, DictionaryEx, ListEx

Attach all three C# scripts to Main Camera in _Scene_Collections.

Using Generic Collections
The beginning of all Unity C# scripts automatically includes three lines that start with the
word using:4

Click here to view code image

399

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

Each of these using lines loads a library of code and gives the script the ability to use
code within those libraries. The first line is the most important in Unity coding, as it gives
this C# script knowledge of all the standard Unity objects, including things like
MonoBehaviour, GameObject, Rigidbody, Transform, and so on.

The second line allows the script to use several un-typed collections like ArrayList (which
you see in some Unity tutorials). As un-typed collections, these can hold any kind of data in
each element (e.g., a string in one element and an image or song in another). This flexibility
can lead to sloppiness that can make things a lot more difficult to debug and code, so I
strongly recommend against using un-typed collections.

The third line is critical for this chapter, because it enables several generic collections,
including List and Dictionary. A generic collection is one that is strongly typed, meaning
that it can only hold a single specific data type that is specified using angle brackets.5
Example declarations of generic collections (i.e., initial creations of generic collections)
include:

 public List<string> sList;—This declares a List of strings.
 public List<GameObject> goList;—This declares a List of GameObjects.
 public Dictionary<char,string> acronymDict;—This declares a
Dictionary of string values that have chars as keys (e.g., you could use the char 'o' to
access the string "Okami").

System.Collections.Generic also defines several other generic data types that
are beyond the scope of this chapter. These include the generic versions of Queue and Stack
mentioned earlier. Unlike arrays, which are locked to a specified length, all generic
collection types can adjust their length dynamically.

List
Double-click the ListEx C# script in the Project pane to open it in MonoDevelop and add
the following bolded code. The // a-style comments on the far-right side of the code
listing are references to explanations listed after the code. Lines that you must add appear
in bold type.
Click here to view code image

 1 using System.Collections; // a
 2 using System.Collections.Generic; // b
 3 using UnityEngine; // c
 4

400

 5 public class ListEx : MonoBehaviour {
 6 public List<string> sList; // d
 7
 8 void Start () {
 9 sList = new List<string>(); // e
10 sList.Add("Experience"); // f
11 sList.Add("is");
12 sList.Add("what");
13 sList.Add("you");
14 sList.Add("get");
15 sList.Add("when");
16 sList.Add("you");
17 sList.Add("don't");
18 sList.Add("get");
19 sList.Add("what");
20 sList.Add("you");
21 sList.Add("wanted.");
22 // This quote is from my professor, Dr. Randy Pausch (1960-2008)
23
24 print("sList Count = "+sList.Count); // g
25 print("The 0th element is: "+sList[0]); // h
26 print("The 1st element is: "+sList[1]);
27 print("The 3rd element is: "+sList[3]);
28 print("The 8th element is: "+sList[8]);
29
30 string str = "";
31 foreach (string sTemp in sList) { // i
32 str += sTemp+" ";
33 }
34 print(str);
35 }
36 }

a. The System.Collections library that is at the beginning of all C# scripts enables the
ArrayList type (among others). ArrayList is another type of C# collection that is similar
to List except that ArrayLists are not limited to a single type of data. This enables more
flexibility, but I have found it to have more detriments than benefits when compared to
Lists (including a significant performance penalty).

b. The List collection type is part of the System.Collections.Generic C# library, so that
library must be imported to enable the use of Lists. Unity 5.5 and later do this
automatically, but you must do it manually in earlier versions. As mentioned earlier, this
library enables a whole slew of generic collection types beyond just List. You can learn
more about them online by searching "C# System.Collections.Generic" if you're curious.

c. The UnityEngine library enables all the classes and types that are specific to Unity (e.g.,
GameObject, Renderer, Mesh). Including it in any MonoBehaviour script is mandatory.

d. This declares the List<string> sList. All generic collection data types have
their name followed by angle brackets <> surrounding a specified data type. In this
case, the List is a List of strings. However, the strength of generics is that you can use

401

them for any data type. You could just as easily create a List<int>,
List<GameObject>, List<Transform>, List<Vector3>, and so on. You
must assign the type of the List at the time of declaration.

e. The declaration of sList on line 6 makes sList a variable name that can hold a List
of strings, but the value of sList is null (i.e., it has no value) until you initialize
sList on line 9. Before this initialization, any attempt to add elements to sList
would have caused an error. The List initialization must repeat the type of the List in the
new statement. A newly initialized List contains no elements and has a Count of zero.

f. A List's Add() function adds an element to the List. This inserts the string literal
"Experience" into the 0th (pronounced "zeroth") element of the List. See the "Lists
and Arrays Are Zero-Indexed" sidebar for information about zero-indexed Lists.

g. A List's Count property returns an int representing the number of elements in the List.
Output:

sList Count = 12

h. Lines 25–28 demonstrate the use of bracket access (e.g., sList[0]). Bracket access
uses brackets [] and an integer to reference a specific element in a List or array. The
integer between the brackets is known as the "index." Output:

The 0th element is: Experience
The 1st element is: is
The 3rd element is: you
The 8th element is: get

i. foreach (introduced in the previous chapter) is often used with Lists and other
collections. Just as a string is a collection of chars, List<string> sList is a
collection of strings. The string sTemp variable is scoped to the foreach statement,
so it will cease to exist after the foreach loop completes. Because Lists are strongly
typed (i.e., C# knows that sList is a List<string>) the elements of sList can
be assigned to string sTemp without requiring any kind of conversion. This is one of
the major advantages of the List type over the nontyped ArrayList type. Output:

Click here to view code image

Experience is what you get when you don't get what you wanted.

As always, remember to save your script in MonoDevelop when you're done editing. Then,
switch back to Unity and select Main Camera in the Hierarchy pane. You can see that
List<string> sList appears in the ListEx (Script) component of the Inspector pane.
If you play the Unity scene, you can click the disclosure triangle next to sList in the
Inspector and actually see the values that populate it. Arrays and Lists appear in the
Inspector, but Dictionaries do not.

402

LISTS AND ARRAYS ARE ZERO-INDEXED
List and array collection types are zero indexed, meaning that what you might think
of as the "first" element is actually element [0]. Throughout the book, I refer to this
element as the 0th or "zeroth" element.

For these examples, we'll consider the pseudocode collection coll. Pseudocode
is code that is not from any specific programming language but is used to illustrate
a conceptual point more easily.

Click here to view code image

coll = ["A", "B", "C", "D", "E"]

The count or length of coll is 5, and the valid indices for the elements would be
from 0 to coll.Count-1 (i.e., 0, 1, 2, 3, and 4).

Click here to view code image

print(coll.Count); // 5

print(coll[0]); // A
print(coll[1]); // B
print(coll[2]); // C
print(coll[3]); // D
print(coll[4]); // E

print(coll[5]); // Index Out of Range Exception!!!

If you try to use bracket access to access an index that is not in range, the
following runtime error appears:

Click here to view code image

IndexOutOfRangeException: Array index is out of range.

Keeping this in mind as you work with any collection in C# is important.

IMPORTANT LIST PROPERTIES AND METHODS
Many properties and methods are available for Lists, but the following ones are
the most often used. All of these method examples refer to the following
List<string> sL and are noncumulative. In other words, each example starts
with the List sL as it is defined in the following three lines, unmodified by the

403

other examples.
Click here to view code image

List<string> sL = new List<string>();
sL.Add("A"); sL.Add("B"); sL.Add("C"); sL.Add("D");
// Resulting in the List: ["A", "B", "C", "D"]

Properties

Properties allow you access to information about the List.

 sL[2] (Bracket access): Returns the element of the List at the index specified
by the parameter (2). Because C is the second element, sL[2] returns C.
 sL.Count: Returns the number of elements currently in the List. Because the
length of a List can vary over time, Count is very important. The last valid
index in a List is always Count-1. The value of sL.Count is 4, so the last
valid index is 3.

Methods

Methods are functions that allow you to alter the list.

 sL.Add("Hello"): Adds the parameter "Hello" to the end of sL. In this
case, sL becomes: ["A", "B", "C", "D", "Hello"].
 sL.Clear(): Removes all existing elements from sL returning it to an
empty state. sL becomes empty: [].
 sL.IndexOf("A"): Finds the first instance in the sL of the parameter
"A" and returns the index of that element. Because "A" is the 0th element of
sL, this call returns 0.

If the variable does not exist in the List, a -1 is returned. This is a safe and fast
method to determine whether a List contains an element.

 sL.Insert(2, "B.5"): Inserts the second parameter ("B.5") into sL
at the index specified by the first parameter (2). This shifts the subsequent
elements of the List backward. In this case, this would cause sL to become [
"A", "B", "B.5", "C", "D"]. Valid index values for the first
parameter are 0 through sL.Count. Any value outside this range causes a
runtime error.
 sL.Remove("C"): Removes the specified element from the List. If there
happened to be two "C"s in the List, only the first would be removed. sL
becomes ["A", "B", "D"].

404

 sL.RemoveAt(0): Removes the element at the specified index from the
List. Because "A" is the 0th element of the List, sL becomes["B", "C",
"D"].

Converting a list to an array

It is possible to convert a List to a simple array (described later in this chapter).
This is useful because some Unity functions expect an array of objects instead of a
List.

 sL.ToArray(): Generates an array that has all the elements of sL. The
new array will be of the same type as the List and returns a new string array
with the elements ["A", "B", "C", "D"].

To move on to learning about Dictionaries, make sure that Unity playback is stopped and
then uncheck the check box next to the name of the ListEx (Script) component in the
Inspector pane to make the ListEx script inactive (as is shown in Figure 23.1).

Figure 23.1 Clicking the check box to deactivate the ListEx Script component

Dictionary
You can't view Dictionaries in the Inspector, yet they can be a fantastic way to store
information. One of the major benefits of a Dictionary is its constant access time. This
means that no matter how many items you insert into a Dictionary, it will take the same
amount of time to find an item. Contrast this with a List or array, where you must iterate
over each of the items in the linear collection one by one; as the size of the List or array
grows, the amount of time needed to find a specific element grows as well, especially if the
element you're searching for happens to be the last one in the collection.

Dictionaries pair a key and value. The key can then be used to access the value. Open the
DictionaryEx C# script and enter the following code to see how this works.
Click here to view code image

 1 using System.Collections;
 2 using System.Collections.Generic; // a
 3 using UnityEngine;
 4
 5 public class DictionaryEx : MonoBehaviour {

405

 6 public Dictionary<string,string> statesDict; // b
 7
 8 void Start () {
 9 statesDict = new Dictionary<string, string>(); // c
10
11 statesDict.Add("MD", "Maryland"); // d
12 statesDict.Add("TX", "Texas");
13 statesDict.Add("PA", "Pennsylvania");
14 statesDict.Add("CA", "California");
15 statesDict.Add("MI", "Michigan");
16
17 print("There are "+statesDict.Count+" elements in
statesDict."); // e
18
19 foreach (KeyValuePair<string,string> kvp in statesDict)
{ // f
20 print(kvp.Key + ": " + kvp.Value);
21 }
22
23 print("MI is " + statesDict["MI"]); // g
24
25 statesDict["BC"] = "British Columbia"; // h
26
27 foreach (string k in statesDict.Keys) { // i
28 print(k + " is " + statesDict[k]);
29 }
30 }
31
32 }

a. You must include the System.Collections.Generic library to enable Dictionary use.
b. A Dictionary is declared with both a key and value type in a statement like this. For this

Dictionary, both the key and value are strings, but you can use any data type for either.
c. Like a List, a Dictionary is not ready to be used until it is initialized in a statement like

this.
d. When you add elements to the Dictionary, you must pass in both a key and a value for

each element. These five Add statements add postal codes and state names to the
Dictionary for the states where I've lived in my life.

e. As with other C# collections, you can use Count to determine how many elements are
in a Dictionary. Output:

Click here to view code image

There are 5 elements in the Dictionary.

f. You can use foreach on Dictionaries, but the type of the value that is iterated is a
KeyValuePair<,>. The two types of the KeyValuePair<,> must match those of the
Dictionary (e.g., <string,string> here). Output:

MD: Maryland

406

TX: Texas
PA: Pennsylvania
CA: California
MI: Michigan

g. If you know the key, you can use it to access the value in the Dictionary via bracket
access. Output:

MI: Michigan

h. Another way to add values to a Dictionary is to use bracket access as shown here. I
also lived in BC for a brief time.

i. The Keys of the Dictionary can also be iterated over using a foreach loop. Output:

MD is Maryland
TX is Texas
PA is Pennsylvania
CA is California
MI is Michigan
BC is British Columbia

Save the DictionaryEx script, switch back to Unity, and click Play. You should see the
output described. Remember that Dictionaries do not appear in the Unity inspector, so even
though statesDict is a public variable, you will not see it in the Inspector.

IMPORTANT DICTIONARY PROPERTIES AND
METHODS

Many properties and methods are also available for Dictionaries, but the ones
listed in this sidebar are the most often used. All of these examples refer to the
following Dictionary<int, string> dIS and are noncumulative. In
other words, each example starts with the Dictionary dIS as it is defined in the
following lines, unmodified by the other examples.
Click here to view code image

Dictionary<int,string> dIS;
dIS = new Dictionary<int, string>();
dIS[0] = "Zero";
dIS[1] = "One";
dIS[10] = "Ten";
dIS[1234567890] = "A lot!";

Another way of writing this same Dictionary declaration and definition would be:

Click here to view code image

dIS = new Dictionary<int, string>() {
 { 0, "Zero" },

407

 { 1, "One" },
 { 10, "Ten" },
 { 1234567890, "A lot!" }
};

This kind of combined declaration and definition of a Dictionary is one of the rare
cases where you will see a semicolon at the end of a pair of braces.

Properties

 dIS[10] (Bracket access): Returns the element of the Dictionary array at the
index specified by the parameter (10). Because "Ten" is the element at the
key 10, dIS[10] returns: "Ten". If you try to access an element with a key
that doesn't exist, you will receive a KeyNotFoundException runtime
error that will crash your code.

 dIS.Count: Returns the number of key/value pairs currently in the
Dictionary. Because the length of a Dictionary can vary over time, Count is
very important.

Methods

 dIS.Add(12,"Dozen"): Adds the value "Dozen" to the Dictionary at
the key 12.

 dIS[13] = "Baker's Dozen": Adds the value "Baker's Dozen"
to the Dictionary at the key 13. If you use bracket access to set an already-
existing, key, it will replace the value. For example dIS[0] = "None"
would replace the value at key 0 with "None".

 dIS.Clear(): Removes all existing key/value pairs from dIS, leaving it
empty.

 dIS.ContainsKey(1): Returns true if the key 1 is in the Dictionary. This
is a very fast call because the Dictionary is designed to find things quickly by
key. Keys in the Dictionary are exclusive, so you can only have one value for
each key.

 dIS.ContainsValue("A lot!"): Returns true if the value "A lot!"
is in the Dictionary. This is a slow call because a Dictionary is optimized to
find things by key, not value. Values are also non-exclusive, meaning that
several keys could hold the same value.

 dIS.Remove(10): Removes the key/value pair at the key 10 from the

408

Dictionary.

Setting the equivalent of something like a Dictionary in the Inspector is sometimes
desirable. In that case, I often create a List of a simple class that includes both a key and a
value. You can see an example of this in Chapter 31, "Space SHMUP Plus."

Before moving on to looking at arrays, make sure that Unity playback is stopped and then
uncheck the check box next to the name of the DictionaryEx (Script) component in the
Inspector pane to make the DictionaryEx script inactive.

Array
An array is the simplest collection type, which also makes it the fastest. Arrays do not
require any libraries to be imported (via the using command) to work because they are
built into core C#. In addition, arrays have multidimensional and jagged forms that can be
very useful.

Arrays are of a fixed length that must be assigned when the array is initialized. Double-
click the ArrayEx C# script in the Project pane to open it in MonoDevelop and enter the
following code:

Click here to view code image

 1 using System.Collections; // a
 2 using UnityEngine;
 3
 4 public class ArrayEx : MonoBehaviour {
 5 public string[] sArray; // b
 6
 7 void Start () {
 8 sArray = new string[10]; // c
 9
10 sArray[0] = "These"; // d
11 sArray[1] = "are";
12 sArray[2] = "some";
13 sArray[3] = "words";
14
15 print("The length of sArray is: "+sArray.Length); // e
16
17 string str = "";
18 foreach (string sTemp in sArray) { // f
19 str += "|"+sTemp;
20 }
21 print(str);
22 }
23 }

409

a. Unlike a List or Dictionary, arrays do not require
System.Collections.Generic in order to work.

b. Also unlike a List or Dictionary, an array in C# isn't actually a separate data type
(which is why it's not capitalized here); rather it's a collection formed from any existing
data type by adding brackets after the type name. The type of sArray is not declared
as string; it is string[], a collection of multiple strings. Note: Although
sArray is declared to be an array here, its length is not yet set.

c. Here, sArray is initialized as a string[] with a length of 10. When an array is
initialized, its length is filled with elements of the default value for that data type. For
int[] or float[], the default would be 0. For string[] and other complex data
types like GameObject[], each element of the array is filled with null (which
indicates that no value has been assigned).

d. Rather than using the Add() method like Lists, standard arrays use bracket access for
assignment of value as well as retrieval of value from the array.

e. Rather than using Count like the generic C# collections, arrays use the property
Length. It is important to note (as you can see from the preceding code output) that
Length returns the entire length of the array, including both defined elements (e.g.,
sArray[0] through sArray[3] in the previous code) and elements that are empty
(i.e., still their default, undefined value as are sArray[4] through sArray[9] in
the previous code). Output:

The length of sArray is 10.

f. foreach works for arrays just as it does for other C# collections. The only difference
is that the array might have empty or null elements, and foreach will iterate over
them. As in the List<string> example earlier, here sTemp is a string that will
temporarily be assigned the value of each element of sArray by the foreach loop.
Output:

|These|are|some|words||||||

When you run the code, be sure to have Main Camera selected in the Hierarchy pane. This
enables you to open the disclosure triangle next to sArray in the ArrayEx (Script)
component of the Inspector pane and see the elements of sArray.

The code output looks like this:

The length of sArray is: 10
|These|are|some|words||||||

Empty Elements in the Middle of an Array
One thing allowed by arrays that is not possible in Lists6 is an empty element in the middle

410

of an array. This would be useful in a game if you had something like a scoring track where
each player had a marker on the track but it was possible to have empty spaces in between
the markers.

Modify lines 12 and 13 of the previous code as follows:
Click here to view code image

10 sArray[0] = "These";
11 sArray[1] = "are";
12 sArray[3] = "some";
13 sArray[6] = "words";

The code output would look like this: |These|are||some|||words|||

As you can see from the output, sArray now has empty elements at indices 2, 4, 5, 7, 8,
and 9. As long as the index (e.g., 0, 1, 3, and 6 here) of the assignment is within the valid
range for the array, you can use bracket access to place a value anywhere in the array, and
the foreach loop will handle it gracefully.

Attempting to assign a value to an index that is outside of the defined range for the array
(e.g., sArray[10] = "oops!"; or sArray[99] = "error!";) will lead to the
following runtime error: IndexOutOfRangeException: Array index is
out of range.

Attempting to access a non-existent array index will also give you the same runtime error.
For example, print(sArray[20]); would also give you an
IndexOutOfRangeException.

Return the code back to its original state:
Click here to view code image

10 sArray[0] = "These";
11 sArray[1] = "are";
12 sArray[2] = "some";
13 sArray[3] = "words";

Empty Array Elements and foreach
Play the project again and look at the output, which has returned to its previous state:

|These|are|some|words||||||

The str += "|"+sTemp; statement on line 19 concatenates (i.e., adds) a pipe (|) to
the end of str before each element of the array. Even though sArray[4] through
sArray[9] are still the default value of null, they are counted by foreach and
iterated over. This is a good opportunity to use a break jump statement to escape the

411

foreach loop early. Modify the code as follows:
Click here to view code image

18 foreach (string sTemp in sArray) {
19 str += "|"+sTemp;
20 if (sTemp == null) break;
21 }

The new code output is as follows: |These|are|some|words|

When C# iterates over sArray[4], it still concatenates "|"+null onto the end of str
but then checks sArray[4], sees that it is null, and breaks out of the foreach loop,
preventing it from iterating over sArray[5] through sArray[9].

IMPORTANT ARRAY PROPERTIES AND METHODS
Of the properties and methods available for arrays, the ones listed in this sidebar
are the most often used. All of these refer to the following array and are
noncumulative.
Click here to view code image

string[] sA = new string[] { "A", "B", "C", "D" };
// Resulting in the Array: ["A", "B", "C", "D"]

Here you see the array definition expression that allows the declaration,
initialization, and population of an array in a single line (as opposed to the array
initialization statement shown on line 8 of the previous code listing. Note that
when using this form of the array initialization expression, the Length of the
array is implied by the number of elements between the braces and does not need
to be specified; in fact, if you use braces to define an array, you cannot use the
brackets in the array declaration to specify a length that is different from the
number of elements between the braces.

Properties

 sA[2] (bracket access): Returns the element of the array at the index
specified by the parameter (2). Because "C" is the second element of sA, this
returns: "C".

If the index parameter is outside of the valid range of the array (which for sA is
0 to 3), it will generate an IndexOutOfRangeException runtime error.

 sA[1] = "Bravo" (bracket access used for assignment): Assigns the value
on the right side of the = assignment operator to the specified position in the

412

array, replacing the previous value. sA would become ["A", "Bravo",
"C", "D"].

If the index parameter is outside of the valid range of the array, it will generate
an IndexOutOfRangeException runtime error.

 sA.Length: Returns the total capacity of the array. Elements will be
counted regardless of whether they have been assigned or are still default
values. Returns 4.

Static Methods

The static methods here are part of the System.Array class (i.e., defined by the
System.Collections library) and can act on arrays to give them some of the
abilities of Lists.

 System.Array.IndexOf(sA, "C"): Finds the first instance in the
array sA of the element "C" and returns the index of that element. Because
"C" is the second element of sA, this returns 2.

If the variable does not exist in the array, a -1 is returned. This is often used to
determine whether an array contains a specific element.

 System.Array.Resize(ref sA, 6): This is a C# method that
adjusts the length of an array. The first parameter is a reference to the array
instance (which is why the ref keyword is required), and the second
parameter is the new length. sA would then become ["A", "B", "C",
"D", null, null].

If the second parameter specifies a Length that is shorter than the original array,
the extra elements will be culled. System.Array.Resize(ref sA, 2
) would cause sA to become ["A", "B"].
System.Array.Resize() does not work for the multidimensional arrays
described later in this chapter.

Converting an Array to a List

As mentioned in the List section, it's possible to convert a List to an array. It is
also possible to go the other direction and convert an array to a List.

 List<string> sL = new List<string>(sA): This line creates
a List sL that duplicates all the elements of sA.

413

You can also use the array initialization expression to declare, define, and
populate a List in one line, but it's a little convoluted:

 List<string> sL = new List<string>(new string[] {
"A", "B", "C" });

This declares, defines, and populates an anonymous new string[] array that is
immediately passed into the new List<string>() function.

To prepare for the next example, deactivate the ArrayEx script by clicking the check box
next to its name in the Inspector pane for Main Camera.

Multidimensional Arrays
Creating multidimensional arrays that have two or more indices is possible—and often
useful. This means that instead of just one index number in the brackets, the array could use
two or more. This would be useful for creating a two-dimensional grid that could hold one
item in each grid square.

Create a new C# script named Array2dEx and attach it to Main Camera. Open Array2dEx
in MonoDevelop and enter the following code:
Click here to view code image

 1 using System.Collections;
 2 using System.Collections.Generic;
 3 using UnityEngine;
 4
 5 public class Array2dEx : MonoBehaviour{
 6
 7 public string[,] sArray2d;
 8
 9 void Start () {
10 sArray2d = new string[4,4];
11
12 sArray2d[0,0] = "A";
13 sArray2d[0,3] = "B";
14 sArray2d[1,2] = "C";
15 sArray2d[3,1] = "D";
16
17 print("The Length of sArray2d is: "+sArray2d.Length);
18 }
19 }

The code yields the following output: The Length of sArray2d is: 16

As you can see, Length is still only a single int, even though this is a multidimensional

414

array. Length here is now just the total number of elements in the array, so it is the
coder's responsibility to keep track of each separate dimension of the array.

Now, let's create a nicely formatted output of the values in sArray2d array. When you're
done, it should look something like this:

A			B
		C	
	D		

As you can see, the A is in the 0th row, 0th column ([0,0]), the B is in the 0th row, 3rd
column ([0,3]), and so on. To implement this, add the following bolded lines to the code:
Click here to view code image

17 print("The Length of sArray2d is: "+sArray2d.Length);
18 string str = "";
19 for (int i=0; i<4; i++) { // a
20 for (int j=0; j<4; j++) {
21 if (sArray2d[i,j] != null) { // b
22 str += "|"+sArray2d[i,j];
23 } else {
24 str += "|_";
25 }
26 }
27 str += "|"+"\n"; // c
28 }
29 print(str);
30 }
31 }

a. Lines 19 and 20 demonstrate the use of two nested for loops to iterate over a
multidimensional array. When nested in this manner, the code:
1. Starts with i=0 (line 19)
2. Iterates over all j values from 0 to 3 (lines 20 to 26)

Click here to view code image

str is now "|A| | |B|\n" (line 27)

3. Increments to i=1 (line 19)
4. Iterates over all j values from 0 to 3 (lines 20 to 26)

str is now "|A| | |B|\n| | |C| |\n" (line 27)

5. Increments to i=2 (line 19)
6. Iterates over all j values from 0 to 3 (lines 20 to 26)

str is now "|A| | |B|\n| | |C| |\n| | | |\n" (line 27)

415

7. Increments to i=3 (line 19)
8. Iterates over all j values from 0 to 3 (lines 20 to 26)

str is now "|A| | |B|\n| | |C| |\n| | | |\n| |D| | |\n" (line 27)

This guarantees that the code moves through the multidimensional array in an orderly
manner. Keeping the grid example, it moves through all the elements in a row (by
incrementing j from 0 to 3) and then advances to the next row by incrementing i to the next
value.

b. Lines 21–25 check to see whether the string at sArray[i,j] has a value other than
null. If so, it concatenates a pipe and sArray2d[i,j] onto str. If the value is
null, a pipe and one space are concatenated onto str. You can find the pipe character
on the keyboard above the Return (or Enter) key. It is usually Shift+backslash (\).

c. This line occurs after all the iterations of the j for loop but before the next iteration of
the i for loop. The effect of it is to concatenate a trailing pipe and carriage return (i.e.,
line break) onto str, giving the output the nice formatting of a line for each iteration of
the i for loop.7

The code produces the following output:

The Length of sArray2d is: 16

A			B
		C	
	D		

If you just look at the output in the Console pane of Unity, you only see the top two lines of
the sArray2d grid array listed in the output. However, clicking that line in the Console
pane reveals more data in the bottom half of the Console pane (see Figure 23.2).

Figure 23.2 Clicking an output message in the Console causes an expanded view to appear
below. Note that the first line of the most recent Console message is also shown in the

416

lower-left corner of the Unity window.

As you can see in the figure, the fancy text formatting doesn't line up as well in the Console
pane because it uses a non-monospaced font (i.e., a font where an i and m have different
widths; in monospaced fonts, i and m have the same width). You can
click any line in the Console pane and choose Edit > Copy from the menu bar to copy that
data and then paste it into another program. This is something that I do often, and I most
commonly paste into a text editor. (I prefer BBEdit8 on macOS or EditPad Pro9 on
Windows, both of which are quite powerful.)

You also should be aware that the Unity Inspector pane does not display multidimensional
arrays. In fact, similar to Dictionaries, if the Inspector does not know how to properly
display a variable, it completely ignores it, so not even the name of a public
multidimensional array will appear in the Inspector pane.

Stop Unity's execution by clicking the Play button again (so that it is not blue) and then use
the Main Camera Inspector to disable the Array2dEx (Script) component.

Jagged Arrays
A jagged array is an array of arrays. This is similar to the multidimensional array, but it
allows the subarrays to be different lengths. You'll create a jagged array that holds the
following data:

A	B	C	D
E	F	G	
H	I		
J			K

As you can see, the 0th and 3rd rows each contain four elements, whereas rows 1 and 2
contain three and two elements, respectively. Note that null elements are allowed as is
shown in the 3rd row. In fact, as far as C# is concerned, an entire row could be null (though
in the code listing that follows, this would cause an error on line 33).

Create a new C# script named JaggedArrayEx and attach it to Main Camera. Open
JaggedArrayEx in MonoDevelop and enter the following code:
Click here to view code image

 1 using System.Collections;
 2 using System.Collections.Generic;
 3 using UnityEngine;
 4
 5 public class JaggedArrayEx : MonoBehaviour{
 6 public string[][] jArray; //
a
 7

417

 8 void Start () {
 9 jArray = new string[4][]; //
b
10
11 jArray[0] = new string[4]; //
c
12 jArray[0][0] = "A";
13 jArray[0][1] = "B";
14 jArray[0][2] = "C";
15 jArray[0][3] = "D";
16
17 // The following lines use single-line Array initialization //
d
18 jArray[1] = new string[] { "E", "F", "G" };
19 jArray[2] = new string[] { "H", "I" };
20
21 jArray[3] = new string[4]; //
e
22 jArray[3][0] = "J";
23 jArray[3][3] = "K";
24
25 print("The Length of jArray is: "+jArray.Length); //
f
26 // Outputs: The Length of jArray is: 4
27
28 print("The Length of jArray[1] is: "+jArray[1].Length); //
g
29 // Outputs: The Length of jArray[1] is: 3
30
31 string str = "";
32 foreach (string[] sArray in jArray) { //
h
33 foreach(string sTemp in sArray) {
34 if (sTemp != null) {
35 str += "| "+sTemp; //
i
36 } else {
37 str += "| "; //
j
38 }
39 }
40 str += "| \n";
41 }
42
43 print(str);
44 }
45 }

a. Line 6 declares jArray as a jagged array (i.e., an array of arrays). Where a
string[] is a collection of strings, a string[][] is a collection of string arrays
(or string[]s).

b. Line 8 defines jArray as a jagged array with a length of 4. Note that the second set of

418

brackets is still empty, denoting that the subarrays can still be of any length—although
after their length is set, it is fixed and difficult to alter.

c. Line 11 defines the 0th element of jArray to be an array of strings with a length of 4.
Lines 12–15 insert elements into that subarray, using the first set of brackets ([0]) to
access the 0th subarray of jArray and the second set of brackets to insert a string into
each of the four elements of that subarray.

d. Lines 18 and 19 use the single-line form of array definition. Because the elements of the
array are defined between the braces, the length of the array does not need to be
explicitly stated (hence the empty brackets in new string[]).

e. Lines 21–23 define the 3rd element of jArray to be a string[] with a length of 4
and then fill only the 0th and 3rd elements of that string[], leaving elements 1 and 2
null.

f. Line 25 outputs "The Length of jArray is: 4". Because jArray is an
array of arrays (rather than a multidimensional array), jArray.Length counts only
the number of elements that can be accessed via the first set of brackets (i.e., the four
subarrays).

g. Line 28 outputs "The Length of jArray[1] is: 3". Because jArray is
an array of arrays, subarray Length can be easily determined.

h. In jagged arrays, foreach works separately on the array and sub-arrays. foreach
on jArray iterates through the four string[] (string array) elements of jArray,
and foreach on any of those string[] subarrays iterates over the strings within.
Note that sArray is a string[] (string array) and that sTemp is a string.
As I mentioned previously, line 33 would throw a NullReferenceException
error if one of the rows of jArray were null. In that case, sArray would be null,
and trying to run the foreach statement in line 33 on a null variable would lead to a
NullReference-Exception error (the attempt to reference an element of
something that is null). The foreach statement would be attempting to access data of
sArray like sArray.Length and sArray[0]. Because null data have no
elements or value, accessing things like null.Length throws this error.

i. On a keyboard, you type the string literal in line 35 as space pipe space.
j. On a keyboard, you type the string literal in line 37 as space pipe space space.

The code outputs the following to the Console pane:

The Length of jArray is: 4
The Length of jArray[1] is: 3
A	B	C	D
E	F	G	
H	I		
J			K

419

Using for Loops Instead of foreach for Jagged Arrays
You can also use for loops based on the Length of the array and subarrays. You could
replace the foreach loop on lines 32–41 in the preceding code listing with this code:

Click here to view code image

31 string str = "";
32 for (int i=0; i<jArray.Length; i++) {
33 for (int j=0; j<jArray[i].Length; j++) {
34 if (jArray[i][j] != null) {
35 str += " | "+jArray[i][j];
36 } else {
37 str += " | ";
38 }
39 }
40 str += " | \n";
41 }

This code produces the exact same output as the foreach loops shown earlier. Whether
you choose to use for or foreach will depend on the situation.

Jagged Lists
As a final note on jagged collections, creating jagged Lists is also possible. A jagged two-
dimensional list of strings would be declared List<List<string>>
jaggedStringList. Just as with jagged arrays, the subLists would initially be null, so
you would have to initialize them as you added them as shown in the following code. Just
like all Lists, jagged Lists do not allow empty elements. Create a new C# script named
JaggedListTest, attach it to Main Camera, and enter this code:
Click here to view code image

 1 using System.Collections;
// a
 2 using System.Collections.Generic;
 3 using UnityEngine;
 4
 5 public class JaggedListTest : MonoBehaviour{
 6 public List<List<string>> jaggedList;
 7
 8 // Use this for initialization
 9 void Start () {
10 jaggedList = new List<List<string>>();
11
12 // Add two List<string>s to jaggedList
13 jaggedList.Add(new List<string>());
14 jaggedList.Add(new List<string>());
15
16 // Add two strings to jaggedList[0]

420

17 jaggedList[0].Add ("Hello");
18 jaggedList[0].Add ("World");
19
20 // Add a third List<string> to jaggedList, including data
21 jaggedList.Add (new List<string>(new string[] {"complex",
"initialization"}));
b
22
23 string str = "";
24 foreach (List<string> sL in jaggedList) {
25 foreach (string sTemp in sL) {
26 if (sTemp != null) {
27 str += " | "+sTemp;
28 } else {
29 str += " | ";
30 }
31 }
32 str += " | \n";
33 }
34 print(str);
35 }
36 }

a. Although using System.Collections; is included in all Unity C# scripts by
default, it's not actually necessary for Lists (though System.Collections.Generic is
required for Lists).

b. This is one of the first instances in this book of the code continuation character. This
is used throughout the book when a single line is longer than can fit the width of the
page. You should not type the character; rather, it is there to let you know to continue
typing the single line as if there were no line break. With no leading tabs, line 21 would
appear as follows:

Click here to view code image

jaggedList.Add (new List<string>(new string[] {"complex","initialization"})
);

The code outputs the following to the Console pane:

| Hello | World |
|
| complex | initialization |

Whether to Use Array or List
Arrays and Lists are very similar, so people are often unsure which one to use in any given
situation. The primary differences between the array and List collections types are as
follows:

 List has flexible length, whereas array length is more difficult to change.

421

 Array is very slightly faster.
 Array allows multidimensional indices.
 Array allows empty elements in the middle of the collection.

Because they are simpler to implement and take less forethought (due to their flexible
length), I personally tend to use Lists much more often than arrays. This is especially true
when prototyping games, because prototyping requires a lot of flexibility.

Summary
Now that you have a handle on Lists, Dictionaries, and arrays, you can work easily with
large numbers of objects in your games. For example, you could return to the Hello World
project from Chapter 19, "Hello World: Your First Program," and add a
List<GameObject> to the CubeSpawner code that had every new cube added to it at
the time the cube was instantiated. This would give you a reference to each cube, allowing
you to manipulate the cube after it was created. The following exercise shows you how to
do so.

Summary Exercise
In this exercise, you return to the Hello World project from Chapter 19 and write a script
that will add each new cube created to a List<GameObject> named
gameObjectList. Every frame that a cube exists, it will be scaled down to 95% of its
size in the previous frame. After a cube shrinks to a scale of 0.1 or less, it will be deleted
from the scene and gameObjectList.

However, deleting an element from gameObjectList while the foreach loop is
iterating over it will cause an error. To avoid this, the cubes that need to be deleted will be
temporarily stored in another list named removeList, and then the list will be iterated
over to remove them from gameObjectList. (You'll see what I mean in the code.)

Open your Hello World project and create a new scene (File > Scene from the menu bar).
Save the scene as _Scene_3. Create a new script named CubeSpawner3 and attach it to the
Main Camera in the scene. Then, open CubeSpawner3 in MonoDevelop and enter the
following code:
Click here to view code image

 1 using System.Collections;
 2 using System.Collections.Generic;
 3 using UnityEngine;
 4
 5 public class CubeSpawner3 : MonoBehaviour{
 6 public GameObject cubePrefabVar;
 7 public List<GameObject> gameObjectList; // Will hold all the Cubes

422

 8 public float scalingFactor = 0.95f;
 9 // ^ Amount that each cube will shrink each frame
10 public int numCubes = 0; // Total # of Cubes instantiated
11
12 // Use this for initialization
13 void Start() {
14 // This initializes the List<GameObject>
15 gameObjectList = new List<GameObject>();
16 }
17
18 // Update is called once per frame
19 void Update () {
20 numCubes++; // Add to the number of
Cubes // a
21
22 GameObjectgObj = Instantiate<GameObject>(cubePrefabVar
); // b
23
24 // These lines set some values on the new Cube
25 gObj.name = "Cube
"+numCubes; // c
26 Colorc = new Color(Random.value, Random.value,
Random.value); // d
27 gObj.GetComponent<Renderer>().material.color = c;
28 // ^ Gets the Renderer component of gObj & gives gObj a random color
29 gObj.transform.position =
Random.insideUnitSphere; // e
30
31 gameObjectList.Add (gObj); // Add gObj to the List of Cubes
32
33 List<GameObject> removeList = new List<GameObject>
(); // f
34 // ^ This removeList will store information on Cubes that should be
35 // removed from gameObjectList
36
37 // Iterate through each Cube in gameObjectList
38 foreach (GameObjectgoTemp in gameObjectList)
{ // g
39
40 // Get the scale of the Cube
41 float scale =
goTemp.transform.localScale.x; // h
42 scale *= scalingFactor; // Shrink it by the scalingFactor
43 goTemp.transform.localScale = Vector3.one * scale;
44
45 if (scale <= 0.1f) { // If the scale is less than
0.1f... // i
46 removeList.Add (goTemp); // ...then add it to the removeList
47 }
48 }
49
50 foreach (GameObjectgoTemp in removeList)
{ // g
51 gameObjectList.Remove

423

(goTemp); // j
52 // ^ Remove the Cube from gameObjectList
53 Destroy (goTemp); // Destroy the Cube's GameObject
54 }
55 }
56 }

a. The increment operator (++) is used to increase the field that tracks the total number of
cubes that have been created.

b. An instance of cubePrefabVar is instantiated. The generic type declaration here "
<GameObject>" is necessary because you can use Instantiate()on any kind of
object (meaning that without the generic type declaration, C# has no way of knowing
what kind of data Instantiate() will return). The "<GameObject>" tells C#
that a GameObject will be returned by the Instantiate() function.

c. The numCubes variable is used to give unique names to each cube. The first cube will
be named Cube 1, the second Cube 2, and so on.

d. Lines 26 and 27 assign a random color to each cube. Colors are accessed through the
material attached to the GameObject's Renderer component, as demonstrated on line 27.

e. Random.insideUnitSphere returns a random location that is inside a sphere
with a radius of 1 (centered on the point [0,0,0]). This code makes the cubes spawn at a
random location near [0,0,0] rather than all at exactly the same point.

f. As is stated in the code comments, removeList will be used to store cubes that will
need to be removed from gameObjectList. This is necessary because C# does not
allow you to remove elements from a list in the middle of a foreach loop that is
iterating over the list. (i.e., you can't call gameObjectList.Remove() anywhere
within the foreach loop on lines 38–48 that iterates over gameObjectList.)

g. This foreach loop iterates over all the cubes in gameObjectList. Note that the
temporary variable created for the foreach is goTemp. goTemp is also used in the
foreach loop on line 50, so goTemp is declared on both lines 38 and 50. Because
goTemp is locally scoped to the foreach loop in each case, there is no conflict
caused by declaring the variable twice in the same Update() function. See Variable
Scope in Appendix B, "Useful Concepts," for more information.

h. Lines 41–43 get the current scale of a cube (by getting the X dimension of its
transform.localScale), multiply that scale by 95%, and then set the
transform.localScale to this new value. Multiplying a Vector3 by a float (as is
done on line 43) multiplies each individual dimension by that same number, so [2, 4, 6
] * 0.5f would yield [1, 2, 3].

i. As mentioned in the code comments, if the newly reduced scale is less than 0.1f, the
cube will be added to removeList.

j. The foreach loop from lines 50–54 iterates over removeList and removes any
cube that is in removeList from gameObjectList. Because the foreach is

424

iterating over removeList, removing elements from gameObjectList is
perfectly fine. The removed cube GameObject still exists on screen until the
Destroy() command is used to destroy it. Even then, it still exists in the computer's
memory because it is still an element of removeList. However, because
removeList is a local variable scoped to the Update() function, when the
Update() function completes, removeList ceases to exist, and then any objects
that are exclusively stored in removeList will also be deleted from memory.

Save your script and then switch back to Unity. You must assign Cube Prefab from the
Project pane to the cubePrefabVar variable in the Main Camera:CubeSpawner3 (Script)
component of the Main Camera Inspector if you want to actually instantiate any cubes.

After you do this, click Play in Unity, and you should see that a number of cubes spawn in
as they did in previous versions of Hello World. However, they spawn in different colors,
they shrink over time, and they are eventually destroyed (instead of existing indefinitely as
they did in earlier versions).

Because the CubeSpawner3 code keeps track of each cube through the
gameObjectList, it is able to modify each cube's scale every frame and then destroy
each cube after it's smaller than a scale of 0.1f. At a scalingFactor of 0.95f, it takes
each cube 45 frames to shrink to a scale <= 0.1f, so what would be the 0th cube in
gameObjectList is always removed and destroyed for being too small, and the Count
of gameObjectList stays at 45.

Moving Forward
In the next chapter, you learn how to create and name functions other than Start() and
Update().

1. A List is a kind of generic collection. In C#, the word generic refers to the ability to be
used on a variety of types. The <T> denotes that when creating a List, you must declare
the type that it will be used for (e.g., new List<GameObject>() or new
List<Vector3>()). You also see the generic <T> used for some methods like the
GetComponent<T>() method used on GameObjects, where the type of the desired
component is passed between the angle brackets (e.g., gameObject.
GetComponent<Rigidbody>()).

2. As a property, Count looks like a field but is actually a function under the hood (see
Chapter 26, "Classes").

3. The new Dictionary<Tkey, Tvalue>() function includes two generic
designations allowing a Dictionary to be created with any key type and any value type.
There is more information about this later in the chapter.

425

4. Prior to Unity 5.5, using System.Collections.Generic; was not added to
the top of scripts by default, and developers had to add it manually. Also, this isn't the
order that you'll see in Unity 5.5 and later, but the order doesn't really matter, and it is
easier to describe them in this order.

5. It may seem strange for a "generic" collection to only be able to hold one type of data.
The word generic is used here to refer to the ability (via the <T>) to allow a data type
like List to be created in a generic way that can be strongly typed for any data type.
Writing generic classes like List is outside the scope of this book, but you can search
online for "C# generic" to learn more.

6. Adding a null element to a list, resulting in an empty element in the middle, is
technically possible, but I've never used that myself.

7. The "\n" character here is seen by C# as a single character that indicates a new line.
It causes a line break in the final output.

8. BBEdit has a free evaluation version available from BareBones Software:
http://www.barebones.com.

9. EditPad Pro has a free trial available from Just Great Software: http://editpadpro.com.

426

http://www.barebones.com
http://editpadpro.com

CHAPTER 24

FUNCTIONS AND PARAMETERS

In this chapter, you learn to take advantage of the immense power of functions.
You write your own custom functions that can take various kinds of variables as
input arguments and can return a single variable as the function's result. I also
cover some special cases of parameters for function input like function
overloading, optional parameters, and the params keyword modifier, all of which
will help you to write more effective, modular, reusable, and flexible code.

Setting Up the Function Examples Project
In Appendix A, "Standard Project Setup Procedure," detailed instructions show you how to
set up Unity projects for the chapters in this book. At the start of each project, you will also
see a sidebar like the one here. Please follow the directions in the sidebar to create the
project for this chapter.

SET UP THE PROJECT FOR THIS CHAPTER
Following the standard project setup procedure, create a new project in Unity. For
information on the standard project setup procedure, see Appendix A.

 Project name: Function Examples
 Scene name: _Scene_Functions
 C# Script names: CodeExample

Attach the script CodeExample to the Main Camera in the scene
_Scene_Functions.

Definition of a Function
You've actually been writing functions since your first Hello World program, but prior to
now, you've been adding content to built-in Unity MonoBehaviour functions like Start()
and Update(). From now on, you'll also be writing custom functions.

427

The best way to think about a function is as a chunk of code that does something. For
instance, to count the number of times that Update() has been called, you can create a
new C# script with the following code (you will need to add the bold lines):
Click here to view code image

 1 using UnityEngine;
 2 using System.Collections;
 3
 4 public class CodeExample : MonoBehaviour {
 5
 6 public int numTimesCalled = 0; // a
 7
 8 void Update() {
 9 numTimesCalled++; // b
10 PrintUpdates(); // c
11 }
12
13 void PrintUpdates() { // d
14 string outputMessage = "Updates: "+numTimesCalled; // e
15 print(outputMessage); // Output example: "Updates: 1" // f
16 }
17
18 }

a. Declares the public variable numTimesCalled and assigns 0 as its initial value.
Because numTimesCalled is declared as a public variable inside the class
CodeExample but outside of any function, it is available to be accessed by any of the
functions within the CodeExample class.

b. numTimesCalled is incremented (1 is added to it).
c. Line 10 calls the function PrintUpdates(). When your code calls a function, it

causes the function to be executed. I describe this in more detail soon.
d. Line 13 declares the function PrintUpdates(). Declaring a function is similar to

declaring a variable. void is the return type of the function, meaning that the function is
not expected to return a value (as I cover in more detail soon). Lines 13–16 collectively
define the function. All lines of code between the opening brace { on line 13 and the
closing brace } on line 16 are part of the definition of PrintUpdates().
Note that the order in which your functions are declared in the class does not matter.
Whether PrintUpdates() or Update() is declared first is irrelevant as long as
they are both within the braces of the class CodeExample. C# will look through all the
declarations in a class before running any code. It's perfectly fine for
PrintUpdates() to be called on line 10 and declared on line 13 because both
PrintUpdates() and Update() are functions declared in the class CodeExample.

e. Line 14 defines a local string variable named outputMessage. Because
outputMessage is defined within the function PrintUpdates() its scope is
limited to PrintUpdates(), meaning that the variable name outputMessage has

428

no value outside of the function PrintUpdates(). For more information about
variable scope, see the Variable Scope section of Appendix B, "Useful Concepts."
Line 14 also defines outputMessage to be the concatenation of "Updates: " and
the public integer numTimesCalled.

f. The Unity function print() is called with the single argument outputMessage.
This prints the value of outputMessage to the Unity Console. I cover function
arguments later in this chapter.

In an actual game, PrintUpdates()would not be a terribly useful function, but it does
showcase two of the important concepts covered in this chapter:

 Functions encapsulate actions: You can think of a function as a named collection of
several lines of code. Every time the function is called, those lines of code are executed.
This was demonstrated by both PrintUpdates() and the BuySomeMilk()
example from Chapter 18, "Introducing Our Language: C#."
 Functions contain their own scope: As you can read in the Variable Scope section of
Appendix B, "Useful Concepts," variables declared within a function have their scope
limited to that function. Therefore, the variable outputMessage (declared on line
14) has a scope limited to just the function PrintUpdates(). This can either be
stated as "outputMessage is scoped to the function PrintUpdates()" or
"outputMessage is local to the function PrintUpdates()."
Contrast the scope of the local variable outputMessage with that of the public
variable numTimesCalled, which has a scope of the entire CodeExample class and
can be used by any function in CodeExample.

If you run this code in Unity, you will see that numTimesCalled is incremented every
frame and PrintUpdates() is called every frame (which outputs the value of
numTimesCalled to the Console pane). Calling a function causes it to execute, and
when the function is done, execution then returns to the point from where it was called. So,
in the class CodeExample, the following happens every frame:

1. Every frame, the Unity engine calls the Update() function (line 8).
2. Line 9 increments numTimesCalled.
3. Line 10 calls PrintUpdates().
4. Execution then jumps to the beginning of the PrintUpdates() function on line 13.
5. Lines 14 and 15 are executed.
6. When Unity reaches the closing brace of PrintUpdates() on line 16, execution

returns to line 10 (the line from which it was called).
7. Execution continues to line 11, which ends the Update() function.

429

The remainder of this chapter covers both simple and complex uses of functions, and it's an
introduction to some rather complicated concepts. As you continue into the tutorials later in
this book, you'll get a much better understanding of how functions work and get more ideas
for your own functions, so if there's anything that doesn't make sense the first time through
this chapter, that's okay. You can return to it after you've read a bit more of the book.

USING CODE FROM THIS CHAPTER IN UNITY
Though the first code listing in this chapter includes all the lines of the
CodeExample class, later code examples do not. If you want to actually run the
rest of the code from this chapter in Unity, you must wrap it inside of a class.
Chapter 26, "Classes," covers classes in detail, but for now, you can accomplish
this by adding the bolded lines that follow around any of the code listed in this
chapter:
Click here to view code image

 1 using UnityEngine;
 2 using System.Collections;
 3
 4 public class CodeExample : MonoBehaviour {
 5
 // The code listing would replace this comment
16
17 }

For example, without the immediately preceding bold lines, the first code listing
in this chapter would have looked like this:

Click here to view code image

 6 public int numTimesCalled = 0;
 7
 8 void Update() {
 9 PrintUpdates();
10 }
11
12 void PrintUpdates() {
13 numTimesCalled++;
14 print("Updates: "+numTimesCalled); // Example: "Updates: 5"
15 }

If you wanted to enter this listing of lines 6–15 into a C# script in MonoDevelop,
you would need to add the bold lines from the previous listing around them and
indent each of these lines (6–15) one tab. The final version of code in
MonoDevelop would be the code listing on the first page of this chapter.

The remainder of the code listings in this chapter have numbering that starts on

430

line 6 to indicate that other lines would need to precede and follow them. I've
omitted the tab at the beginning of each line to allow more space for the code on
each line.

Function Parameters and Arguments
Some functions are called with empty parentheses following them (for example,
PrintUpdates() in the first code listing). Other functions can be passed information in
between the parentheses (for example, Say("Hello") in the following listing). When a
function is designed to receive outside information via the parentheses like this, the type of
information is specified by one or more parameters that create a local function variable
(with a specific type) to hold the information. In line 10 of the following code listing,
void Say (string sayThis) declares a parameter named sayThis that is of
the string type. sayThis can then be used as a local variable within the Say() function.

When information is sent to a function via its parameters, it is referred to as passing
information to the function. Each variable passed into a parameter is called an argument. In
line 7 of the following listing, the function Say() is called with the argument "Hello".
Another way to say this is that "Hello" is passed to the function Say(). The argument
passed to a function must match the parameters of the function, or it will cause an error.
Click here to view code image

 6 void Awake() {
 7 Say("Hello"); // a
 8 }
 9
10 void Say(string sayThis) { // b
11 print(sayThis);
12 }

a. When Say() is called by line 7, the string literal "Hello" is passed into the function
Say() as an argument, and line 10 then sets the value of sayThis to "Hello".

b. The string sayThis is declared as a parameter variable of the function Say(). This
makes sayThis a local variable that is scoped to the function Say(), in other words,
the variable sayThis does not exist outside of the function Say().

UNDERSTANDING AWAKE(), START(), AND UPDATE()
As you experienced in Chapter 19, "Hello World: Your First Program,"
Update() is called on every GameObject once every frame, and Start() is
called once, right before the first Update() is called on a GameObject. Just like

431

Start() and Update(), Awake() is a key method of many Unity scripts.
Awake() is called once, just like Start(), but Awake() is called
immediately at the moment that a GameObject is created. This means that on any
single GameObject, Awake() will always happen before Start().

In the following script, an Awake() method on a script attached to
testPrefab would be called before "After instantiation" is printed,
while a Start() method on testPrefab would be called several
milliseconds later, after the entire Test() function is finished, just before the
first Update() is called on the testPrefab GameObject instance.

Click here to view code image

void Test() {
 print("Before instantiation");
 Instantiate<GameObject>(testPrefab);
 print("After instantiation");
}

In the function Say() in the previous listing, we've added a single parameter named
sayThis. Just as with any other variable declaration, the first word, string, is the
variable type and the second word, sayThis, is the name of the variable.

Just like other local function variables, the parameter variables of a function disappear
from memory as soon as the function is complete; if the parameter sayThis were used
anywhere in the Awake() function, it would cause a compiler error due to sayThis
being exclusively limited in scope to the function Say().

In line 7 of the preceding code listing, the argument passed into the function is the string
literal "Hello", but any type of variable or literal can be specified as the parameter type
for a function, and any variable or literal that matches the specified type can be passed into
that function as an argument (e.g., line 7 of the following code listing passes
this.gameObject as an argument to the function PrintGameObjectName()). If a
function has multiple parameters, arguments passed to it must be separated by commas (see
line 8 in the following code listing).
Click here to view code image

 6 void Awake() {
 7 PrintGameObjectName(this.gameObject);
 8 SetColor(Color.red, this.gameObject);
 9 }
10
11 void PrintGameObjectName(GameObject go) {
12 print(go.name);
13 }

432

14
15 void SetColor(Color c, GameObject go) {
16 Renderer r = go.GetComponent<Renderer>();
17 r.material.color = c;
18 }

tip
C# FUNCTIONS CAN BE DEFINED IN ANY ORDER You probably noticed
in the previous code listing that both PrintGameObject() and
SetColor() are called by the Awake() function on lines 7 and 8, yet they
aren't defined until lines 11–18. This is absolutely fine in C#. C# searches your
entire script for function names before executing any of the script, so it doesn't
matter where in your script the functions are defined.

Returning Values
In addition to receiving values as parameters, functions can also return a single value,
known as the result of the function as shown on line 13 of the following code listing.
Click here to view code image

 6 void Awake() {
 7 int num = Add(2, 5);
 8 print(num); // Prints the number 7 to the Console
 9 }
10
11 int Add(int numA, int numB) {
12 int sum = numA + numB;
13 return(sum);
14 }

In this example, the function Add() has two parameters, the integers numA and numB.
When called, it will sum the two integers that were passed in and then return the result. The
int at the beginning of the function definition on line 11 declares that Add() will be
returning an integer as its result. Just as you must declare the type of any variable for it to
be useful, you must also declare the return type of a function for it to be used elsewhere in
code.

Returning void
Most of the functions that we've written so far have had a return type of void, which
means that no value can be returned by the function. Though these functions don't return a
specific value, there are still times that you might want to call return within them.

433

Any time return is used within a function, it stops execution of the function and returns
execution back to the line from which the function was called. (For example, the return
on line 16 of the following code listing returns execution back to line 9.)

Returning from a function to avoid the remainder of the function is sometimes useful. For
example, if you had a list of more than 100,000 GameObjects (e.g., reallyLongList in
the following code listing), and you wanted to move the GameObject named "Phil" to the
origin (Vector3.zero), but didn't care about doing anything else, you could write this
function:
Click here to view code image

 6 public List<GameObject> reallyLongList; // Defined in the Inspector //
a
 7
 8 void Awake() {
 9 MoveToOrigin("Phil"); //
b
10 }
11
12 void MoveToOrigin(string theName) {
13 foreach (GameObject go in reallyLongList) { //
c
14 if (go.name == theName) { //
d
15 go.transform.position = Vector3.zero; //
e
16 return; //
f
17 }
18 }
19 }

a. List<GameObject> reallyLongList is a very long list of GameObjects that
we are imagining has been predefined in the Unity Inspector. Because this predefined
List doesn't really exist, entering this code into Unity would not work unless you defined
really-LongList yourself.

b. The function MoveToOrigin() is called with the string literal "Phil" as its
argument.

c. The foreach statement iterates over reallyLongList.
d. If a GameObject with the name "Phil" (i.e., theName) is found…
e. …then it is moved to the position [0, 0, 0].
f. Line 16 returns execution to line 9. This avoids iterating over the rest of the List.

In MoveToOrigin(), you really don't care about checking the other GameObjects after
you've found the one named Phil, so it is better to short circuit the function and return before

434

wasting computing power on checking the rest of the list. If Phil is the last GameObject in
the list, you haven't saved any time; however, if Phil is the first GameObject, you have
saved a lot.

Note that when return is used in a function with the void return type, it does not use
parentheses (and even when returning a value, the parentheses are optional).

Proper Function Names
As you'll recall, variable names should be sufficiently descriptive, start with a lowercase
letter, and use camelCase (uppercase letters at each word break). For example:
Click here to view code image

int numEnemies;
float radiusOfPlanet;
Color colorAlert;
string playerName;

Function names are similar; however, function names should all start with a capital letter so
that they are easier to differentiate from the variables in your code. Here are some good
function names:
Click here to view code image

void ColorAGameObject(GameObject go, Color c) {…}
void AlignX(GameObject go0, GameObject go1, GameObject go2) {…}
void AlignXList(List<GameObject> goList) {…}
void SetX(GameObject go, float eX) {…}

Why Use Functions?
Functions are a perfect method for encapsulating code and functionality in a reusable form.
Generally, any time that you would write the same lines of code more than a couple of
times, it's good style to define a function to do so instead. Let's start with a code listing that
has some repeated code in it.

The function AlignX() in the following code listing takes three GameObjects as
parameters, averages their position in the X direction, and sets them all to that average X
position:
Click here to view code image

 6 void AlignX(GameObject go0, GameObject go1, GameObject go2) {
 7 float avgX = go0.transform.position.x;
 8 avgX += go1.transform.position.x;
 9 avgX += go2.transform.position.x;
10 avgX = avgX/3.0f;
11
12 Vector3 tempPos;

435

13 tempPos = go0.transform.position; //
a
14 tempPos.x = avgX; //
a
15 go0.transform.position = tempPos; //
a
16
17 tempPos = go1.transform.position;
18 tempPos.x = avgX;
19 go1.transform.position = tempPos;
20
21 tempPos = go2.transform.position;
22 tempPos.x = avgX;
23 go2.transform.position = tempPos;
24 }

a. In lines 13–15, you can see how to handle the Unity restriction that does not allow you
to directly set the position.x of a transform. Instead, you must first copy the current
position to another variable (e.g., Vector3 tempPos), then change the x value, and
finally copy the whole Vector3 back onto transform.position. This is very
tedious to write repeatedly, which led to the SetX() function shown in the next code
listing. The SetX() function in that listing enables you to set the x position of a
transform in a single step (e.g., SetX(this.gameObject, 25.0f)).

Because of the limitations on directly setting an x, y, or z value of the
transform.position, the AlignX() function has a lot of repeated code on lines 13
through 23. Typing that code can be very tedious, and if you needed to change anything later,
it would necessitate changing the same thing three times in this AlignX() function. This
is one of the main reasons for writing functions. In the following code listing, lines 11–23
from the previous code listing have been replaced by calls to a new function, SetX(). The
bold lines in the following code listing have been altered from the previous listing.
Click here to view code image

 6 void AlignX(GameObject go0, GameObject go1, GameObject go2) {
 7 float avgX = go0.transform.position.x;
 8 avgX += go1.transform.position.x;
 9 avgX += go2.transform.position.x;
10 avgX = avgX/3.0f;
11
12 SetX (go0, avgX);
13 SetX (go1, avgX);
14 SetX (go2, avgX);
15 }
16
17 void SetX(GameObject go, float eX) {
18 Vector3 tempPos = go.transform.position;
19 tempPos.x = eX;
20 go.transform.position = tempPos;
21 }

436

In this improved code listing, the removed lines from the previous code have been replaced
by the definition of a new function SetX() (lines 17–21) and three calls to it (lines 12–
14). If anything needed to change about how you were setting the x value, it would only
require making a change once to SetX() rather than making the change three times in the
prior code listing. Although this is a simple example, I hope it serves to demonstrate the
power that functions allow us as programmers.

The remainder of this chapter covers some more complex and interesting ways to write
functions in C#.

Function Overloading
Function overloading is a fancy term for the capability of functions in C# to act differently
based on the type and number of parameters that are passed into them. The bold sections of
the following code demonstrate function overloading.
Click here to view code image

 6 void Awake() {
 7 print(Add(1.0f, 2.5f));
 8 // ^ Prints: "3.5"
 9 print(Add(new Vector3(1, 0, 0), new Vector3(0, 1, 0)));
10 // ^ Prints "(1.0, 1.0, 0.0)"
11 Color colorA = new Color(0.5f, 1, 0, 1);
12 Color colorB = new Color(0.25f, 0.33f, 0, 1);
13 print(Add(colorA, colorB));
14 // ^ Prints "RGBA(0.750, 1.000, 0.000, 1.000)"
15 }
16
17 float Add(float f0, float f1) { // a
18 return(f0 + f1);
19 }
20
21 Vector3 Add(Vector3 v0, Vector3 v1) { // a
22 return(v0 + v1);
23 }
24
25 Color Add(Color c0, Color c1) { // a
26 float r, g, b, a;
27 r = Mathf.Min(c0.r + c1.r, 1.0f); // b
28 g = Mathf.Min(c0.g + c1.g, 1.0f); // b
29 b = Mathf.Min(c0.b + c1.b, 1.0f); // b
30 a = Mathf.Min(c0.a + c1.a, 1.0f); // b
31 return(new Color(r, g, b, a));
32 }

a. Three different Add() functions are declared and defined in the previous listing, and
each is called based on the parameters passed in by various lines of the Awake()
function. When two floating-point numbers are passed in, the float version of Add() is
used; when two Vector3s are passed in, the Vector3 version is used; and when two

437

Colors are passed in, the Color version is used.
b. In the Color version of Add(), care is taken to not allow r, g, b, or a to exceed 1

because the red, green, blue, and alpha channels of a color are limited to values
between 0 and 1. This is done through the use of the Mathf.Min() function.
Mathf.Min() takes any number of arguments as parameters and returns the one with
the minimum value. In the previous listing, if the summed reds are equal to 0.75f, then
0.75f will be returned in the red channel; however, if the greens were to sum to any
number greater than 1.0f, a green value of 1.0f will be returned instead.

Optional Parameters
Sometimes you want a function to have optional parameters that may either be passed in or
omitted. In the following code, the float eX parameter of SetX() is optional. If you give a
parameter a default value in the definition of the function, the compiler will interpret that
parameter as optional (e.g., line 13 in the following code listing, where the float eX is
given a default value of 0.0f). The bold code demonstrates optional parameters.
Click here to view code image

 6 void Awake() {
 7 SetX(this.gameObject, 25); // b
 8 print(this.gameObject.transform.position.x); // Outputs: "25"
 9 SetX(this.gameObject); // c
10 print(this.gameObject.transform.position.x); // Outputs: "0"
11 }
12
13 void SetX(GameObject go, float eX=0.0f) { // a
14 Vector3 tempPos = go.transform.position;
15 tempPos.x = eX;
16 go.transform.position = tempPos;
17 }

a. The float eX is defined as an optional parameter with a default value of 0.0f. Giving
eX a default value in the function declaration (the =0.0f part) is what makes eX an
optional parameter. If no argument is passed in for the eX parameter, it will have a
value of 0.0f.

b. Because a float can hold any integer value,1 passing an int into a float is perfectly fine.
(For example, the integer literal 25 on line 7 is passed as an argument into the float eX
parameter on line 13.)

c. On line 9, no eX argument is passed to the SetX() method (though an argument is
passed for the required go parameter). When no argument is passed for an optional
parameter, the default value is used. In this case, the default value for eX was defined as
0.0f on line 13.

The first time it's called from Awake(), the eX parameter is set to 25.0f, which overrides

438

the default of 0.0f. However, the second time it's called, the eX parameter is omitted,
leaving SetX() to default to a value of 0.0f.

Optional parameters must come after any required parameters in the function definition.

The params Keyword
As shown on line 13 of the following code listing, the params keyword can be used to
allow a function to accept any number of parameters of the same type. These parameters are
converted into an array of that type. The bold code demonstrates the params keyword.
Click here to view code image

 6 void Awake() {
 7 print(Add(1)); // Outputs: "1"
 8 print(Add(1, 2)); // Outputs: "3"
 9 print(Add(1, 2, 3)); // Outputs: "6"
10 print(Add(1, 2, 3, 4)); // Outputs: "10"
11 }
12
13 int Add(params int[] ints) {
14 int sum = 0;
15 foreach (int i in ints) {
16 sum += i;
17 }
18 return(sum);
19 }

Add() can now accept any number of integers and return their sum. As with optional
parameters, the params list needs to come after any other parameters in your function
definition (meaning that you can have other required parameters before the params list).

This also allows you to rewrite the AlignX() function from before to take any number of
possible GameObjects, as demonstrated in the following code listing.
Click here to view code image

 6 void AlignX(params GameObject[] goArray) { // a
 7 float sumX = 0;
 8 foreach (GameObject go in goArray) { // b
 9 sumX += go.transform.position.x; // c
10 }
11 float avgX = sumX / goArray.Length; // d
12
13 foreach (GameObject go in goArray) { // e
14 SetX (go, avgX);
15 }
16 }
17
18 void SetX(GameObject go, float eX) {
19 Vector3 tempPos = go.transform.position;

439

20 tempPos.x = eX;
21 go.transform.position = tempPos;
22 }

a. The params keyword creates an array of GameObjects from any GameObjects passed
in.

b. foreach can iterate over every GameObject in goArray. The GameObject go
variable is scoped to the foreach loop on lines 8–10, so it does not conflict with the
GameObject go variable in the foreach loop on lines 13–15.

c. The X position of the current GameObject is added to sumX.
d. The average X position is found by dividing the sum of all X positions by the number of

GameObjects. Note that if zero GameObjects are passed in, this line will generate an
error when it tries to divide by zero.

e. Another foreach loop iterates over all the GameObjects in goArray and calls
SetX() with each GameObject as a parameter.

Recursive Functions
Sometimes a function is designed to call itself repeatedly; this is known as a recursive
function. One simple example of this is calculating the factorial of a number.

In math, 5! (5 factorial) is the multiplication of that number and every other natural number
below it. (Natural numbers are the integers greater than 0.)

5! = 5 * 4 * 3 * 2 * 1 = 120

It is a special case in math that 0! is equal to 1.

0! = 1

For our purposes, let's return a 0 any time a negative number is passed into the factorial
function:

-5! = 0

You can write a recursive function Fac() to calculate the factorial of any integer:
Click here to view code image

 6 void Awake() {
 7 print(Fac(5)); // Outputs: "120" // a
 8 print(Fac(0)); // Outputs: "1"
 9 print(Fac(-5)); // Outputs: "0"
10 }
11
12 int Fac(int n) { // b, d
13 if (n < 0) { // This handles the case if n<0

440

14 return(0);
15 }
16 if (n == 0) { // This is the "terminal case" // e
17 return(1);
18 }
19 int result = n * Fac(n-1); // c, f
20 return(result); // g
21 }

a. When Fac() is called with the integer parameter 5.
b. This enters the first iteration of Fac() with n = 5.
c. On line 19, n (as 5) is then multiplied by the result of calling Fac() with a value of 4.

This process of a function calling itself is called recursion.
d. Which enters the second iteration of Fac() with n = 4. The process continues until the

sixth iteration of Fac(), where n = 0.
e. Because n is 0, a 1 is returned back up to the fifth iteration.
f. …which then multiplies 1 * 1
g. …and passes a 1 back up to the fourth iteration and so on until all the recursions of
Fac() have completed, and the first iteration of Fac() returns a value of 120 to line
7.

The chain of all these recursive Fac() calls works something like this:
Click here to view code image

Fac(5) // 1st Iteration
5 * Fac(4) // 2nd Iteration
5 * 4 * Fac(3) // 3rd Iteration
5 * 4 * 3 * Fac(2) // 4th Iteration
5 * 4 * 3 * 2 * Fac(1) // 5th Iteration
5 * 4 * 3 * 2 * 1 * Fac(0) // 6th Iteration
5 * 4 * 3 * 2 * 1 * 1 // 5th Iteration
5 * 4 * 3 * 2 * 1 // 4th Iteration
5 * 4 * 3 * 2 // 3rd Iteration
5 * 4 * 6 // 2nd Iteration
5 * 24 // 1st Iteration
120 // Final Return Value

The best way to really understand what's happening in this recursive function is to explore
it using the debugger, a feature in MonoDevelop that enables you to watch each step of the
execution of your programs and see how different variables are affected by your code. The
process of debugging is the topic of the next chapter.

Summary
In this chapter, you have seen the power of functions and many different ways that you can

441

use them. Functions are a cornerstone of most modern programming languages, and the
more programming you do, the more you will see how powerful and necessary they are.

The upcoming Chapter 25, "Debugging," shows you how to use the debugging tools in
Unity. These tools are meant to help you find problems with your code, but they are also
very useful for understanding how your code works. After you have learned about
debugging from the next chapter, I recommend returning to this chapter and examining the
Fac() function in more detail. Of course, also feel free to explore any of the functions in
this chapter or others using the debugger to better understand them.

1. To be more precise, a float can hold most int values. As described in Chapter 19,
"Variables and Components," floats get somewhat inaccurate for very big and very
small numbers, so a very large int might be rounded to the nearest number that a float
can represent. Based on an experiment I ran in Unity, a float seems to be able to
represent every whole number up to 16,777,217, after which it will lose accuracy.

442

CHAPTER 25

DEBUGGING

To the uninitiated, debugging can seem somewhat like a black art. On the
contrary, it's actually one of the best skills you can have as a developer—though
it's rarely taught to novice coders, which I think is a tragic missed opportunity. All
beginning coders make mistakes, and knowing about debugging enables you to
find and correct those mistakes much faster than just staring at the code and
hoping the bug will reveal itself.

By the end of this chapter, you'll understand the difference between a compile-
time error and a runtime error, you'll know how to set breakpoints in your code,
and you'll know how to step through the lines of your program one at a time to
help you root out hard-to-find bugs.

Getting Started with Debugging
Before you can start finding bugs, you need to make some. For this chapter, you'll start from
the project you created for Chapter 19, "Hello World: Your First Program." If you don't
have that project on hand, you can always download it from this book's website:

http://book.prototools.net/

On the website, find Chapter 25, "Debugging," and click to download the project for the
beginning of the chapter.

Throughout this chapter, I instruct you to make a number of bugs on purpose. This might
seem like a strange way to do things, but my goal in doing so is to give you some
experience with tracking down and fixing several different kinds of bugs and other errors
you will almost certainly encounter while working with Unity. Each of these example bugs
will introduce you to a different kind of potential future problem and help you understand
how to go about finding and fixing bugs when you encounter them.

Note
Throughout this chapter, I refer to errors occurring on specific line numbers.

443

http://book.prototools.net/

Sometimes this will be the exact same line number that you get for the error, and
sometimes it might be shifted up or down by a couple of lines. Don't worry if you
don't have exactly the same line numbers as I do, just look for the content that I'm
discussing near the line numbers that I reference.

As mentioned earlier, in this chapter, you'll make modifications to the CubeSpawner script
from Chapter 19. In case you made any of your own changes to that script, here is the
CubeSpawner script that this chapter expects, complete with line numbers:
Click here to view code image

 1 using System.Collections;
 2 using System.Collections.Generic;
 3 using UnityEngine;
 4
 5 public class CubeSpawner : MonoBehaviour {
 6 public GameObject cubePrefabVar;
 7
 8 // Use this for initialization
 9 void Start () {
10 // Instantiate(cubePrefabVar);
11 }
12
13 // Update is called once per frame
14 void Update () {
15 Instantiate(cubePrefabVar);
16 }
17 }

pro tip
90% OF BUGS ARE JUST TYPOS I've spent so much time helping students fix
bugs that now I can very quickly spot a typo in code.1 The most common include
the following:

 Misspellings: If you type even one letter wrong, the computer won't have
any idea what you're talking about.

 Capitalization: To your C# compiler, A and a are two completely different
letters, so variable, Variable, and variAble are all completely
different words.

 Missing semicolons: Just like almost every sentence in English should end
in a period, nearly every statement in C# should end in a semicolon (;). If
you leave the semicolon out, it often causes an error on the next line. FYI: A
semicolon is used because the period was needed for decimal numbers and
what's called dot syntax in variable names and subnames (e.g.,

444

varName.subVarName.subSubVarName).

Compile-Time Bugs
A compile-time bug (or error) is a problem that Unity discovers when it is compiling C#
code (i.e., attempting to interpret the C# code and turn it into the Common Intermediate
Language that is later converted by Unity to machine language that can run on your
computer). After you have opened the Hello World project in Unity, follow these
instructions to intentionally cause a compile-time error and explore how they work:

1. Duplicate the existing _Scene_1. To do so, click _Scene_1 in the Project pane to select
it and choose Edit > Duplicate from the menu bar. Unity is pretty good at counting
things, so it will automatically increment the name of the scene and call this new scene
_Scene_2.

2. Double-click _Scene_2 to open it in the Hierarchy and Scene panes. After it's open, the
title of your Unity window should be _Scene_2.unity - Hello World - PC, Mac, &
Linux Standalone. If you click Play, you should see everything behaving just as it did in
_Scene_1.

3. Now you should make a second version of the CubeSpawner class so that you don't end
up damaging the one from _Scene_1. Click the CubeSpawner script in the Project pane
to select it and then choose Edit > Duplicate from the menu bar. This creates a script
named CubeSpawner1, and an error immediately appears in the Console pane (see
Figure 25.1). Click the error to see more information in the lower half of the Console
pane.

Figure 25.1 Your first intentional error: a compile-time error caught by Unity

This error message holds a lot of useful information, so let's go through it bit by bit.

Assets/CubeSpawner1.cs(4,14):

Every error that appears includes information about where Unity encountered it. This tells
you that the error was in the CubeSpawner1.cs script inside the Assets folder of your

445

project and that it happened on line 4, character 14.

error CS0101:

The second chunk of the message tells you what kind of error you've encountered. If you
encounter an error that you don't understand, you can do a web search for the words "Unity
error" and the error code. (In this example, your web search would be for "Unity error
CS0101".) A search like this will almost always find a forum post or something similar that
describes the problem you're having. In my experience, you will generally get good results
from http://forum.unity3d.com and http://answers.unity3d.com, and some of the best
answers to issues come from http://stackoverflow.com.

The namespace 'global::' already contains a definition for 'CubeSpawner'

The final chunk of the error message attempts to put the error into plain English. In this
case, it's telling you that the term CubeSpawner is already defined somewhere else in your
code, which it is. At this time, the scripts CubeSpawner and CubeSpawner1 are both
attempting to define the class CubeSpawner.

Let's get to work fixing this:

1. Double-click CubeSpawner1 to open MonoDevelop. (Alternatively, you can double-
click the error message in the Console pane, which on a Mac opens the script to the line
that produced the error; the Windows version sometimes does this.)

2. Within the CubeSpawner1 script, change line 4 (the line that declares CubeSpawner) to
read:

Click here to view code image

5 public class CubeSpawner2 : MonoBehaviour {

(The CubeSpawner2 class name is intentionally different from the name of the script so
that you can see another error in a moment.)

3. Save your file and return to Unity, where you can see that the error message disappears
from the Console pane.

Whenever you save a script in MonoDevelop, Unity detects the save and recompiles the
script to make sure that there are no errors. If it does run into a bug, you'll get a compile-
time error message like the one you just fixed. These are the easiest bugs to fix because
Unity knows exactly where the problem took place and passes this information on to you.
Now that the CubeSpawner script is defining the class CubeSpawner and the
CubeSpawner1 script is defining the class CubeSpawner2, the compile-time error is gone.

Compile-Time Errors Caused by a Missing Semicolon

446

http://forum.unity3d.com
http://answers.unity3d.com
http://stackoverflow.com

Now create another kind of compile-time error by deleting a semicolon:

1. Delete the semicolon (;) at the end of line 14, which is the line that reads:

15 Instantiate(cubePrefabVar);

2. Save the script and return to Unity. Two new compile-time error messages appear:

Assets/CubeSpawner1.cs(15,9): error CS1525: Unexpected symbol '}'

Assets/CubeSpawner1.cs(17,1): error CS8025: Parsing error

The first thing to know here is that you should always fix error messages top-to-bottom,
so start with the first line: Assets/CubeSpawner1.cs(15,9): error CS1525: Unexpected
symbol '}'

This error message doesn't say "Hey, you forgot a semicolon," but it does tell you where it
ran into trouble compiling the script (line 15, character 9). It also tells you that it
encountered the closing brace (}) in an unexpected place. Given this information, you
should be able to look around that area of the code and discover the missing semicolon.

3. Add the semicolon back on to the end of line 14 and save. When you return to Unity,
you can see that both errors have disappeared.

A compile-time error will almost always be discovered either on the line that has the
problem or on a later line. In this example, the missing semicolon was on line 14, but the
problem was discovered on line 15. Additionally, many compile-time errors cause
cascading problems further down the code. If you always fix issues in code from top-to-
bottom, fixing one error often also corrects many of the errors that followed it.

Attaching and Removing Scripts
In Unity, try dragging the CubeSpawner1 script onto Main Camera in the hierarchy. This
time, the error shown in Figure 25.2 appears.

447

Figure 25.2 Some errors are only caught when you try to attach a script to a GameObject

Unity is complaining because the name of the script CubeSpawner1 doesn't match the name
of the class that you're defining in the script: CubeSpawner2. In Unity, when you create a
class that extends MonoBehaviour (for example, CubeSpawner2 :
Monobehaviour), the name of the class must match the name of the file in which it is
defined. To fix this, just make sure that the two names match.

1. Click once on CubeSpawner1 in the Project pane to select it and then click a second
time on the name to rename it. (You can also press the Return key on macOS or the F2
key on Windows to rename the script.)

2. Change the name to CubeSpawner2 and try dragging it onto the Main Camera again.
This time, it should go with no problems.

3. Click Main Camera in the hierarchy. In the Inspector, you should now see that Main
Camera has both a CubeSpawner and a CubeSpawner2 script attached.

4. You don't want both scripts, so click the small gear icon to the right of the name Cube
Spawner (Script) in the Inspector and choose Remove Component from the drop-down
menu, as shown in Figure 25.3. (You can also right-click the name Cube Spawner
(Script) to get the same menu.)

Figure 25.3 Removing the extra CubeSpawner Script component

This way, you won't have two different scripts trying to spawn cubes at the same time. For
the next several chapters, you'll only attach a single script component to each GameObject.

Runtime Errors
Follow these steps to explore another type of error:

1. Click Play to encounter another kind of error (see Figure 25.4).

448

Figure 25.4 Many repetitions of the same runtime error

2. Click the Pause button to pause playback (the button with two vertical bars next to the
Play button) to take a look at this error.

This is a runtime error, which means it's an error that only occurs when Unity is actually
trying to play the project. Runtime errors occur when—as far as the compiler can determine
—you've typed everything correctly yet something is not right when the code actually runs.

This error looks a little different from the others you've seen so far. For one thing, the
beginning of the error message doesn't include information about where the error occurred;
however, if you click one of the error messages, additional information pops up in the
bottom half of the Console. With runtime errors, the last line tells you the point at which
Unity realized that an error had occurred. This sometimes happens on the line with the bug,
and it sometimes happens on the next line. The error message here indicates to look at or
near line 14 of CubeSpawner2.cs for the error.
Click here to view code image

CubeSpawner2.Update () (at Assets/CubeSpawner2.cs:14)

Looking at line 14 of CubeSpawner2, you can see that it's the line where you instantiate an
instance of cubePrefabVar. (Note that your line number might be slightly different; if
so, that's okay.)
Click here to view code image

14 Instantiate(cubePrefabVar);

Just as the compiler thought, this line looks fine. Let's delve into the error message further:

UnassignedReferenceException: The variable cubePrefabVar of 'CubeSpawner2'
has not been assigned. You probably need to assign the cubePrefabVar variable of
the CubeSpawner2 script in the inspector. UnityEngine.Object.Instantiate
(UnityEngine.Object original) CubeSpawner2.Update () (at

449

Assets/CubeSpawner2.cs:14)

This indicates that the variable cubePrefabVar has not been assigned, and if you look
at the CubeSpawner2 (Script) component of Main Camera in the Inspector (click Main
Camera in the Hierarchy to do so), you'll see that this is correct.

3. As you did in Chapter 19, click the circular target next to cubePrefabVar in the
Inspector and choose Cube Prefab from the list of assets. You should now see it
assigned to cubePrefabVar in the Inspector.

4. Click the Pause button again to resume simulation; the cubes start spawning happily.
5. Click the Play button to stop the simulation. Click Play once more to start it up again.

What happened?!? You got the same error again!

6. Click the Play button once more to stop the simulation again.

Warning
CHANGES MADE WHILE PLAYING DON'T STICK! This is an issue that
you will encounter many times. There are good reasons for making Unity work
this way, but it's sometimes confusing to new users. Any changes you make while
Unity is playing or paused (like the change you just made to cubePrefabVar)
are reset back to their previous values when playback is stopped. If you want a
change to stick, make sure that Unity is not playing when you make the change.

7. Now that Unity is stopped again, use the Main Camera Inspector to assign Cube Prefab
to the field cubePrefabVar again, and this time—because Unity was stopped when
you set it—it should stick.

8. Click Play, and everything should work out fine.

Stepping Through Code with the Debugger
In addition to the automatic code-checking tools that you've already explored in this
chapter, Unity and MonoDevelop also enable you to step through code one line at a time,
which can be very helpful for understanding what's happening in your code.

Open the CubeSpawner2 script in MonoDevelop and add the bolded lines in the following
code listing (that is, add lines 14 and 18–27). If you need to make room in the script, just
press Return (Enter on Windows keyboards). The code is also shown in Figure 25.5.

450

Figure 25.5 The SpellItOut() function showing a breakpoint on line 14

Click here to view code image

 1 using UnityEngine; // a
 2 using System.Collections;
 3
 4 public class CubeSpawner2 : MonoBehaviour {
 5 public GameObject cubePrefabVar;
 6
 7 // Use this for initialization
 8 void Start () {
 9 // Instantiate(cubePrefabVar);
10 }
11
12 // Update is called once per frame
13 void Update () {
14 SpellItOut(); // b
15 Instantiate(cubePrefabVar);
16 }
17
18 public void SpellItOut () { // c
19 string sA = "Hello World!";
20 string sB = "";
21
22 for (int i=0; i<sA.Length; i++) { // d
23 sB += sA[i]; // e
24 }
25
26 print(sB);
27 }
28 }

a. Note that this code listing does not include the System.Collections.Generic

451

library; it's not needed here, though as of Unity 5.5+, it is included by default in all C#
scripts.

b. Line 14 calls the SpellItOut() function.
c. Lines 18–27 declare and define the function SpellItOut(). This function copies the

contents of string sA to string sB one character at a time.
d. This for loop iterates over the length of sA. Because "Hello World" consists of

11 chars, the loop will iterate 11 times.
e. Line 23 pulls the ith character from sA and concatenates it onto the end of sB. This is a

horribly inefficient way to copy a string, but it will work very well to demonstrate how
the debugger works.

After you've typed in all the code and double-checked it, click in the gutter to the left of line
14 (as shown in Figure 25.5). This creates a breakpoint on line 14, which appears as a red
circle. When you set a breakpoint and MonoDevelop is debugging Unity, Unity will pause
execution every time it hits that breakpoint. Let's check it out.

HOW TO FORCE QUIT AN APPLICATION
Before getting too far into debugging, knowing how to force quit an application
(that is, quit an application that won't respond to any user input) is useful.
Sometimes, either Unity or MonoDevelop will just stop responding, and you might
need to do this to quit them.

On a macOS Computer

Implement a force quit by doing the following:

1. Press Command+Option+Esc on the keyboard. The Force Quit window
appears.

2. Find the application that is misbehaving. Its name is often followed by "(not
responding)" in the applications list.

3. Click that application, and then click Force Quit.

On a Windows Computer

Implement a force quit by doing the following:

1. Press Shift+Ctrl+Esc on the keyboard. The Windows Task Manager opens.
2. Find the application that is misbehaving.

452

3. Click that application, and then click End Task.

If you have to force quit Unity while it's running, you will lose any work that
you've done since your last save. Because you must constantly save C# scripts,
they shouldn't be an issue, but you might have to redo unsaved changes made to
your scene. This is one of the reasons that I encourage you to save your scenes as
often as possible.

Attaching the Debugger to Unity
For MonoDevelop to be able to debug what's happening in Unity when it plays, you need to
attach it to the Unity process. After the MonoDevelop debugger is attached to Unity, it will
be able to peer into the depths of what's happening in your C# code and can pause
execution of the code at breakpoints (like the one you set on line 14).

1. In MonoDevelop, click the Play button. These appear differently on macOS and
Windows, as shown in the top (macOS) and bottom (Windows) sections of Figure 25.6.
In either case, the Play button is the one shown under the mouse pointer.

Figure 25.6 Click this button to attach the debugger to the Unity Editor process

This automatically searches for the Unity process and attaches the MonoDevelop debugger
to it. If this is the first time you've ever done this, you might be asked whether you grant
MonoDevelop permission to do so. Please do grant it permission.

When the process is finished, you'll notice that the MonoDevelop window has changed (see
Figure 25.7). The Play button in the top left has become a Stop button, a couple panes have
appeared at the bottom of the MonoDevelop window, and a number of buttons to control the
debugger have appeared (see Figure 25.8).

453

Figure 25.7 Execution stopped at line 14 in the debugger

Figure 25.8 The debugger control buttons

Note
MY MONODEVELOP MIGHT LOOK A BIT DIFFERENT In
MonoDevelop, you can move window panes (or panels) around just as you can in
Unity. I've moved mine to make it easier for you to see what I'm doing in these
book examples, but that will probably mean that it looks a little different from
what you're seeing on your screen. You should have all the same panes; they will
just be arranged slightly differently.

Using the Debugger to Examine code
Now that you have the debugger ready and attached, it's time to see how it works.

454

1. Switch to Unity and click the Play button to start the scene. Almost immediately, Unity
will freeze, and MonoDevelop should pop up. Sometimes, on Windows, MonoDevelop
won't automatically pop up, but Unity will look frozen. Just switch to the MonoDevelop
task manually, and you should see what is shown in Figure 25.7.

Execution of the Update() function has paused on line 14 where you placed the
breakpoint. The gray arrow in the gutter and the yellow line next to it show the current line
of execution. While execution is stopped in the debugger, the Unity process is completely
frozen. That means that you can't switch to it through any normal means until it is running
again.

In debug mode, some of the buttons at the top of the toolbar have changed (see Figure 25.8).

The following steps show you how the various debugger control buttons work. Before
following these steps, I recommend reading the "Watching Variables in the Debugger"
sidebar near the end of the chapter.

2. Click the debugger's Run button in MonoDevelop (shown in Figure 25.8). This causes
Unity to continue the execution of the script. When Unity is stopped at a breakpoint like
the one on line 14, everything about Unity is frozen until you tell it to continue.

When you click the Run button, Unity starts running again and does so until it hits another
breakpoint. When you clicked Run, Unity passed through the game loop, started a new
frame, and then stopped on line 14 again (when Update() was called), so you might not
even notice that it happened other than a blink or flicker of the MonoDevelop window.

Note
Depending on the type of computer you have, you might need to switch back to
the Unity process (that is, application) for Unity to actually move on to the next
frame. On some machines, Unity will continue on to the next frame while you are
using MonoDevelop, and on some it won't. If the yellow arrow doesn't return to
the breakpoint in the debugger after you've clicked run, switch to the Unity
process, and it should start the next frame and then stop on the breakpoint again.

As mentioned previously, while the code is stopped in the debugger (that is,
when you can see the yellow arrow shown in Figure 25.7), you cannot switch to
the Unity process. This is normal and occurs because Unity is completely frozen
while it is waiting for you to look at code in the debugger. Unity will resume
normal function after you're no longer debugging.

455

3. When the yellow execution arrow has stopped on the line 14 breakpoint again, click the
Step Over button. The yellow arrow moves on to line 15 without stepping into the
function SpellItOut(). The SpellItOut() function is still called and still runs,
but the debugger passes over it. Step Over is useful if you don't want to see the inner
working of a function that is called.

4. Click Run again. Unity advances to the next frame, and the yellow execution arrow
again stops on the line 14 breakpoint.

5. This third time around, click Step Into. The yellow arrow jumps from line 14 into line
19 of the function SpellItOut(). Any time you click Step Into, the debugger enters
into any functions called, whereas Step Over jumps over them.

6. Now that you are inside the SpellItOut() function, click Step Over several times
to walk through the execution of the SpellItOut() function.

7. As you continue to click Step Over, you can watch sA and sB change through the
course of this function (see the sidebar "Watching Variables in the Debugger"). Each
pass through the for loop on lines 22–24 adds a character from sA to the string sB.
You can see the values of the variables change in the Locals debugger panel (which you
can open by choosing View > Debug Windows > Locals from the MonoDevelop menu
bar).

8. If the yellow execution arrow is still within SpellItOut(), continue to step 9, but if
you clicked Step Over enough times to exit the function SpellItOut(), click Run,
and then click Step Into to return execution to the inside of SpellItOut().

9. While still inside the SpellItOut() function, click Step Out. This causes the
debugger to exit the SpellItOut() function and then continue to line 15 (the line
immediately after SpellItOut() was called). The rest of the SpellItOut()
function is still executed; you just don't witness it in the debugger. This is useful when
you want to skip past the current function yet don't want to completely return to full-
speed execution by clicking Run.

10. Press the Stop Debug button shown in Figure 25.8 to detach the MonoDevelop
debugger from the Unity process, stop debugging, and return Unity to normal execution.

I highly recommend using the debugger to examine the execution of the recursive Fac()
function that is featured at the end of Chapter 24, "Functions and Parameters." That function
is an excellent example of how the debugger can help you better understand code.

WATCHING VARIABLES IN THE DEBUGGER
One of the great strengths of any debugger is the capability to look at the value of
an individual variable at almost any time. MonoDevelop's debugger gives you
three different ways to do this. Before trying any of these, be sure that you've

456

followed the directions in this chapter and started the debugging process.

The first and simplest method is to just hover your mouse pointer over any
variable in the MonoDevelop code pane. If you position the mouse pointer over a
variable name and keep it still for about one second, a tool tip will appear telling
you the value of that variable. However, it is very important to note that the value
shown is the current value of the variable based on the position of the yellow
arrow, not the position of that variable in the code. For example, the variable sB
of the function SpellItOut() is repeated several times throughout the code,
and holding the mouse over any of them will show the same value.

The second method is to find the variable in the Locals pane of the debugger. To
view this pane, choose View > Debug Windows > Locals from the MonoDevelop
menu bar. This brings the Locals variable watching pane to the front. Here, you
can see a list of all local variables that are available to the debugger at the current
time. If you step into the SpellItOut() function as instructed in this chapter
and are on line 19, you will see three local variables listed: this, sA, and sB.
The variables sA and sB are initially set to null, but their values appear in the
Locals pane after they have been defined on lines 19 and 20, respectively. When
you have used Step Over a few times and reached line 22 in the debugger, you
will see that the integer i is both declared and defined on that line. The variable
this refers to the current instance of the CubeSpawner2 script. Click the
disclosure triangle next to this to reveal the public field cubePrefabVar
inside this as well as a variable named base. Opening the disclosure triangle
next to base reveals all the variables associated with the base class of
CubeSpawner2, which is MonoBehaviour. Base classes like MonoBehaviour
(a.k.a. superclasses or parent classes) are covered in Chapter 26, "Classes."

The third way that you can view a variable is to enter it explicitly into the Watch
pane. To bring the pane to the front, choose View > Debug Windows > Watch from
the menu bar. In the Watch pane, click a blank line to add a watched variable.
(Click in the field with the text "Click here to add a new watch.") In this field,
type the name of a variable, and MonoDevelop will try to show you its value. For
example, enter the variable this.gameObject.name and press Return, and
"Main Camera," the name of the GameObject to which this script is attached,
appears. If the value is ever too large to fit in the Watch pane, you can click the
magnifying glass next to the value to read the whole thing; this sometimes happens
when you're working with large strings of text.

It's worth noting here that sometimes a bug in the debugging process (ironic)
causes this to be undefined in the Locals pane. If that is the case, you can always
just add this as a watched variable in the Watch pane, which usually works even

457

when this isn't working in the Locals pane.

Summary
That's it for your introduction to debugging. Although in this case you did not use the
debugger to root out an unknown bug, you can see how it can help you better understand
code. Remember this: Whenever something is confusing in your code, you can always step
through it using the debugger.

Though it might have seemed a bit frustrating for me to instruct you to generate so many
bugs, my sincere hope is that helping you to experience and understand these bugs and how
to investigate and fix them will give you a leg up later when you encounter real bugs on
your own. Remember that you can always search the Internet for the text of the bug (or at
least the error number) to find clues for fixing it. As I wrote at the beginning of the chapter,
good debugging skills are one of the major things that can help you to become both a
competent and confident programmer.

1. If you're reading carefully, you might have noticed that this is a repeat of a tip in
Chapter 17, "Introducing the Unity Development Environment." Yes, it's important
enough to print it twice!

458

CHAPTER 26

CLASSES

By the end of this chapter, you will understand how to create and use classes. A
class is a collection of both variables and functions in a single C# object. Classes
are an essential building block in modern games and, more widely, in object-
oriented programming.

Understanding Classes
Classes combine functionality and data. Another way to put this is that classes are
composed of both functions and variables, which when used within a class are called
methods and fields, respectively. Classes are often used to represent objects in the world
of your game project. For example, consider a character in a standard roleplaying game.
There are several fields (or variables) that she might have:
Click here to view code image

string name; // The character's name
float health; // The current amount of health she has
float healthMax; // The maximum amount of health she could have
List<Item> inventory; // A List of all Items in her inventory
List<Item> equipped; // A List of Items that she currently has equipped

All of these fields are applicable to any character in a roleplaying game (RPG), because all
characters have health, equipment, and a name. Also, several methods (functions) could be
used by or on that character. (The ellipses […] in the following code listing show where you
would need to add code to make the functions work.)
Click here to view code image

void Move(Vector3 newLocation) {…} // Allows the character to move
void Attack(Character target) {…} // Attacks target Character with the
 // currently equipped weapon or spell
void TakeDamage(float damageAmt) {…} // Causes this character to lose health
void Equip(Item newItem) {…} // Adds an Item to the equipped List

Obviously, you would want a character in an actual game to have many more fields and
methods than are described here, but the core idea is that all characters in your RPG would
need to have these functions and variables on them.

459

Tip
You're already using classes! In fact, though it wasn't explicitly stated until now,
every bit of code you've written so far in this book has been part of a class, and
in general, you can think of each C# file that you create as being its own class.

The Anatomy of a Class (and of a C# Script)
Several important elements of many classes are illustrated in Figure 26.1. Not all of them
are necessary in every class, but they are extremely common.

Figure 26.1 Diagram showing some important elements of a class

 Includes make it possible for your C# scripts to make use of various classes that have
been created by others. Includes are enabled by using statements, and the includes
shown here enable all the standard elements of Unity as well as collections like Lists.
These must be the first part of your script.
 The class declaration names your class and determines what other classes it extends
(see the Class Inheritance section later in this chapter). In this case, the class Enemy
extends the class MonoBehaviour (making MonoBehaviour the superclass of Enemy).
 Fields are variables that are local to your class, meaning that any function inside the
class can access them by name. In addition, variables labeled public can be accessed
by any other entity that can see the class (see the Variable Scope section of Appendix B,
"Useful Concepts").

460

 Mbyethods are functions contained within a class. They can access any of the fields in
the class, and they can also have local variables (for example, the Vector3 tempPos in
Move()) that only exist within each function. Methods are what enable classes to do
things. virtual methods are a special type of function that is covered in the Class
Inheritance section later in this chapter.
 Properties can be thought of as functions masquerading as fields through use of the get
and set accessors. See the Properties section later in this chapter for details.

Before getting into this too much more, set up a project in which you can use this code.

Set Up the Enemy Class Sample Project
Appendix A, "Standard Project Setup Procedure," contains information about how to create
a new Unity project for the examples in this chapter. Please follow the instructions in the
appendix using the information contained in the sidebar.

SET UP THE PROJECT FOR THIS CHAPTER
Following the standard project setup procedure, create a new project in Unity.
Appendix A provides information on the standard project setup procedure.

 Project name: Enemy Class Sample Project
 Scene name: _Scene_0 (The underscore at the beginning of the scene name
should keep it sorted at the top of the Project pane.)

 C# script names: None at this time

You do not need to follow the instructions in Appendix A to attach a script to the
Main Camera. There is not yet a Main Camera script in this project.

1. After following the Appendix A instructions to create a new project and saving your
new scene as _Scene_0, use the Create menu in the Hierarchy pane to create a new
sphere by selecting Create > 3D Object > Sphere, as shown in Figure 26.2.

461

Figure 26.2 Creating a sphere in _Scene_0

2. Select Sphere by clicking its name in the Hierarchy pane. Then set the position of the
sphere to the origin [0, 0, 0] (i.e., x=0, y=0, z=0) using the Transform component
(highlighted with a red box in Figure 26.2).

3. In the Project pane, choose Create > C# Script and name the script Enemy. Double-
click the script to open it in MonoDevelop, and enter the following code (identical to
that in Figure 26.1). Lines that you need to add are bolded in the code listing.

Click here to view code image

 1 using System.Collections;
 2 using System.Collections.Generic;
 3 using UnityEngine;
 4
 5 public class Enemy : MonoBehaviour {
 6
 7 public float speed = 10f; // The speed in m/s
 8 public float fireRate = 0.3f; // Shots/second (Unused)
 9
10 // Update is called once per frame
11 void Update() {
12 Move();
13 }
14
15 public virtual void Move() {
16 Vector3 tempPos = pos;
17 tempPos.y -= speed * Time.deltaTime;
18 pos = tempPos;
19 }
20
21 void OnCollisionEnter(Collision coll) {

462

22 GameObject other = coll.gameObject;
23 switch (other.tag) {
24 case "Hero":
25 // Currently not implemented, but this would destroy the
hero
26 break;
27 case "HeroLaser":
28 // Destroy this Enemy
29 Destroy(this.gameObject);
30 break;
31 }
32 }
33
34 // This is a Property: A method that acts like a field
35 public Vector3 pos {
36 get {
37 return(this.transform.position);
38 }
39 set {
40 this.transform.position = value;
41 }
42 }
43
44 }

Most of this should look pretty straightforward and familiar to you except for the property
and the virtual function, both of which I will cover in this chapter.

Properties: Methods That Work Like Fields
You can see in the previous code listing that the property pos is treated as if it were a field
in both lines 16 and 18 of Move(). This is accomplished through the use of the get{}
and set{} accessor clauses on lines 36–41 that enable this class to run code each time
you read or set the pos property. Every time the pos property is read, the code within the
get{} accessor is run, and the get{} accessor must return a value of the same type as
the property (i.e., Vector3). Code within set{} is run every time the pos property is
assigned a value, and the value keyword is used as an implicit variable that holds the
value assigned. In other words, in line 18, pos is assigned the value of tempPos, which
calls the set accessor of pos on line 39; then on line 40, the value of tempPos is held by
the variable value and assigned to this.transform.position. An implicit
variable is one that exists without you, the programmer, explicitly declaring it. All set{}
clauses in properties have the implicit variable value. You can create a property with
only a get{} accessor to make the property read-only (or with only a set{} accessor to
make the property write-only).

In the pos property example of the preceding Enemy class, pos is used simply to access
the field this.transform.position with less typing. However, the following code

463

listing holds a more interesting example.

1. Create a new C# script named CountItHigher.
2. Attach the CountItHigher script to Sphere in the scene.
3. Double-click the CountItHigher script in the Project pane to open it in MonoDevelop,

and enter the following code:
Click here to view code image

 1 using System.Collections;
 2 using System.Collections.Generic;
 3 using UnityEngine;
 4
 5 class CountItHigher : MonoBehaviour {
 6 private int _num = 0; // a
 7
 8 void Update() {
 9 print(nextNum);
10 }
11
12 public int nextNum { // b
13 get {
14 _num++; // Increase the value of _num by 1
15 return(_num); // Return the new value of _num
16 }
17 }
18
19 public int currentNum { // c
20 get { return(_num); } // d
21 set { _num = value; } // d
22 }
23 }

a. The integer field _num is private, so it can only be accessed by this instance of
the CountItHigher class. Other classes and other CountItHigher class instances are not
able to see the private variables of this class instance (and other CountItHigher class
instances would have their own _num field that this instance could not see).

b. nextNum is a property that is read-only. Because there is no set{} clause, it can
only be read (e.g., int x = nextNum;) and cannot be set (e.g., nextNum =
5; would cause an error).

c. currentNum is a property that can either be read or set. Both int x =
current-Num; and currentNum = 5; would work.

d. The get{} and set{} clauses can alternatively each be written on a single line.
Note that when in the single-line format, the semicolon ending the statement (;) comes
before the closing brace (}) as shown on lines 20 and 21.

4. Return to Unity and click Play. As the Update() function is called by Unity each
frame, the output of the print(nextNum); statement increments every frame. The

464

output from the first five frames is as follows:
Click here to view code image

1
2
3
4
5

Each time that the property nextNum is read (by print(nextNum);), it increments
the private field _num and then returns the new value (lines 14 and 15 of the code listing).
Though this is a small example, a get or set accessor can do anything that a regular
method can do, even call another method or function.

Similarly, currentNum is a public property that enables you to either read or set the
value of _num. Because _num is a private field, having the property currentNum
publicly available is helpful.

Class Instances Are GameObject Components
As you've seen in previous chapters, when you drag a C# script onto a GameObject, it
becomes a component of that GameObject just as Transform, Rigidbody, and other elements
that you see in the Unity Inspector are GameObject components. This means that you can get
a reference to any class that is attached to a GameObject via
GameObject.GetComponent<>() with the type of the class placed between the
angle brackets (see line 7 of the following code listing).

1. Create a new C# script named MoveAlong.
2. Attach the MoveAlong script to the same Sphere GameObject as CountItHigher.
3. Open the MoveAlong script in MonoDevelop and enter the following bolded code:

Click here to view code image

 1 using System.Collections;
 2 using System.Collections.Generic;
 3 using UnityEngine;
 4
 5 class MoveAlong : MonoBehaviour {
 6
 7 void LateUpdate() { //
a
 8 CountItHigher cih=this.gameObject.GetComponent<CountItHigher>(); //
b
 9 if (cih != null) { //
c
10 float tX = cih.currentNum/10f; //
d
11 Vector3 tempLoc = pos; //

465

e
12 tempLoc.x = tX;
13 pos = tempLoc;
14 }
15 }
16
17 public Vector3 pos { //
f
18 get { return(this.transform.position); }
19 set { this.transform.position = value; }
20 }
21
22 }

a. LateUpdate() is another built-in function call that Unity makes every frame. Each
frame, Unity first calls Update() on all classes that are attached to GameObjects
and then, when all the Update()s are complete, Unity calls LateUpdate() on
all objects. Using LateUpdate() here ensures that Update() in the
CountItHigher class is called before LateUpdate() in the MoveAlong class. This
avoids what is known as a race condition (see the warning that follows for more
information).

b. cih is a local variable of the type CountItHigher, meaning that it can hold a reference
to the instance of CountItHigher that is a component attached to the Sphere
GameObject. The GetComponent<CountItHigher>() call finds the
CountItHigher (Script) component attached to the same Sphere GameObject as this
MoveAlong (Script) component.1

c. If you use the GetComponent<>() method, and the type of component you ask for
is not attached to the GameObject, GetComponent<>() will return null (a value
that means nothing is there). Checking whether cih is null before trying to use it
will help you a avoid Null Reference Exception errors.

d. Although cih.currentNum is an int, when it is used in a mathematical operation
with a float (e.g., cih.currentNum/10f) or assigned to a float (both of which
occur in line 9), it is automatically treated as a float.

e. Lines 11 and 13 use the pos property that is defined in lines 17–20.
f. This is effectively the same as the pos property of the Enemy class, but it uses a

single line to define each of the get{} and set{} accessor clauses.

Every LateUpdate, this code will find the CountItHigher (Script) component of this
GameObject and then pull the currentNum from it. The script then divides
currentNum by 10 and sets the X position of the GameObject to the resultant value
(using the pos property). As CountItHigher._num increases every frame, the
GameObject will also move along the X axis.

466

4. Be sure that you save both this script and CountItHigher. From the MonoDevelop menu
bar choose File > Save All. If Save All is grayed out, then you have already saved
everything.

5. Click Play in Unity to see this happen.
6. Be sure to save your scene (from the Unity menu bar, choose File > Save Scene).

Warning
WATCH OUT FOR RACE CONDITIONS! A race condition occurs any time
two things rely on each other, but you're not certain which one will happen first.
This is why LateUpdate() is used in the preceding example. Had
Update() been used in MoveAlong, it would be uncertain whether the
Update() in CountItHigher or MoveAlong would be called by Unity first, so
the GameObject could be moved either before or after _num was incremented,
depending on which was called first. Using LateUpdate() provides
assurance that all Update()s in the scene will be called first, followed by all
LateUpdate()s.

Chapter 31, "Prototype 3.5: Space SHMUP Plus" covers more on race
conditions.

Class Inheritance
Classes usually extend the contents of other classes (i.e, they are based on other classes). In
the first code listing of the chapter, Enemy extends MonoBehaviour, as do all the classes
you've seen so far in this book. Implement the following instructions to get Enemy working
in your game, and then we'll discuss this further.

Implementing the Enemy Class Sample Project
Complete the following steps:

1. Create a new scene (File > New Scene from the menu bar). Immediately save it as
_Scene_1.

2. Create a new sphere in the scene (GameObject > 3D Object > Sphere).
a. Rename the Sphere to EnemyGO (the GO stands for GameObject). This new sphere

is not connected in any way to the Sphere in _Scene_0. (i.e., it doesn't have the two
script components attached.)

b. Set the transform.position of EnemyGO to [0, 4, 0] using the Transform component

467

in the Inspector.
c. Drag the Enemy script you wrote earlier from the Project pane onto EnemyGO in the

Hierarchy pane of _Scene_1.
d. Select EnemyGO in the Hierarchy; Enemy (Script) now appears as a component of

the EnemyGO GameObject.
3. Drag EnemyGO from the Hierarchy pane into the Project pane to create a prefab named

EnemyGO. As described in previous chapters, you'll know that the prefab was created
successfully because an item named EnemyGO with a blue box icon will appear in the
Project pane, and the name of the EnemyGO GameObject in the Hierarchy pane will
turn blue, indicating that it's an instance of the EnemyGO prefab.

4. Select the Main Camera in the Hierarchy and set its position and camera settings to
those highlighted by green boxes in Figure 26.3:

Figure 26.3 Camera settings for _Scene_1 and the resultant Game pane

a. Set the transform position to [0, -15, -10].
b. Set the camera Clear Flags to Solid Color.
c. Change the camera Projection from Perspective to Orthographic.
d. Set the camera Size to 20.

The Game pane shown at the right of Figure 26.3 should approximate what you now see
through the camera.

4. Click Play. You should see the Enemy instance move down the screen at a constant rate.
5. Save your scene! Always save your scene.

Understanding Superclasses and Subclasses

468

Superclass and subclass describe the relationship between two classes where the subclass
inherits from the superclass. For example, the Enemy class inherits from MonoBehaviour,
which means that the Enemy class is composed of not only the fields and methods of the
Enemy C# script but also of all the fields and methods of its superclass, MonoBehaviour,
and all the classes from which MonoBehaviour inherits. This is why any C# script that we
write in Unity already knows about fields such as gameObject and transform and
methods such as GetComponent<>().

Creating subclasses that extend Enemy is also possible:
1. Create a new C# script in the Project pane and name it EnemyZig.
2. Open the EnemyZig script in MonoDevelop, change the superclass from

MonoBehaviour to Enemy, and delete the Start() and Update() methods, leaving
you with the following code.

Click here to view code image

 1 using System.Collections;
 2 using System.Collections.Generic;
 3 using UnityEngine;
 4
 5 public class EnemyZig : Enemy {
 6 // Delete all the default code that Unity puts here in the EnemyZig class
 7 }

3. Choose Create > 3D Object > Cube in the Hierarchy pane.
a. Rename it to EnemyZigGO.
b. Set EnemyZigGO's position to [-4, 4, 0].
c. Drag the EnemyZig Script onto the EnemyZigGO GameObject in the Hierarchy.
d. Drag EnemyZigGO from the Hierarchy pane to the Project pane, creating a prefab of

EnemyZigGO.
4. Click Play. See how the EnemyZigGO box falls at exactly the same rate as the

EnemyGO sphere? That's because the EnemyZig class has inherited all the behaviors of
Enemy!

5. Now try adding a new Move() method to EnemyZig (new lines are bolded):
Click here to view code image

 1 using System.Collections;
 2 using System.Collections.Generic;
 3 using UnityEngine;
 4
 5 public class EnemyZig : Enemy {
 6
 7 public override void Move () {
 8 Vector3 tempPos = pos;
 9 tempPos.x = Mathf.Sin(Time.time * Mathf.PI*2) * 4;

469

10 pos = tempPos; // Uses the pos property of the superclass
11 base.Move(); // Calls Move() on the superclass
12 }
13
14 }

In this code, you've overridden the virtual function Move() from the superclass Enemy
and replaced it with a new one in EnemyZig. The Enemy.Move() method must be
declared as virtual in the superclass (as it is on line 15 of the Enemy class script) for
C# to allow it to be overridden in a subclass.

This new Move() function causes the box to zigzag right and left following a sine wave
(sine and cosine are often useful for cyclical behavior like this). In this code, the x
component of the position of the GameObject is set to the sine of the current time (the
number of seconds since the Play button was clicked) times 2π, which causes a full cycle of
the sine wave to occur every second. This value is then multiplied by 4 to cause the x
position to range from –4 to 4.

The base.Move()call on line 11 tells EnemyZig to call the version of Move() on the
superclass (or "base" class). As a result, EnemyZig.Move() handles the left and right
motion, while Enemy.Move() causes the EnemyZigGO to fall at the same rate as
EnemyGO.

The GameObjects in this example are called Enemies because you will use a similar class
hierarchy system for the various Enemy subclasses in Chapter 31.

Summary
A class's ability to combine data with functionality enables developers to use the object-
oriented approach that is presented in the next chapter. Object-oriented programming
enables programmers to think of their classes as objects that can move and think on their
own, and this approach combines very well with the GameObject-based structure of Unity
and will help you make games more easily and rapidly.

1. Making a call to GetComponent() every frame is rather inefficient, so you would
normally make something like cih a class field and set its value as part of an
Awake() or Start() method. However, at this point in the book, code efficiency is
less important than simplicity and clarity, so GetComponent() is called every
frame.

470

CHAPTER 27

OBJECT-ORIENTED THINKING

This chapter covers how to think in terms of object-oriented programming
(OOP), the logical extension of the classes discussed in the preceding chapter.

By the end of this chapter, you'll understand not only how to think in terms of
OOP but also how to specifically structure projects in the manner that is best for
the Unity development environment.

The Object-Oriented Metaphor
The easiest way to describe object orientation is through a metaphor. Think about all the
birds in a flock. Flocks can consist of hundreds or even thousands of individual birds, each
of which must avoid obstacles and other birds while still moving along with the flock.
Flocks of birds exhibit brilliantly coordinated behaviors that for many years defied
simulation.

Simulating a Flock of Birds in a Monolithic Way
Before the advent of object-oriented programming (OOP), a program was basically a single
large function that did everything.1 That single function controlled all data, moved sprites
on screen, and handled everything from keyboard input to game logic, music, and graphic
display. This is now referred to as monolithic programming, the attempt to do everything
with a single, gigantic function.

To attempt to simulate a flock of birds in a monolithic way, it would make sense to store a
large array of the birds and create a program that would consider every bird in the flock
and attempt to generate swarming-style behavior for them. This program would
individually move each bird from its position in one frame to its position in the next, and it
would maintain all data about the birds in the array.

A monolithic program like this would be very large, unwieldy, and difficult to debug. For
example, if the Enemy and EnemyZig classes from the previous chapter were combined into
a single monolithic class that controlled all enemies, the code would have looked like this:

471

Click here to view code image

 1 using System.Collections;
 2 using System.Collections.Generic;
 3 using UnityEngine;
 4
 5 public class MonolithicEnemyController : MonoBehaviour {
 6 // The List of all enemies. This is populated in the Unity inspector
 7 public List<GameObject> enemies; // a
 8 public float speed = 10f;
 9
10 void Update () {
11 Vector3 tempPos;
12
13 foreach (GameObject enemy in enemies) { // b
14 tempPos = enemy.transform.position;
15
16 switch (enemy.name) { // c
17 case "EnemyGO":
18 tempPos.y -= speed * Time.deltaTime;
19 break;
20 case "EnemyZigGO":
21 tempPos.x = 4 * Mathf.Sin(Time.time * Mathf.PI*2);
22 tempPos.y -= speed * Time.deltaTime;
23 break;
24 }
25
26 enemy.transform.position = tempPos;
27 }
28 }
29 }

a. This list of GameObjects holds all the enemies. None of the enemies have any code
attached to them.

b. The foreach loop on line 13 iterates over each GameObject in the list enemies.
c. Because the enemies don't have any code on them, this switch statement is required

to store all information about all kinds of movement available to the enemies.

In this simple example, this code is rather short and isn't really very "monolithic," but it
does lack the elegance and extensibility of the code from Chapter 26, "Classes." If one
were to create a game with 20 different enemy types using this monolithic class, the single
Update() function would easily grow to several hundred lines as cases were added for
each type. Thankfully, there is a better way. Adding 20 additional enemies using the object-
oriented subclassing method from Chapter 26 would instead generate 20 small classes (like
EnemyZig), each of which would be short and easy to both understand and debug.

When OOP attempts to simulate a flock of birds, rather than a single monolithic function,
OOP takes a different approach by simulating each individual bird and its perceptions and
actions (all local to itself).

472

Simulating a Flock of Birds Using OOP and Boids
Prior to 1987, several attempts had been made at simulating the flocking behavior of birds
and the schooling behavior of fish via monolithic programming practices. It was generally
thought that to generate the complex coordinated behavior of a swarm, a single function
would need to manage all the data in the simulation.

This preconception was shattered with the publication of the paper "Flocks, Herds, and
Schools: A Distributed Behavioral Model" by Craig W. Reynolds in 1987.2 In this paper,
Reynolds described an incredibly simple, object-oriented approach to simulating swarm-
like behavior, which he called Boids. At its most basic level, Boids uses only three simple
rules:

1. Collision Avoidance: Avoid collisions with nearby flockmates
2. Velocity Matching: Attempt to match velocity with nearby flockmates
3. Flock Centering: Attempt to stay near the average location of nearby flockmates

An Object-Oriented Boids Implementation
In this tutorial, you'll build a simple implementation of Reynold's Boids that shows the
power of simple object-oriented code to create complex, emergent behavior. First, create a
new project following the instructions in the sidebar. As you're going through the steps of
this tutorial, I recommend using a pencil to check off each step as you complete it.

SET UP THE BOIDS PROJECT
Create a new project in Unity, following the standard project setup procedure
described in Appendix A, "Standard Project Setup Procedure."

 Project Name: Boids
 Scene Name: _Scene_0

You will create everything else through the course of the chapter.

Making a Simple Boid Model
To make a model for each Boid, we'll build something from a combination of stretched
cubes. When it's finished, the Boid GameObject prefab will be similar to that shown in
Figure 27.1.

473

Figure 27.1 The finished Boid model

Follow these steps:

1. Select GameObject > Create Empty from the Unity menu bar.
a. Rename the new GameObject to Boid.
b. Click on the background of the Hierarchy pane to deselect Boid.

2. Select GameObject > Create Empty from the Unity menu bar again.
a. Rename this GameObject Fuselage.
b. Press the mouse down on Fuselage (Figure 27.2A) and drag Fuselage onto Boid in

the Hierarchy pane (Figure 27.2B).

Figure 27.2 Nesting GameObjects in the hierarchy (i.e., making one a child of another)

This makes Fuselage a child of Boid. A new disclosure triangle appears next to Boid that
you can click to show Boid's children (at the pointer tip in Figure 27.2C). With the
disclosure triangle open, your Hierarchy should look like Figure 27.2C.

3. Right-click on Fuselage and choose 3D Object > Cube from the pop-up menu that
appears. This creates a new Cube as a child of Fuselage (if it doesn't appear under
Fuselage, then you should drag Cube under Fuselage manually).

4. Set the transforms of the Fuselage and Cube to match those shown in Figure 27.3. The

474

combination of scaling and rotation of the parent Fuselage will cause the child Cube to
skew into a sleek, pointed shape.

Figure 27.3  Transform settings for Fuselage and its child Cube

5. Select the Cube under Fuselage. Right-click the Box Collider component name in the
Inspector pane and choose Remove Component from the pop-up menu. This removes the
Box Collider from Cube, which will allow other objects to move through it. Another
reason for removing the collider is that colliders don't stretch the same way that cubes
do, so the physical boundaries of the collider would not match the visual dimensions of
the cube.

6. Select Fuselage and select Edit > Duplicate from the menu bar. A second Fuselage
named Fuselage (1) should appear under Boid in the Hierarchy.
a. Rename the GameObject Fuselage (1) to Wing.
b. Set the transform for Wing to match that shown in Figure 27.4.

Figure 27.4 Transform settings for Wing and Main Camera (steps 6 and 13)

7. Now create a Material to form a trail behind each Boid as it moves through space:
a. From the Unity menu bar, choose Assets > Create > Material, and name the new

material TrailMaterial.
b. Select TrailMaterial in the Project pane, and at the top of the Inspector pane, choose

Particles > Additive from the Shader pop-up menu.
c. To the right of the Particle Texture section of the Inspector that appears is an empty

box for a texture that currently reads None (Texture). Click the Select button in this

475

box, and choose the Default-Particle texture from the window that appears. Now a
white, blurred circle should appear in the texture box.

8. Click Boid in the Hierarchy pane to highlight it. Select Component > Effects > Trail
Renderer from the menu bar. This adds a Trail Renderer component to the Boid. In the
Trail Renderer component of the Inspector pane:
a. Click the disclosure triangle next to Materials to open it.
b. Click the small circle to the right of Element 0 None (Material).
c. Choose the TrailMaterial we just made from the list of materials that appears.
d. Set the Time of the Trail Renderer to 1.
e. Set the Width of the Trail Renderer to 0.25. Now, if you use the Move tool to move

the Boid in the Scene window, it should leave a trail.
9. With Boid still highlighted in the Hierarchy, from the Unity menu bar, choose

Component > Physics > Sphere Collider. This adds a Sphere Collider component to
Boid. In the Sphere Collider component of the Inspector:
a. Set Is Trigger to true (checked).
b. Set Center to [0, 0, 0].
c. Set Radius to 4 (this will be adjusted with code later).

10. With Boid still highlighted in the Hierarchy, from the Unity menu bar, choose
Component > Physics > Rigidbody. Be sure to then set Use Gravity to false
(unchecked) in the Rigidbody component of the Inspector.

11. Drag Boid from the Hierarchy pane to the Project pane, which will make a prefab
named Boid. Your finished Boid model should look like the one in Figure 27.1.

12. Delete the blue Boid instance from the Hierarchy pane. Now that you have a Boid
prefab in the Project pane, the Boid in the Hierarchy is no longer necessary.

13. Select the Main Camera in the Hierarchy and set its transform to match that shown in
Figure 27.4. This gives the Main Camera a distant view that will enable us to see many
boids at the same time.

14. Select GameObject > Create Empty from the menu bar. Rename this new GameObject
to BoidAnchor. This empty BoidAnchor GameObject will act as a parent for all the
Boid instances that are added to the scene, keeping the Hierarchy pane as clean as
possible.

15. Save your scene. You've changed a lot, and I would hate for you to lose all of that
work.

The C# Scripts
This program will use five different C# scripts, each of which has an important job.

476

 Boid—This script will be attached to the Boid prefab, and its job is to handle the
movement of each individual Boid. Because this is an object-oriented program, each
Boid will think for itself and react to its own individual understanding of the world.
 Neighborhood— This script will also be attached to the Boid prefab, and it keeps track
of which other Boids are nearby. Key to each Boid's individual understanding of the
world is its knowledge of which other Boids are close enough to worry about.
 Attractor—The Boids need something to flock around, and this simple script will be
attached to a GameObject used for that purpose.
 Spawner—This script will be attached to Main Camera. Spawner stores the fields
(variables) that are shared by all Boids and instantiates all the instances of the Boid
prefab.
 LookAtAttractor—Also attached to the Main Camera, this script causes the camera to
turn and look at the Attractor each frame.

Of course, we could certainly do this with fewer scripts, but each one would be much
larger than is necessary. This example follows an expansion of Object-Oriented
Programming known as Component-Oriented Design. See the sidebar for more info.

COMPONENT-ORIENTED DESIGN

The Component Pattern was formalized in the 1994 book Design Patterns:
Elements of Reusable Object-Oriented Software3 by the "Gang of Four." The core
idea of the Component Pattern is to group closely related functions and data into a
single class while at the same time keeping each class as small and focused as
possible.4

As you might have guessed from the name, you've been working with components
the whole time you've been using Unity. Each GameObject in Unity is a very small
class that can act as a container for several components that each do a specific—
and isolated—job. For example:

 Transform handles position, rotation, scale, and hierarchy.

 Rigidbody handles motion and physics.
 Colliders handle actual collision and the shape of the collision volume.

Although each of these is related, they are separate enough to each warrant a
separate component. Making each a component also enables easy expansion in the
future: separating Colliders from the Rigidbody means that we could easily add a

477

new kind of Collider—a ConeCollider for instance—and Rigidbody would not
need to change at all to accommodate the new Collider type.

This is certainly important for game engine developers, but what does it mean to
us as game designers and prototypers? The most important thing that thinking in a
component-oriented way gives us is smaller, shorter classes. When your scripts
are shorter, they are easier to code, share with other people, reuse, and debug, all
of which are very noble goals.

The only real negative of component-oriented design is that implementing it well
takes a decent amount of forethought, which somewhat flies in the face of our
prototyping philosophy of getting things working as quickly as possible. As a
result of this dilemma, in Part III of this book, you will encounter both a more
traditional prototyping style of just writing what works in the first several chapters
and a much more component-oriented approach in Chapters 35, "Prototype 6:
Dungeon Delver."

For more information about various software design patterns, please check out the
Software Design Patterns section of Appendix B, "Useful Concepts."

Attractor Script
We'll start with the Attractor script. The Attractor is the object that all the Boids flock to.
Without it, they would flock with each other, but the flock as a whole would fly off screen.

1. From the Unity menu bar, choose GameObject > 3D Object > Sphere to create a new
Sphere and then rename this Sphere to Attractor.

2. Select Attractor. In the Inspector for Attractor, right-click the name of the Sphere
Collider component and choose Remove Component from the pop-up menu to remove
the Sphere Collider component from Attractor.

3. Set the scale of the transform of Attractor to S:[4, 0.1, 4] (i.e., X=4, Y=0.1, and Z=4).
4. From the Unity menu bar, choose Component > Effects > Trail Renderer. In the Trail

Renderer component of the Attractor Inspector, do the following:
a. Click the disclosure triangle next to Materials to open it.
b. Click the small circle to the right of Element 0 None (Material).
c. Choose Sprites-Default from the list of materials that appears.
d. Set the Time of the Trail Renderer to 4.
e. Set the Width of the Trail Renderer to 0.25.

5. At the bottom of the Inspector for Attractor, click the Add Component button and choose

478

New Script from the pop-up menu that appears. Name the new script Attractor and click
Create and Add to create the script and add it to Attractor in one step.

6. Open the Attractor script in MonoDevelop and enter the code in the following listing.
Lines that you need to type appear in bold.

Click here to view code image

 1 using System.Collections;
 2 using System.Collections.Generic;
 3 using UnityEngine;
 4
 5 public class Attractor : MonoBehaviour {
 6 static public Vector3 POS = Vector3.zero; // a
 7
 8 [Header("Set in Inspector")]
 9 public float radius = 10;
10 public float xPhase = 0.5f;
11 public float yPhase = 0.4f;
12 public float zPhase = 0.1f;
13
14 // FixedUpdate is called once per physics update (i.e., 50x/second)
15 void FixedUpdate () { // b
16 Vector3 tPos = Vector3.zero;
17 Vector3 scale = transform.localScale;
18 tPos.x = Mathf.Sin(xPhase * Time.time) * radius * scale.x; // c
19 tPos.y = Mathf.Sin(yPhase * Time.time) * radius * scale.y;
20 tPos.z = Mathf.Sin(zPhase * Time.time) * radius * scale.z;
21 transform.position = tPos;
22 POS = tPos;
23 }
24 }

a. As a static variable, POS is shared by all instances of Attractor (though in this
case, there will be only ever one instance of Attractor). When a field is static, it is
scoped to the class itself rather than any instance of the class. This makes POS a class
variable rather than an instance field. This means that as long as both POS and the
class Attractor are public, any instance of any other class can access POS via
Attractor.POS. This will be used by all the Boid instances to easily access the
location of the Attractor.

b. FixedUpdate() is similar to Update(), but it is called once per physics frame
as opposed to once per visual frame. See the sidebar for more information.

c. As was mentioned in the previous chapter, sine waves are often used for cyclical
movement. Here, the various phase fields (e.g., xPhase) cause the Attractor to move
around the scene with each axis (X, Y, and Z) slightly out of phase with the others.

7. Save the Attractor script, return to Unity, and click Play. You should see the Attractor
moving due to the sine equations within a volume that is defined by radius * the
transform.localScale of the Attractor.

479

FIXED UPDATES AND THE PHYSICS ENGINE

Because Unity is trying to run as quickly as possible, it displays a new frame
whenever possible. This means that the Time.deltaTime between each
Update() can range anywhere from less than 1/400 of a second on a fast
computer to 1 second or more on a slow mobile device. Additionally, the
frequency of Update()s changes drastically from one frame to the next on the
same computer based on a number of factors, so the Time.deltaTime between
each Update() is always different.

Physics engines—like the NVIDIA PhysX engine used by Unity—rely on
predictability and stability, something that Update() cannot offer. As a result,
Unity has a physics update that always runs at the same rate, regardless of the
computer on which it is running. The frequency of this FixedUpdate() is set
by setting the static field Time.fixedDeltaTime. By default,
Time.fixedDeltaTime is 0.02f (i.e., 1/50), meaning that 50 times per
second FixedUpdate() will be called and the PhysX engine will update.

As a result, FixedUpdate() is best used for tasks that deal with anything
moving due to a Rigidbody (which is why we use it for both the Attractor and
Boid updates), and it is also very useful for things that you want to be consistent
regardless of the computer on which they are running.

FixedUpdate() is called immediately before the update to the PhysX engine.

Also be aware that the Input methods GetKeyDown(), GetKeyUp(),
GetButtonDown(), and GetButtonUp() should never be called as part of
FixedUpdate() because they only work on the single Update() call when
the event happened. For example, GetKeyDown() is only true on the single
Update() when a key was pressed down, so if multiple Update()s happen
between two FixedUpdates(), a call to Input.GetKeyDown() inside of
FixedUpdate() would only be true if the key happened to be pressed on the
final Update() before FixedUpdate() was called. Regardless of whether
that makes complete sense right now, just remember: Never use
Input.GetKeyDown() or any other Input method that ends in …Down() or …
Up() inside of FixedUpdate(). Other Input methods like GetAxis(),
GetKey(), and GetButton() work fine inside either FixedUpdate() or
Update(). You will use Input methods like these throughout Part III of the book.

480

LookAtAttractor Script
Next, you want to make the Main Camera follow the Attractor's movements.

1. Select Main Camera in the Hierarchy.
2. Create a C# script named LookAtAttractor and attach it to the Main Camera (using any

of the methods that you've seen for doing so).
3. Open the LookAtAttractor script in MonoDevelop and enter the following code:

Click here to view code image

 5 public class LookAtAttractor : MonoBehaviour {
 6
 7 void Update () {
 8 transform.LookAt(Attractor.POS); // Yep, just add this one line!
 9 }
10
11 }

4. Save the script, return to Unity and click Play.

Now, the Main Camera will constantly look at the Attractor.

Boid Script—Part 1
Because so many other scripts will reference the Boid class, you will create it now, though
you won't yet add any additional code to it. This allows other C# scripts to reference a
Boid class and compile without causing errors (and without having the word Boid appear
red in MonoDevelop).

1. Select the Boid prefab in the Project pane.
2. At the bottom of the Inspector, click the Add Component button and choose New Script

from the pop-up menu that appears. Name the script Boid and click Create and Add.

For now, that's all we need from Boid. Let's move on.

Spawner Script—Part 1
The Spawner script will be attached to the Main Camera, and as such, you will be able to
edit the public fields of Spawner in the Unity Inspector. This will give you a central place
to tweak all the numbers that influence the Boids' movement.

1. Select Main Camera in the Hierarchy.
2. Use any of the methods you've seen to create a C# script named Spawner and attach it

to the Main Camera.
3. Open the Spawner script in MonoDevelop and enter the following code:

Click here to view code image

481

 1 using System.Collections;
 2 using System.Collections.Generic;
 3 using UnityEngine;
 4
 5 public class Spawner : MonoBehaviour {
 6 // This is a Singleton of the BoidSpawner. There is only one instance
 7 // of BoidSpawner, so we can store it in a static variable named S.
 8 static public Spawner S; // a
 9 static public List<Boid> boids; // b
10
11 // These fields allow you to adjust the spawning behavior of the Boids
12 [Header("Set in Inspector: Spawning")]
13 public GameObject boidPrefab; // c
14 public Transform boidAnchor;
15 public int numBoids = 100;
16 public float spawnRadius = 100f;
17 public float spawnDelay = 0.1f;
18
19 // These fields allow you to adjust the flocking behavior of the Boids
20 [Header("Set in Inspector: Boids")]
21 public float velocity = 30f;
22 public float neighborDist = 30f;
23 public float collDist = 4f;
24 public float velMatching = 0.25f;
25 public float flockCentering = 0.2f;
26 public float collAvoid = 2f;
27 public float attractPull = 2f;
28 public float attractPush = 2f;
29 public float attractPushDist = 5f;
30
31 void Awake () {
32 // Set the Singleton S to be this instance of BoidSpawner
33 S = this; // d
34 // Start instantiation of the Boids
35 boids = new List<Boid>();
36 InstantiateBoid();
37 }
38
39 public void InstantiateBoid() {
40 GameObject go = Instantiate(boidPrefab);
41 Boid b = go.GetComponent<Boid>();
42 b.transform.SetParent(boidAnchor); // e
43 boids.Add(b);
44 if (boids.Count < numBoids) {
45 Invoke("InstantiateBoid", spawnDelay); // f
46 }
47 }
48 }

a. The field S is a singleton, which is one of the Software Design Patterns covered in
Appendix B, "Useful Concepts." A singleton is sometimes used when there will only
ever be one instance of a particular class. Because there will only ever be one
instance of the class Spawner, it can be stored in the static field S. Therefore—just
as with the public static POS field of Attractor—anywhere in code, you can

482

use Spawner.S to refer to this singleton Spawner instance.
b. The List<Boid> boids will hold a reference to all the Boids instantiated by

Spawner.
c. You must use the Unity Inspector to set the values of the fields boidPrefab and
boidAnchor for this script to work (in steps 5 and 6 that follow).

d. Here, this instance of Spawner is assigned to the singleton S. In the code for a
class, this refers to the current instance of the class. For the Spawner script, this
refers to the instance of Spawner that is attached to Main Camera, which is the only
instance of Spawner in _Scene_0.

e. Making all the Boids children of the same GameObject helps keep the Hierarchy pane
organized. This line places them all underneath a single parent Transform
boidAnchor (in step 6, you will assign the BoidAnchor GameObject to the
boidAnchor field of the Spawner inspector). If you want to see all the Boids listed
in the hierarchy, you just need to click the disclosure triangle next to the parent
GameObject BoidAnchor.

f. InstantiateBoid() is initially called once by Awake(), and then
InstantiateBoid() uses the Invoke() function to call itself again until the
number of Boids instantiated is equal to numBoids. The two arguments that
Invoke takes are the name of the method to be called (as a string:
"InstantiateBoid") and the amount of time to wait before calling it
(spawnDelay, or 0.1 seconds).

4. Save the Spawner script, return to Unity, and select Main Camera in the Hierarchy
pane.

5. Assign the Boid prefab from the Project pane to the boidPrefab field in the Main
Camera Spawner (Script) component Inspector.

6. Assign the BoidAnchor GameObject in the Hierarchy pane to the boidAnchor field
in the Main Camera Spawner (Script) component Inspector.

Try clicking Play in Unity. You'll see that Spawner instantiates a new instance of Boid as a
child of BoidAnchor every tenth of a second for ten seconds, but the Boids are all stacked
under the BoidAnchor in the middle of the scene doing nothing. It's time to return to the
Boid script.

Boid Script—Part 2
Returning to the Boid script, follow these steps:

1. Open the Boid script in MonoDevelop and enter the bolded code that follows.
Click here to view code image

 1 using System.Collections;

483

 2 using System.Collections.Generic;
 3 using UnityEngine;
 4
 5 public class Boid : MonoBehaviour {
 6
 7 [Header("Set Dynamically")]
 8 public Rigidbody rigid; // a
 9
10 // Use this for initialization
11 void Awake () {
12 rigid = GetComponent<Rigidbody>
(); // a
13
14 // Set a random initial position
15 pos = Random.insideUnitSphere * Spawner.S.spawnRadius; // b
16
17 // Set a random initial velocity
18 Vector3 vel = Random.onUnitSphere * Spawner.S.velocity; // c
19 rigid.velocity = vel;
20
21 LookAhead(); // d
22
23 // Give the Boid a random color, but make sure it's not too dark // e
24 Color randColor = Color.black;
25 while (randColor.r + randColor.g + randColor.b < 1.0f) {
26 randColor = new Color(Random.value, Random.value, Random.value);
27 }
28 Renderer[] rends = gameObject.GetComponentsInChildren<Renderer>
(); // f
29 foreach (Renderer r in rends) {
30 r.material.color = randColor;
31 }
32 TrailRenderer tRend = GetComponent<TrailRenderer>();
33 tRend.material.SetColor("_TintColor", randColor);
34 }
35
36 void LookAhead() { // d
37 // Orients the Boid to look at the direction it's flying
38 transform.LookAt(pos + rigid.velocity);
39 }
40
41 public Vector3 pos { // b
42 get { return transform.position; }
43 set { transform.position = value; }
44 }
45
46 }

a. The GetComponent<>() call is a bit time consuming, so for performance, it's
important to cache a reference to (i.e., store a way to quickly access) the Rigidbody
component. The rigid field then allows us to avoid a call to GetComponent<>
() every frame.

b. The insideUnitSphere static property of the Random class is a read-only

484

property that generates a random Vector3 located somewhere within a sphere with a
radius of 1 unit. We then multiply this by the spawnRadius public field of the
Spawner singleton to give this Boid instance a random location somewhere within
spawnRadius distance from the origin (position [0, 0, 0]). This resultant Vector3
is assigned to the pos property that is defined at the end of this code listing.

c. The Random.onUnitSphere static property generates a Vector3 somewhere on
the surface of a sphere with a radius of 1. In other words, it makes a Vector3 that is 1
unit long, pointing in a random direction. We multiply this by the velocity field set
on the Spawner singleton and then assign it to the velocity of the Boid's Rigidbody
component.

d. LookAhead()orients the Boid to face in the direction of its rigid.velocity.
e. Lines 24–33 are not strictly necessary, but they makes the scene look nicer. These

lines set the color of this Boid to something random (but sufficiently bright to be
seen).

f. The gameObject.GetComponentsInChildren<Renderer>() call
returns an array of all the Renderer components attached to this Boid GameObject and
any of its children. This returns the Renderer components of the Cubes under both
Fuselage and Wing.

2. Save the script, return to Unity, and click Play.

Now the Boids are created in different positions, fly in various directions, and are sundry
colors, but they still don't react to anything in the world.

3. Return to MonoDevelop and add the following bolded lines to the Boid script. Note
that several lines are skipped in the following code listing. Throughout the book, I use
ellipses (…) to denote anywhere that lines are skipped. Don't delete any of the lines
skipped by ellipses.

Click here to view code image

 5 public class Boid : MonoBehaviour {
 … // a
41 public Vector3 pos {
42 get { return transform.position; }
43 set { transform.position = value; }
44 }
45
46 // FixedUpdate is called once per physics update (i.e., 50x/second)
47 void FixedUpdate () {
48 Vector3 vel = rigid.velocity; // b
49 Spawner spn = Spawner.S; // c
50
51 // ATTRACTION – Move towards the Attractor
52 Vector3 delta = Attractor.POS - pos; // d
53 // Check whether we're attracted or avoiding the Attractor

485

54 bool attracted = (delta.magnitude > spn.attractPushDist);
55 Vector3 velAttract = delta.normalized * spn.velocity; // e
56
57 // Apply all the velocities
58 float fdt = Time.fixedDeltaTime;
59
60 if (attracted) { // f
61 vel = Vector3.Lerp(vel, velAttract, spn.attractPull*fdt);
62 } else {
63 vel = Vector3.Lerp(vel, -velAttract, spn.attractPush*fdt);
64 }
65
66 // Set vel to the velocity set on the Spawner singleton
67 vel = vel.normalized * spn.velocity; // g
68 // Finally assign this to the Rigidbody
69 rigid.velocity = vel;
70 // Look in the direction of the new velocity
71 LookAhead();
72 }
73 }

a. The ellipses (…) here mark several lines that we've skipped in this listing because
they have not changed since the previous Boid code listing.

b. This Vector3 vel is a different variable than the Vector3 vel in Awake() because
each is a local variable scoped only to the method in which it is declared.

c. I've created the local variable spn to cache Spawner.S because the width of the
page made it difficult to fit long lines that used Spawner.S.

d. Here, we get the position of the Attractor by reading the static public
Attractor.POS field. By subtracting pos (this Boid's position) from the position
of the Attractor, we get a Vector3 that points from the Boid to the Attractor. Then,
based on how close this Boid is to the Attractor, it will either be pulled or pushed. On
line 54, you see an example of assigning the bool result of a comparison to a variable
(rather than using the comparison result as part of an if statement).

e. The delta vector to the Attractor is normalized to unit length (i.e., a length of 1)
and multiplied by spn.velocity to give velAttract the same length as vel.

f. If the Boid is far enough from the Attractor to be attracted to it, a Lerp() is called
on vel to linearly interpolate it toward the velAttract direction. Because vel
and velAttract have the same magnitude (length), the interpolation is weighted
evenly. If the Boid is too close to Attractor.POS, then vel will linearly
interpolate toward the opposite direction of velAttract.
Linear interpolation takes two Vector3s as input and creates a new Vector3 that is a
weighted mixture of the two. The amount of each original Vector3 that is used is based
on the third argument. If the third argument is 0, vel will equal the original vel; if
the third argument is 1, vel will equal velAttract. Because we multiply
spn.attractPull by fdt, (which is our shortened variable name version of

486

multiplying Spawner.S.attractPull by Time.fixedDeltaTime) the third
parameter here is equal to Spawner.S.attractPull/50. You can find much
more information about linear interpolation in the Interpolation section of Appendix
B, "Useful Concepts."

g. By working with vectors of equal magnitude this whole time, we've been setting the
direction of vel at a certain velocity. Now, vel is normalized and multiplied by the
velocity field set on the Spawner singleton to get the final velocity for this Boid.

4. Save the script, return to Unity, and click Play.

Now you can see that the Boids are all attracted to the Attractor. As the Attractor changes
directions, the Boids overshoot and have to turn to fly toward the Attractor once more. This
is pretty nice already, but we can do better. To do so, we'll need to know something about
the other nearby Boids.

Neighborhood Script
The Neighborhood script is a component that will track which other Boids are near this
one and to give us information about them, including the average position and average
velocity of all nearby Boids as well as information about which Boids are too close.

1. Create a new C# script named Neighborhood and attach it to the Boid prefab in the
Project pane.

2. Open the Neighborhood script in MonoDevelop and enter the following code:
Click here to view code image

 1 using System.Collections;
 2 using System.Collections.Generic;
 3 using UnityEngine;
 4
 5 public class Neighborhood : MonoBehaviour {
 6 [Header("Set Dynamically")]
 7 public List<Boid> neighbors;
 8 private SphereCollider coll;
 9
10 void Start() { // a
11 neighbors = new List<Boid>();
12 coll = GetComponent<SphereCollider>();
13 coll.radius = Spawner.S.neighborDist/2;
14 }
15
16 void FixedUpdate() { // b
17 if (coll.radius != Spawner.S.neighborDist/2) {
18 coll.radius = Spawner.S.neighborDist/2;
19 }
20 }
21
22 void OnTriggerEnter(Collider other) { // c
23 Boid b = other.GetComponent<Boid>();

487

24 if (b != null) {
25 if (neighbors.IndexOf(b) == -1) {
26 neighbors.Add(b);
27 }
28 }
29 }
30
31 void OnTriggerExit(Collider other) { // d
32 Boid b = other.GetComponent<Boid>();
33 if (b != null) {
34 if (neighbors.IndexOf(b) != -1) {
35 neighbors.Remove(b);
36 }
37 }
38 }
39
40 public Vector3 avgPos { // e
41 get {
42 Vector3 avg = Vector3.zero;
43 if (neighbors.Count == 0) return avg;
44
45 for (int i=0; i<neighbors.Count; i++) {
46 avg += neighbors[i].pos;
47 }
48 avg /= neighbors.Count;
49
50 return avg;
51 }
52 }
53
54 public Vector3 avgVel { // f
55 get {
56 Vector3 avg = Vector3.zero;
57 if (neighbors.Count == 0) return avg;
58
59 for (int i=0; i<neighbors.Count; i++) {
60 avg += neighbors[i].rigid.velocity;
61 }
62 avg /= neighbors.Count;
63
64 return avg;
65 }
66 }
67
68 public Vector3 avgClosePos { // g
69 get {
70 Vector3 avg = Vector3.zero;
71 Vector3 delta;
72 int nearCount = 0;
73 for (int i=0; i<neighbors.Count; i++) {
74 delta = neighbors[i].pos - transform.position;
75 if (delta.magnitude <= Spawner.S.collDist) {
76 avg += neighbors[i].pos;
77 nearCount++;
78 }
79 }

488

80 // If there were no neighbors too close, return Vector3.zero
81 if (nearCount == 0) return avg;
82
83 // Otherwise, average their locations
84 avg /= nearCount;
85 return avg;
86 }
87 }
88
89 }

a. This Start() method instantiates the neighbors List, gets a reference to this
GameObject's SphereCollider (remember, this is a Boid GameObject, which also has
a SphereCollider attached), and sets the radius of the SphereCollider to be half of the
Spawner singleton's neighborDist. It is half because the neighborDist is the
distance at which we want these GameObjects to see each other, and if each has a
radius of half this distance, they will just barely touch at exactly the
neighborDist.

b. Every FixedUpdate()Neighborhood checks to see whether the neighborDist
has changed, and if so, it changes the radius of the SphereCollider. Setting the radius
of the SphereCollider could cause a lot of PhysX recalculation, so we only set it if
necessary.

c. OnTriggerEnter() is called when something else enters this SphereCollider
trigger (a trigger is a collider that allows other things to pass through it). Other Boids
should be the only things that have colliders on them, but to be sure, we
GetComponent<Boid>() on the other Collider and only continue if the result
is not null. At that point, if the Boid that moved within the neighborhood is not yet in
our neighbors List, we add it.

d. Similarly, when another Boid is no longer touching this Boid's trigger,
OnTriggerExit() is called, and we remove the Boid from our neighbors
List.

e. The avgPos read-only property looks at all Boids in the neighbors List and
averages their position. Note how it takes advantage of the public pos property on
each Boid. If there are no neighbors, this returns Vector3.zero.

f. Similarly, the avgVel property returns the average velocity of all neighbor Boids.
g. The avgClosePos read-only property looks for neighbors that are within the
collisionDist (from the Spawner singleton) and averages their position.

3. Be sure to save the Neighborhood script and switch back to Unity to give it a chance to
recompile and present you with any errors it might have.

Boid Script—Part 3
Now that the Neighborhood component exists and is attached to the Boid GameObject, it's

489

time to finalize the Boid class.
1. Open the Boid script in MonoDevelop and enter the new lines that are bolded in the

following code listing. When you enter the code that follows, your line numbers might
not match mine exactly. That's okay as long as the code is the same otherwise. C# treats
all whitespace (spaces, returns, tabs, and so on) as the same thing, so an extra return
here or there doesn't matter. I've included the entire Boid script for clarity.

Click here to view code image

 1 using System.Collections;
 2 using System.Collections.Generic;
 3 using UnityEngine;
 4
 5 public class Boid : MonoBehaviour {
 6
 7 [Header("Set Dynamically")]
 8 public Rigidbody rigid;
 9
10 private Neighborhood neighborhood;
11
12 // Use this for initialization
13 void Awake () {
14 neighborhood = GetComponent<Neighborhood>();
15 rigid = GetComponent<Rigidbody>();
16
17 // Set a random initial position
18 pos = Random.insideUnitSphere * Spawner.S.spawnRadius;
19
20 // Set a random initial velocity
21 Vector3 vel = Random.onUnitSphere * Spawner.S.velocity;
22 rigid.velocity = vel;
23
24 LookAhead();
25
26 // Give the Boid a random color, but make sure it's not too dark
27 Color randColor = Color.black;
28 while (randColor.r + randColor.g + randColor.b < 1.0f) {
29 randColor = new Color(Random.value, Random.value, Random.value);
30 }
31 Renderer[] rends = gameObject.GetComponentsInChildren<Renderer>();
32 foreach (Renderer r in rends) {
33 r.material.color = randColor;
34 }
35 TrailRenderer trend = GetComponent<TrailRenderer>();
36 trend.material.SetColor("_TintColor", randColor);
37 }
38
39 void LookAhead() {
40 // Orients the Boid to look at the direction its flying
41 transform.LookAt(pos + rigid.velocity);
42 }
43
44 public Vector3 pos {
45 get { return transform.position; }

490

46 set { transform.position = value; }
47 }
48
49 // FixedUpdate is called once per physics update (i.e., 50x/second)
50 void FixedUpdate () {
51 Vector3 vel = rigid.velocity;
52 Spawner spn = Spawner.S;
53
54 // COLLISION AVOIDANCE – Avoid neighbors who are too close
55 Vector3 velAvoid = Vector3.zero;
56 Vector3 tooClosePos = neighborhood.avgClosePos;
57 // If the response is Vector3.zero, then no need to react
58 if (tooClosePos != Vector3.zero) {
59 velAvoid = pos - tooClosePos;
60 velAvoid.Normalize();
61 velAvoid *= spn.velocity;
62 }
63
64 // VELOCITY MATCHING – Try to match velocity with neighbors
65 Vector3 velAlign = neighborhood.avgVel;
66 // Only do more if the velAlign is not Vector3.zero
67 if (velAlign != Vector3.zero) {
68 // We're really interested in direction, so normalize the velocity
69 velAlign.Normalize();
70 // and then set it to the speed we chose
71 velAlign *= spn.velocity;
72 }
73
74 // FLOCK CENTERING – Move towards the center of local neighbors
75 Vector3 velCenter = neighborhood.avgPos;
76 if (velCenter != Vector3.zero) {
77 velCenter -= transform.position;
78 velCenter.Normalize();
79 velCenter *= spn.velocity;
80 }
81
82 // ATTRACTION – Move towards the Attractor
83 Vector3 delta = Attractor.POS - pos;
84 // Check whether we're attracted or avoiding the Attractor
85 bool attracted = (delta.magnitude > spn.attractPushDist);
86 Vector3 velAttract = delta.normalized * spn.velocity;
87
88 // Apply all the velocities
89 float fdt = Time.fixedDeltaTime;
90 if (velAvoid != Vector3.zero) {
91 vel = Vector3.Lerp(vel, velAvoid, spn.collAvoid*fdt);
92 } else {
93 if (velAlign != Vector3.zero) {
94 vel = Vector3.Lerp(vel, velAlign, spn.velMatching*fdt);
95 }
96 if (velCenter != Vector3.zero) {
97 vel = Vector3.Lerp(vel, velAlign, spn.flockCentering*fdt);
98 }
99 if (velAttract != Vector3.zero) {
100 if (attracted) {

491

101 vel = Vector3.Lerp(vel, velAttract, spn.attractPull*fdt);
102 } else {
103 vel = Vector3.Lerp(vel, -
velAttract, spn.attractPush*fdt);
104 }
105 }
106 }
107
108 // Set vel to the velocity set on the Spawner singleton
109 vel = vel.normalized * spn.velocity;
110 // Finally assign this to the Rigidbody
111 rigid.velocity = vel;
112 // Look in the direction of the new velocity
113 LookAhead();
114 }
115}

2. Make sure that all of your scripts are saved, return to Unity, and click Play.

Now the Boids should exhibit more flock-like behavior. You can select Main Camera in the
Hierarchy to play with the various values for Boids on the Spawner singleton. Table 27.1
lists some interesting versions of the values to try.

Table 27.1 Boids values

DefaultSparse FollowSmall GroupsFormation
velocity 30 30 30 30

neighborDist 30 30 8 30
collDist 4 10 2 10
velMatching 0.25 0.25 0.25 10
flockCentering 0.2 0.2 8 0.2
collAvoid 2 4 10 4
attractPull 2 1 1 3
attractPush 2 2 20 2
attractPushDist5 20 20 1

Summary
In this chapter, you learned about object-orientation, a concept that is exhibited throughout
the rest of the book. Because of its structure of GameObjects with components, Unity is
perfectly designed for an OOP mindset. You also learned about component-oriented design,
a programming design pattern that works very well with Unity and—while a bit more
complicated conceptually—can make your code simpler and more manageable.

492

Along with the idea of component-oriented OOP comes the concept of modularity. In many
ways, modular code is the opposite of monolithic code. Modular coding focuses on making
small, reusable functions and classes that do one thing really well. Because modular
classes and functions are small (usually fewer than 500 lines), they are easier to debug and
understand. Modular code is also designed to be reusable.

Next, you'll start Part III of the book, a series of focused tutorials that will help you learn
how to make prototypes for various kinds of games. I hope you enjoy what you find there
and can use them to start your journey as a designer, prototyper, and developer.

1. This is, of course, a drastic simplification, but it serves to make the point.
2. C. W. Reynolds, "Flocks, Herds, and Schools: A Distributed Behavioral Model,"

Computer Graphics, 21(4), July 1987 (acm SIGGRAPH '87 Proceedings), 25–34.
3. Erich Gamma, Richard Helm, Ralph Johnson, and John Vissides, Design Patterns:

Elements of Reusable Object-Oriented Software (Reading, MA: Addison-Wesley,
1994). Design Patterns was also the book that formalized the Singleton pattern and
others used throughout my book.

4. The full description of the Component pattern is far more complex, but this will serve
our needs.

493

PART III

GAME PROTOTYPE EXAMPLES AND TUTORIALS

28 Prototype 1: Apple Picker
29 Prototype 2: Mission Demolition
30 Prototype 3: Space SHMUP
31 Prototype 3.5: Space SHMUP Plus
32 Prototype 4: Prospector Solitaire
33 Prototype 5: Bartok
34 Prototype 6: Word Game
35 Prototype 7: Dungeon Delver

494

CHAPTER 28

PROTOTYPE 1: APPLE PICKER

Here it is. Today, you make your first digital game prototype.

Because this is your first prototype, it is rather simple. As you continue through
the prototyping chapters, the projects get more complex and use more of the
features of Unity.

By the end of this chapter, you will have a working prototype of a simple arcade
game.

The Purpose of a Digital Prototype
Before we start making the prototype of Apple Picker, now is probably a good time to think
again about the purpose of a digital prototype. The first part of the book provided
considerable discussion of paper prototypes and why they are useful. Paper game
prototypes help you do the following:

 Test, reject, and/or refine game mechanics and rules quickly
 Explore the dynamic behavior of your game and understand the emergent possibilities
created by the rules
 Ascertain whether rules and gameplay elements are easily understood by players
 Understand the emotional response that players have to your game

Digital prototypes also add the fantastic ability to see how the game feels; in fact, that is
their primary purpose. Although you could spend hours describing game mechanics to
someone in detail, having them just play the game and see how it feels is much more
efficient (and more interesting). This is discussed at length in the book Game Feel by Steve
Swink.1

In this chapter, you create a working game, and the end result will be something that you can
show to friends and colleagues. After letting them play it for a while, you can ask whether
the difficulty feels too easy, too difficult, or just right. Use that information to tweak the
variables in the game and custom craft a specific difficulty for each of them.

495

Let's get started making Apple Picker.

SET UP THE PROJECT FOR THIS CHAPTER
Following the standard project setup procedure, create a new project in Unity. If
you need a refresher on the standard project setup procedure, see Appendix A,
"Standard Project Setup Procedure."

 Project name: Apple Picker Prototype
 Scene name: _Scene_0
 C# script names: ApplePicker, Apple, AppleTree, and Basket

Do not attach the C# scripts to anything.

Preparing
Happily, you've already done a lot of the preparation for this prototype in Chapter 16,
"Thinking in Digital Systems," when we analyzed Apple Picker and the classic game
Kaboom!. As mentioned in that chapter, Apple Picker will have the same basic game
mechanics as Kaboom!. Take a moment to look back at Chapter 16 and make sure that you
understand the flow charts for each element: the AppleTree, the Apple, and the Basket.

As you work through these tutorials, I recommend using a pencil to check off each step as
you complete them.

Getting Started: Art Assets
As a prototype, this game doesn't need fantastic art; it needs to work. The kind of art that
you'll create throughout this book is known as programmer art, which is the placeholder art
made by programmers that will eventually be replaced by the actual game art created by
artists. As with nearly everything in a prototype, the purpose of this art is to get you from a
concept to a working prototype as quickly as possible. If your programmer art doesn't look
terrible, that's nice, but it's certainly not necessary.

AppleTree
Let's start with the tree.

1. From the Unity menu bar, choose GameObject > 3D Object > Cylinder. This will be
the trunk of the tree. Set the name of the Cylinder to Trunk by selecting it in the
Hierarchy and clicking its name at the top of the Inspector. Set the Transform component

496

of Cylinder to match the settings of the Transform component shown in Figure 28.1.

Figure 28.1 The Transform component for the Cylinder named Trunk

Throughout the tutorials in this book, I use the following format to give you settings for
GameObject transform components:

Trunk (Cylinder)  P:[0, 0, 0]  R:[0, 0, 0]  S:[1, 1, 1]

The preceding line instructs you to set the transform of the GameObject named Trunk to a
Position of X=0, Y=0, and Z=0; a Rotation of X=0, Y=0, and Z=0; and a Scale of X=1,
Y=1, and Z=1. The word Cylinder in parentheses tells you the type of GameObject that it
is. You will also sometimes see this format listed in the middle of a paragraph as P:[0, 0, 0
] R:[0, 0, 0] S:[1, 1, 1].

2. Now choose GameObject > 3D Object > Sphere. Rename Sphere to Leaves and set its
transform as follows:
Leaves (Sphere)  P:[0, 0.5, 0]  R:[0, 0, 0]  S:[3, 2, 3]

The Leaves and the Trunk together should look (a bit) like a tree, but they are currently two
separate objects. You need to create an empty GameObject to act as their parent and
encapsulate the two of them under a single object.

3. From the menu bar, choose GameObject > Create Empty. This should create an empty
GameObject. Make sure that its transform is set to the following:
GameObject (Empty)  P:[0, 0, 0]  R:[0, 0, 0]  S:[1, 1, 1]

An empty GameObject only includes a Transform component, and it is therefore a simple,
useful container for other GameObjects.

4. In the Hierarchy pane, first change the name of GameObject to AppleTree. Another way
to do this is by clicking the name GameObject to highlight it, waiting for a second, and
either pressing Return on the keyboard (F2 on Windows) or clicking it a second time.

497

5. Individually drag the Trunk and Leaves GameObjects onto AppleTree (you will get the
same curved arrow icon as you do when you attach a C# script to a GameObject [Figure
19.4]), and they will be placed under AppleTree in the Hierarchy. You can click the
new disclosure triangle next to the word AppleTree to see them. Your Hierarchy pane
and AppleTree should now look like those shown in Figure 28.2.

Figure 28.2  AppleTree shown in the Hierarchy and Scene panes with Leaves and Trunk as
its children. The asterisk (*) next to _Scene_0 at the top of the Hierarchy pane indicates
that I have unsaved changes in my scene. I should save!

Now that the Trunk and Leaves GameObjects are parented to AppleTree, if you move,
scale, or rotate AppleTree, both Trunk and Leaves will move, rotate, and scale alongside it.
Give it a try by manipulating the Transform component of AppleTree.

6. After you're done playing with this, set the transform of AppleTree to the following:
AppleTree  P:[0, 0, 0]  R:[0, 0, 0]  S:[2, 2, 2]

These settings center the AppleTree and scale it to twice as large as it was initially.
7. Add a Rigidbody component to AppleTree by selecting it in the Hierarchy and choosing

Component > Physics > Rigidbody from the Unity menu.
8. In the Rigidbody component Inspector of AppleTree, uncheck Use Gravity. If you left it

checked, the tree would fall out of the sky when you played the scene.

As covered in Chapter 20, "Variables and Components," the Rigidbody component ensures
that the colliders of the Trunk and Sphere are properly updated in the physics simulation
when you move the AppleTree across the stage.

Simple Materials for AppleTree

Though this is all programmer art, that doesn't mean that it has to be all basic white
objects. Let's add a little color to the scene.

498

1. From the menu bar, choose Assets > Create > Material. This makes a new material in
the Project pane.
a. Rename this material to Mat_Wood.
b. Drag the Mat_Wood material onto Trunk in your scene or Hierarchy pane.
c. Select Mat_Wood in the Project pane again.
d. Set the Albedo color under Main Maps in the Inspector for Mat_Wood to a brown of

your liking.2 You can also adjust the Metallic and Smoothness sliders to your liking.3

2. Do the same to create a material named Mat_Leaves.
a. Drag Mat_Leaves onto Leaves in either the Hierarchy or Scene pane.
b. Set the Albedo color of Mat_Leaves to a leafy-looking green.

3. Drag AppleTree from the Hierarchy pane over to the Project pane to make a prefab from
it. As you saw in previous chapters, this creates an AppleTree prefab in the Project
pane and turns the name of AppleTree in the Hierarchy blue.

4. By default, Unity scenes come with a Directional Light already included. Set the
position, rotation, and scale of Directional Light in the Hierarchy to the following:
Directional Light  P:[0, 20, 0]  R:[50, -30, 0]  S:[1, 1, 1]

This should put a nice diagonal light across the scene. It's worth noting here that the
position of a directional light is unimportant—directional lights shine in the same direction
regardless of position—but I've given you the position of [0, 20, 0] to move it out of the
middle of the scene view because its gizmo (that is, icon) would be in the middle of the
Scene pane otherwise. If you play with the rotation of Directional Light, you will see that
the first directional light in the scene is tied to the sun in Unity's default skybox. This isn't
used in Apple Picker, but it can be a great effect in 3D games.

5. To move AppleTree up and out of the way a bit, select AppleTree in the Hierarchy and
change its position to P:[0, 10, 0]. This might move it out of the view of the Scene
pane, but you can zoom out to see it by scrolling your mouse wheel.

Apple
Now that you have the AppleTree, you need to make the Apple GameObject prefab that it
will drop.

1. From the menu bar, choose GameObject > 3D Object > Sphere. Rename this sphere to
Apple, and set its transform as follows:
Apple (Sphere)  P:[0, 0, 0]  R:[0, 0, 0]  S:[1, 1, 1]

2. Create a new material named Mat_Apple and set its albedo color to red (or light green,
if you prefer green apples).

3. Drag Mat_Apple onto Apple in the Hierarchy.

499

Adding Physics to the Apple
As you might remember from Chapter 17, "Introducing the Unity Development
Environment," the Rigidbody component enables an object to react to physics (for example,
falling or colliding with other objects).

1. Select Apple in the Hierarchy pane. From the Unity menu bar, choose Component >
Physics > Rigidbody.

2. Click the Unity Play button, and the Apple will fall off screen due to gravity.
3. Click the Play button again to stop playback, and the Apple will return to its start

location.

Giving Apples the Tag "Apple"
Eventually you will want to query the scene for an array of all the Apple GameObjects on
screen, and giving the Apples a specific tag can help with this.

1. With Apple selected in the Hierarchy, click the pop-up menu button in the Inspector next
to Tag (that currently displays "Untagged") and choose Add Tag from the pop-up menu,
as shown in section A of Figure 28.3. This will open Unity's Tags & Layers Manager.

Figure 28.3 Steps 1, 2, and 3 of adding the Apple tag to the list of tags

2. You might need to click the disclosure triangle next to Tags to see the view shown in
section B of Figure 28.3. Click the + symbol to add a new tag.

3. Type Apple into the New Tag Name field (C) and click Save. Apple is now in the Tags
list (D).

4. Click Apple in the Hierarchy again to return to the Inspector for Apple.
5. Clicking the Tag pop-up menu once more now gives you Apple as a tag option. Choose

Apple from the list of tags. Apple GameObjects will now have the tag Apple, which
makes them easier to identify and select.

500

Making the Apple into a Prefab
To make the Apple into a prefab, follow these steps:

1. Drag Apple from the Hierarchy pane to the Project pane to make it a prefab.4

2. After you're sure an Apple prefab is in the Project pane, click the Apple instance in the
Hierarchy pane and delete it (by choosing Delete from the right-click menu or by
pressing Command-Delete [just Delete for Windows] on your keyboard). Because the
apples in the game will be instantiated from the Apple prefab in the Project pane, you
don't need to start with one in the scene.

Basket
Like the other art assets, the programmer art for the basket is very simple.

1. Choose GameObject > 3D Object > Cube from the Unity menu bar. Rename Cube to
Basket and set its transform to the following:
Basket (Cube)  P:[0, 0, 0]  R:[0, 0, 0]  S:[4, 1, 4]

This should give you a flat, wide rectangular solid.
2. Create a new material named Mat_Basket, color it a light, desaturated yellow (like

straw), and apply it to the basket.
3. Add a Rigidbody component to Basket. Select Basket in the Hierarchy and choose

Component > Physics > Rigidbody from the Unity menu.
a. Set Use Gravity to false (unchecked) in Basket's Rigidbody Inspector.
b. Set Is Kinematic to true (checked) in Basket's Rigidbody Inspector.

4. Drag Basket from the Hierarchy pane to the Project pane to make it into a prefab and
delete the remaining instance of Basket from the Hierarchy (just as you did for Apple).

5. Be sure to save your scene.

Your Project and Hierarchy panes should now look like Figure 28.4.

501

Figure 28.4 The Project and Hierarchy panes at this point in the prototype. You should
have created the Apple, ApplePicker, AppleTree, and Basket scripts as part of the project
setup at the beginning of this chapter.

Camera Setup
One of the most important things to get right in your games is the position of the camera. For
Apple Picker, you want a camera that shows a decent-sized play area. Because the
gameplay in this game is entirely two dimensional, you also want an orthographic camera
instead of a perspective one.

ORTHOGRAPHIC VERSUS PERSPECTIVE CAMERAS
Orthographic and perspective are two types of virtual 3D cameras in games; see
Figure 28.5.

502

Figure 28.5 Comparison of perspective and orthographic camera projections

A perspective camera works like the human eye; because light comes in through a
lens, objects that are close to the camera appear large, and objects that are far
away appear smaller. This gives a perspective camera a field of view (a.k.a.
projection) shaped like a square frustum (or more simply, a square pyramid). To
see this, click Main Camera in your hierarchy, and then zoom out in the Scene
pane. The pyramidal wireframe shape extending out from the camera is the view
frustum and shows everything that the camera will see.

503

Through an orthogonal camera, an object will appear to be the same size
regardless of how far it is from the camera. The projection for an orthogonal
camera is rectangular rather than frustum shaped. To see this, select Main Camera
in the Hierarchy pane. Find the Camera component in the Inspector and change the
projection from Perspective to Orthogonal. Now, the gray view frustum
represents a 3D rectangle rather than a pyramid.

Setting the Scene pane to be orthogonal rather than perspective is also sometimes
useful. To do this, click the word <Persp under the axes gizmo in the upper-right
corner of the Scene pane (see each of the images in Figure 28.5). Click the <Persp
under the axes gizmo to switch between perspective and isometric (abbreviated
=Iso) scene views (isometric being another word for orthographic).

Camera Settings for Apple Picker
Now, establish the camera settings for Apple Picker:

1. Select Main Camera in the Hierarchy pane and set its transform as follows:
Main Camera (Camera)  P:[0, 0, -10]  R:[0, 0, 0]  S:[1, 1, 1]

This position moves the camera viewpoint down 1 meter (a unit in Unity is the equivalent
of 1m in length) to be at a height of exactly 0. Because Unity units are equivalent to meters,
I sometimes abbreviate "1 Unity unit" as 1m in this book.

2. In the Camera component of the Inspector, set the following (as shown in Figure 28.6):

504

Figure 28.6  Main Camera Inspector settings

a. Set the Projection to Orthographic.
b. Set the Size to 16.

This makes the AppleTree a good size in the Game pane and leaves room for the apples to
fall and be caught by the player. Often, you can make a good first guess at things like
camera settings and then refine them after you've had a chance to play the game. Just like
everything else in game development, finding the right settings for the camera is an iterative
process. Your final Main Camera Inspector should now look like what is shown in Figure
28.6.

Game Panel Settings

505

Another contributing factor to your game view is the aspect ratio of the Game pane.
1. At the top of the Game pane is a pop-up menu that currently displays Free Aspect. This

is the aspect ratio pop-up menu.
2. Click the aspect ratio pop-up menu and choose 16:9. This is the standard format for

widescreen televisions and computer monitors, so it will look nice when you play the
game full-screen. You also should uncheck the Low Resolution Aspect Ratios option if
you're on macOS.

Coding the Apple Picker Prototype
Now it's time to make the code of this game prototype actually work. Figure 28.7 presents
the flow chart of the AppleTree's actions from Chapter 16, "Thinking in Digital Systems."

Figure 28.7 AppleTree flow chart

The actions you need to code for the AppleTree are as follows:

 Move at a certain speed every frame.

506

 Change directions upon hitting the edge of the play area.
 Change directions based on random chance.
 Drop an apple every second.

That's it! Let's start coding. Double-click the AppleTree C# script in the Project pane to
open it.

1. You need some configuration variables, so open the AppleTree class in MonoDevelop
and enter code to match the following. The code you need to change is bolded.

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
public class AppleTree : MonoBehaviour {
 [Header("Set in Inspector")]
 // Prefab for instantiating apples
 public GameObject applePrefab;

 // Speed at which the AppleTree moves
 public float speed = 1f;

 // Distance where AppleTree turns around
 public float leftAndRightEdge = 10f;

 // Chance that the AppleTree will change directions
 public float chanceToChangeDirections = 0.1f;

 // Rate at which Apples will be instantiated
 public float secondsBetweenAppleDrops = 1f;

 void Start () {
 // Dropping apples every second
 }

 void Update () {
 // Basic Movement
 // Changing Direction
 }
}

You might have noticed that the preceding code does not include the line numbers that were
shown at the beginnings of lines in some prior chapters. The code listings in this part of the
book will generally not have line numbers because there will likely be variance between
your line numbers and mine due to differences in carriage returns over the course of many
lines of code.5 Save the AppleTree script in MonoDevelop and return to Unity.

2. To see this code actually do something, you need to attach it to the AppleTree
GameObject.

507

a. Drag the AppleTree C# script from the Project pane onto the AppleTree prefab that is
also in the Project pane.

b. Click the AppleTree instance in the Hierarchy pane; the script has been added not
only to the AppleTree prefab but also to all of its instances.

c. With the AppleTree selected in the Hierarchy, you should see all the variables you
just declared appear in the Inspector under the AppleTree (Script) component.

3. Try moving the AppleTree around in the scene by adjusting the X and Y coordinates in
the Transform Inspector to find a good height (position.y) for the AppleTree and a good
limit for left and right movement. On my machine, 12 looks like a good position.y, and it
looks like the tree can move from -20 to 20 in position.x and still be seen well in the
Game pane.
a. Set the position of AppleTree to P:[0, 12, 0]
b. Set the leftAndRightEdge float in the AppleTree (Script) component Inspector to 20.

THE UNITY ENGINE SCRIPTING REFERENCE
Before you get too far into this project, it's extremely important that you remember
to look at the Unity Scripting Reference if you have any questions at all about the
code you see here. There are two ways to get into the Script Reference:

1. Choose Help > Scripting Reference from the menu bar in Unity. This opens
your web browser and brings up the Scripting Reference that is saved locally
on your machine, meaning that it will work even without a connection to the
Internet. You can type any function or class name into the search field on the
left to find out more about it.
Enter MonoBehaviour into the search field on the Scripting Reference web
page and press Return. Click the top result to see all the methods built in to
every MonoBehaviour script (and by extension, built in to every class script
you will write and attach to a GameObject in Unity). For readers from the
United States, note the European spelling of Behaviour.

2. When working in MonoDevelop, select any text you want to learn more about
and then choose Help > Unity API Reference from the menu bar. This launches
an Internet version of the Unity Scripting Reference, so it won't work properly
without Internet access, but it has the exact same information as the local
reference that you can reach through the first method.

The first time you visit the Scripting Reference, you might be asked to choose
between C# and JS from a couple of rectangular buttons near the top-right of the
window. Make sure that you click the C# button in the top-right of the page to
select C# as your preferred language. Most Unity code examples are available in

508

both C# and JavaScript, though some very old examples might still only exist in
JavaScript.

Basic Movement
Now make the following changes to add movement:

1. Make the following bolded changes to the Update() method in the AppleTree script.
Note the ellipses in the code listing (…). These indicate where I've skipped over lines
in this listing to conserve space. Please do not delete those lines!

Click here to view code image

public class AppleTree : MonoBehaviour {
 … // a
 void Update () {
 // Basic Movement
 Vector3 pos = transform.position; // b
 pos.x += speed * Time.deltaTime; // c
 transform.position = pos; // d

 // Changing Direction
 }
}

The // indicators at the right side of lines reference the following additional info.
a. Throughout the tutorial chapters of this book, I use ellipses (…) to indicate parts of the

code that I am skipping in the code listing. Without these, the code listings would be
ridiculously long in some of the later chapters. When you see ellipses like these, you
shouldn't change anything about the code where they are; just leave it alone and focus
on the new code (which is bolded for clarity). This code listing requires no changes
to any lines of code between the AppleTree class declaration and the Update()
method, so I have used ellipses to skip those unchanged lines.

b. This line defines the Vector3 pos to be the current position of the AppleTree.
c. The x component of pos is increased by the speed times Time.deltaTime

(which is a measure of the number of seconds since the last frame). This makes the
movement of the AppleTree time based, which is a very important concept in game
programming (see the "Making Your Games Time Based" sidebar).

d. Assigns this modified pos back to transform.position (which moves
AppleTree to a new position). If you don't set transform.position to pos,
AppleTree will not move.

You might be wondering why the preceding code changes were three lines instead of just
one. Why couldn't the code just be this?

509

Click here to view code image

transform.position.x += speed * Time.deltaTime;

The answer is that transform.position is a property, a method that is masquerading
as a field (i.e., a function masquerading as a variable) through the use of get{} and
set{} accessors (see Chapter 26, "Classes"). Although reading the value of a property's
subcomponent is possible, setting a subcomponent of a property is not. In other words,
transform.position.x can be read, but it cannot be set directly. This necessitates
the creation of the intermediate Vector3 pos that can be modified and then assigned back to
transform.position.

2. Save the script, return to Unity, and press the Play button. You'll notice that the
AppleTree is moving very slowly. Try some different values for speed in the Inspector
and see what feels good to you. I personally set speed to 10, which makes it move at
10m/s (10 meters per second or 10 Unity units per second). Stop Unity playback and set
speed to 10 in the Inspector.

MAKING YOUR GAMES TIME BASED
When movement in a game is time based, it happens at the same rate regardless of
the framerate at which the game is running. Time.deltaTime enables this
because it tells us the number of seconds that have passed since the last frame.
Time.deltaTime is usually very small. For a game running at 25 fps (frames
per second), Time.deltaTime is 0.04f, meaning that each frame takes 4/100
of a second to display. If the // b line of code were run at 25 fps, the result
would resolve like this:
Click here to view code image

pos.x += speed * Time.deltaTime;
pos.x += 1.0f * 0.04f;
pos.x += 0.04f;

So, in 1/25 of a second, pos.x would increase by 0.04m per frame. Over the
course of a full second, pos.x would increase by 0.04m per frame * 25 frames,
for a total of 1 meter in 1 second.

If instead the game were running at 100 fps, it would resolve as follows:

Click here to view code image

pos.x += speed * Time.deltaTime;
pos.x += 1.0f * 0.01f;
pos.x += 0.01f;

510

So, in 1/100 of a second, pos.x would increase by 0.01m per frame. Over the
course of a full second, pos.x would increase by 0.01m per frame * 100 frames,
for a total of 1 meter in 1 second.

Time-based movement ensures that regardless of framerate, the elements in your
game will move at a consistent speed, and this consistency enables you to make
games that are enjoyable for both players using the latest hardware and those using
older machines. Time-based coding is also very important to consider when
programming for mobile devices because the speed and power of mobile devices
vary broadly.

Changing Direction
Now that the AppleTree is moving at a decent rate, it will run off of the screen pretty
quickly. Let's make it change directions when it hits the leftAndRightEdge value.
Modify the AppleTree script as follows:
Click here to view code image

public class AppleTree : MonoBehaviour {
 …
 void Update () {
 // Basic Movement
 …
 // Changing Direction
 if (pos.x < -leftAndRightEdge) { // a
 speed = Mathf.Abs(speed); // Move right // b
 } else if (pos.x > leftAndRightEdge) { // c
 speed = -Mathf.Abs(speed); // Move left // c
 }
 }
}

a. Test whether the new pos.x that was just set in the previous lines is less than the
negative side-to-side limit that is set by leftAndRightEdge.

b. If pos.x is too small, speed is set to Mathf.Abs(speed), which takes the
absolute value of speed, guaranteeing that the resulting value will be positive, which
translates into movement to the right.

c. If pos.x is greater than leftAndRightEdge, then speed is set to the negative
of Mathf.Abs(speed), ensuring that the AppleTree will move to the left.

Save the script, return to Unity, and click Play to see what happens.

Changing Direction Randomly

511

To introduce random changes in direction, follow these steps:
1. Add the bolded lines shown here:

Click here to view code image

public class AppleTree : MonoBehaviour {
 …
 void Update () {
 // Basic Movement
 …
 // Changing Direction
 if (pos.x < -leftAndRightEdge) {
 speed = Mathf.Abs(speed); // Move right
 } else if (pos.x > leftAndRightEdge) {
 speed = -Mathf.Abs(speed); // Move left
 } else if (Random.value < chanceToChangeDirections) { // a
 speed *= -1; // Change direction // b
 }
 }
}

a. Random.value returns a random float value between 0 and 1 (including 0 and 1 as
possible values). If this random number is less than
chanceToChangeDirections, …

b. …the AppleTree will change directions by setting speed to the negative of itself.
2. If you click Play, you'll see that the default chanceToChangeDirections of 0.1

changes direction far too often. In the Inspector, change the value of
chanceToChangeDirections to 0.02, and it should feel a lot better.

To continue the discussion of time based games from the "Making Your Games Time Based"
sidebar, this chance to change directions is actually not time based. Every frame, a 2%
chance exists that the AppleTree will change directions. On a very fast computer, that
chance could happen 400 times per second (yielding an average of 8 directions changes per
second), whereas on a slow computer, it could happen as few as 30 times per second (for
an average of 0.6 direction changes per second).

3. To fix this, move the direction change code out of Update() (which is called as fast
as the computer can render frames) into FixedUpdate() (which is called exactly 50
times per second, regardless of the computer on which it's running).

Click here to view code image

public class AppleTree : MonoBehaviour {
 …
 void Update () {
 // Basic Movement
 …
 // Changing Direction
 if (pos.x < -leftAndRightEdge) {
 speed = Mathf.Abs(speed); // Move right

512

 } else if (pos.x > leftAndRightEdge) {
 speed = -Mathf.Abs(speed); // Move left
 } //
a
 }

 void FixedUpdate() {
 // Changing Direction Randomly is now time-based because of
FixedUpdate()
 if (Random.value < chanceToChangeDirections) { //
b
 speed *= -1; // Change direction
 }
 }
}

a. Cut the two lines that were marked // a and // b in the code listing for step 1,
replace them with the closing brace, …

b. …and paste them here.

This causes the AppleTree to randomly change directions an average of 1 time every
second (50 FixedUpdates per second * a random chance of 0.02 = an average of 1 time
per second).

Dropping Apples
Next comes dropping apples:

1. Select AppleTree in the Hierarchy and look at the Apple Tree (Script) component in its
Inspector. Currently, the value of the field applePrefab is None (Game Object),
meaning that it has not yet been set (the GameObject in parentheses is there to let you
know that the type of the applePrefab field is GameObject). This value needs to be
set to the Apple GameObject prefab in the Project pane. You can do this in either of two
ways:
 Click the tiny target to the right of Apple Prefab None (Game Object) in the Inspector
and select Apple from the Assets tab in the window that appears.
or
 Drag the Apple GameObject prefab from the Project pane onto the ApplePrefab value in
the Inspector pane. This process is shown graphically in Figure 19.4 of Chapter 19,
"Hello World: Your First Program."

2. Return to MonoDevelop and add the following bolded code to the AppleTree class:
Click here to view code image

public class AppleTree : MonoBehaviour {
 …
 void Start () {

513

 // Dropping apples every second
 Invoke("DropApple", 2f); // a
 }

 void DropApple() { // b
 GameObject apple = Instantiate<GameObject>(applePrefab); // c
 apple.transform.position = transform.position; // d
 Invoke("DropApple", secondsBetweenAppleDrops); // e
 }

 void Update () { … } // f
 …
}

a. The Invoke() function calls a named function in a certain number of seconds. In
this case, it is calling the new function DropApple(). The second parameter, 2f,
tells Invoke() to wait 2 seconds before it calls DropApple().

b. DropApple() is a custom function to instantiate an Apple at the AppleTree's
location.

c. DropApple() creates an instance of applePrefab and assigns it to the
GameObject variable apple.

d. The position of this new apple GameObject is set to the position of the AppleTree.
e. Invoke() is called again. This time, it will call the DropApple() function in
secondsBetweenAppleDrops seconds (in this case, in 1 second based on the
default settings in the Inspector). Because DropApple() invokes itself every time it
is called, the effect will be for an Apple to be dropped every second that the game
runs.

f. The { … } on this line indicates that I've omitted the content of the Update()
method in this code listing. You do not need to change anything about the Update()
method when you see ellipses like this.

3. Save the AppleTree script, return to Unity, click Play, and see what happens.

Did you expect the Apples and the AppleTree to go flying off? The same thing occurs here
as did in the Chapter 19, "Hello World" example with the cubes flying all over the place. I
did this on purpose here to show you how to fix this issue if you encounter it in your games.
The first thing to do is to set the AppleTree's Rigidbody to be kinematic, meaning that we
can move it via code, but it will not react to collisions with other objects.

4. In the Rigidbody component Inspector for AppleTree, check Is Kinematic.
5. Click Play again, and you can see that you still have an issue with the Apples.

Though this fixes the AppleTree, the Apples are still colliding with the AppleTree, causing
them to fly off to the left, right or down faster than they would normally due to gravity. To
fix this, you need to put them in a physics layer that doesn't collide with the AppleTree.

514

Physics layers are groups of objects that can either collide with or ignore each other. If the
AppleTree and Apple GameObjects are placed in two different physics layers, and those
physics layers are set to ignore each other, then the AppleTree and Apples will cease
colliding with each other.

Setting Physics Layers
First, you need to make some new physics layers. These steps are shown in Figure 28.8.

Figure 28.8 The steps required to make new physics layers (steps 1 and 2) and assign them
(step 5)

1. Click the AppleTree in the Hierarchy and in the Inspector choose Add Layer… from the
pop-up menu next to Layer. This opens the Tags & Layers Manager in the Inspector,
which allows you to set the names of physics layers under the Layers label (make sure
you're not editing Tags or Sorting Layers). You can see that Builtin Layers 0 through 7
are grayed out, but you are able to edit Layers 8 through 31.

2. Name layer 8 AppleTree, layer 9 Apple, and layer 10 Basket.
3. From the Unity menu bar, choose Edit > Project Settings > Physics. This sets the

Inspector to the Physics Manager (see Figure 28.9). The Layer Collision Matrix grid
of check boxes at the bottom of the Physics Manager sets which physics layers will
collide with each other (and whether GameObjects in the same Physics Layer will
collide with each other as well).

515

Figure 28.9 The required Layer Collision Matrix settings in the Physics Manager

4. You want the Apple to collide with the Basket and to not collide with either the
AppleTree or other Apples. To do this, your Layer Collision Matrix grid should look
like what is shown in Figure 28.9.

5. Now that the Layer Collision Matrix is set properly, it's time to assign physics layers to
the important GameObjects in the game.
a. Click Apple in the Project pane, and then select Apple from the Layer pop-up menu at

the top of the Inspector pane.

516

b. Select the Basket in the Project pane and set its Layer to Basket.
c. Select the AppleTree in the Project pane and set its Layer to AppleTree (refer to

Figure 28.8).

When you choose the physics layer for AppleTree, Unity asks whether you want to change
the layer for just AppleTree or for both AppleTree and its children. You definitely want to
choose Yes, change children because you need the Trunk and Sphere child objects of
AppleTree to also be in the AppleTree physics layer. This change will also trickle forward
to the AppleTree instance in the scene. You can click AppleTree in the Hierarchy pane to
confirm this.

Now if you click Play, you should see the apples dropping properly from the tree.

Stopping Apples If They Fall Too Far
If you leave the current version of the game running for a while, you'll notice that there are
a lot of apples in the Hierarchy. That's because the code is creating a new apple every
second but never deleting the apples.

1. Open the Apple C# script and add the following code to kill the apples when they reach
a depth of transform.position.y == -20 (which is comfortably off screen).
Here's the code:

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Apple : MonoBehaviour {
 public static float bottomY = -20f; // a

 void Update () {
 if (transform.position.y < bottomY) {
 Destroy(this.gameObject); // b
 }
 }
}

a. The bolded public static float line declares and defines a static variable
named bottomY. As was mentioned in Chapter 26, "Classes," static variables are
shared by all instances of a class, so every instance of Apple will have the same
value for bottomY. If bottomY is ever changed for one instance, it will
simultaneously change for all instances. However, it's also important to point out that
static fields like bottomY do not appear in the Inspector.

b. The Destroy() function removes things that are passed into it from the game, and
it can be used to destroy both components and GameObjects. You must use

517

Destroy(this.gameObject) in this case because Destroy(this) would
just remove the Apple (Script) component from the Apple GameObject instance. In
any script, this references the current instance of the C# class in which it is called
(in this code listing, this references the Apple (Script) component instance), not the
entire GameObject. Any time you want to destroy an entire GameObject from within
an attached component class, you must call Destroy(this.gameObject).

2. Save the Apple script.
3. You must attach the Apple C# script to the Apple GameObject prefab in the Project

window for this code to function in the game. You already know about dragging a script
onto a GameObject to attach the script, so here's another way to do this:
a. Select Apple in the Project pane.
b. Scroll to the bottom of the Inspector, and click the Add Component button.
c. From the pop-up menu that appears, select Scripts > Apple.

Now, if you click Play in Unity and zoom out in the scene, you can see that apples drop for
a ways and then disappear when they reach a Y position of -20.

This is all you need to do for the apples.

Instantiating the Baskets
To make the Baskets work, I am going to introduce a concept that will recur throughout
these prototype tutorials. Although object-oriented thinking encourages designers to create
an independent class for each GameObject (as we have just done for AppleTree and
Apple), it is often very useful to also have a script that runs the game as a whole.

1. Attach the ApplePicker script to Main Camera in the Hierarchy. I often attach these
game management scripts to Main Camera because I am guaranteed that there is a Main
Camera in every scene.

2. Open the ApplePicker script in MonoDevelop, type the following code, and then save:
Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class ApplePicker : MonoBehaviour {
 [Header("Set in Inspector")] // a
 public GameObject basketPrefab;
 public int numBaskets = 3;
 public float basketBottomY = -14f;
 public float basketSpacingY = 2f;

 void Start () {

518

 for (int i=0; i<numBaskets; i++) {
 GameObject tBasketGO = Instantiate<GameObject>(basketPrefab);
 Vector3 pos = Vector3.zero;
 pos.y = basketBottomY + (basketSpacingY * i);
 tBasketGO.transform.position = pos;
 }
 }
}

a. This line adds a header to the Inspector in Unity so that you can see which variables
should be set in the Inspector. In later code listings, it will be accompanied by a "Set
Dynamically" header for variables that are calculated while the game is running.

This code instantiates three copies of the Basket prefab that are spaced out vertically.

3. In Unity, click Main Camera in the Hierarchy pane and set the basketPrefab in the
Inspector to be the Basket GameObject prefab from the Project pane. Click Play, and
you'll see that this code creates three baskets at the bottom of the screen.

Moving the Baskets with the Mouse
Next, you need to write some code to get each Basket moving along with the mouse.

1. Attach the Basket script to the Basket prefab in the Project pane.
2. Open the Basket C# script in MonoDevelop, enter this code, and save:

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Basket : MonoBehaviour {

 void Update () {
 // Get the current screen position of the mouse from Input
 Vector3 mousePos2D = Input.mousePosition; //
a

 // The Camera's z position sets how far to push the mouse into 3D
 mousePos2D.z = -
Camera.main.transform.position.z; // b

 // Convert the point from 2D screen space into 3D game world space
 Vector3 mousePos3D = Camera.main.ScreenToWorldPoint(mousePos2D); // c

 // Move the x position of this Basket to the x position of the Mouse
 Vector3 pos = this.transform.position;
 pos.x = mousePos3D.x;
 this.transform.position = pos;
 }
}

519

a. Input.mousePosition is assigned to mousePos2D. This value is in screen
coordinates, meaning that it measures how many pixels the mouse is from the top-left
corner of the screen. The z position of Input.mousePositon is always 0
because it is essentially a two-dimensional measurement.

b. This line sets the z coordinate of mousePos2D to the negative of the Main Camera's
Z position. In the game, the Main Camera is at a Z of -10, so mousePos2D.z is set
to 10. This tells the upcoming ScreenToWorldPoint() function how far to push
the mousePos3D into the 3D space, placing the final world point on the Z=0 plane.

c. ScreenToWorldPoint() converts mousePoint2D into a point in 3D space
inside the scene. If mousePos2D.z were 0, the resulting mousePos3D point
would be at a Z of -10 (the same as the Main Camera). By setting mousePos2D.z
to 10, mousePos3D is pushed into the 3D space 10 meters away from the Main
Camera position, resulting in a mousePos3D.z of 0. This matters little in Apple
Picker, but it will become much more important in future games. If this is at all
confusing, I recommend looking at Camera.ScreenToWorldPoint() in the
Unity Scripting Reference.6

Now the Baskets will move when you press Play in Unity, and you can use them to collide
with apples, though the Apples aren't really being caught yet.

Catching Apples
Next up—catching apples:

1. Add the following bold lines to the Basket C# script:
Click here to view code image

public class Basket : MonoBehaviour {

 void Update () { … }

 void OnCollisionEnter(Collision coll) { // a
 // Find out what hit this basket
 GameObject collidedWith = coll.gameObject; // b
 if (collidedWith.tag == "Apple") { // c
 Destroy(collidedWith);
 }
 }
}

a. The OnCollisionEnter method is called whenever another GameObject
collides with this basket, and a Collision argument is passed in with information
about the collision, including a reference to the GameObject that hit this basket's
Collider.

b. This line assigns this colliding GameObject to the local variable collidedWith.

520

c. Check to see whether collidedWith is an apple by looking for the "Apple" tag
that was assigned to all Apple GameObjects. If collidedWith is an apple, it is
destroyed. Now, if an apple hits this basket, it will be destroyed.

2. Save the Basket script, return to Unity, and click Play.

At this point, the game functions very similarly to the classic game Kaboom! However, it
doesn't yet have any graphical user interface (GUI) elements like a score or a
representation of how many lives the player has remaining. However, even without these
elements, Apple Picker would be a successful prototype in its current state. As is, this
prototype will allow you to tweak several aspects of the game to give it the right level of
difficulty.

3. Save your scene.
4. Make a duplicate of the current scene to use for testing game balance tweaks.

a. Click the _Scene_0 in the Project pane to select it.
b. Press Command-D on the keyboard (Ctrl+D on Windows) to duplicate the scene or

choose Edit > Duplicate from the menu bar. This creates a new scene named
_Scene_1.

c. Double-click _Scene_1 to open it.

As an exact duplicate of _Scene_0, the game in this new scene will work without any
changes.

Click AppleTree in the Hierarchy to tweak variables in _Scene_1 while leaving the
variables in _Scene_0 unchanged (any changes made to GameObjects in the Project pane
apply to both scenes). Try making the game more difficult. After you have the game
balanced for a harder difficulty level in _Scene_1, save it and reopen _Scene_0. If you're
ever concerned about which scene you have opened, just look at the title at the top of the
Unity window or the top of the Hierarchy pane. Each will always include the scene name.

GUI and Game Management
The final things to add to our game are the GUI and game management that will make it
feel like more of a real game. The GUI element we'll add is a score counter, and the game
management elements we'll add are levels and lives.

Score Counter
The score counter helps players get a sense of their level of achievement in the game.

1. Open _Scene_0 by double-clicking it in the Project pane.
2. From the Unity menu bar choose GameObject > UI > Text.7

521

Because this is the first uGUI (Unity Graphical User Interface) element to be added to this
scene, it will add several things to the Hierarchy pane. The first you'll see is a Canvas. The
Canvas is the two-dimensional board on which the GUI will be arranged. Looking in the
Scene pane, you should also see a very large 2D box extending from the origin out very far
in the x and y directions.

3. Double-click on Canvas in the Hierarchy to zoom out and see the whole thing. This
will be scaled to match your Game pane, so if you have the Game pane set to a 16:9
aspect ratio, the Canvas will follow suit. You might also want to click the 2D button
atop the Scene pane to switch to a two-dimensional view that can make working with
the Canvas easier.

The other GameObject added at the top level of the Hierarchy is the EventSystem. The
EventSystem is what allows buttons, sliders, and other interactive GUI elements that you
build in uGUI to work; however, you will not be making use of it in this prototype.

As a child of the Canvas, you will see a Text GameObject. If you don't see it there, click the
disclosure triangle in the Hierarchy next to Canvas to show its child objects. Double-click
on the Text GameObject in the Hierarchy pane to zoom in on it. It is very likely that the text
color defaulted to black, which might be difficult to see over the background of the Scene
pane.

4. Select the Text GameObject in the Hierarchy and use the Inspector pane to change its
name to HighScore.

5. Follow these directions to make the HighScore Inspector match that shown in Figure
28.10:

522

Figure 28.10 RectTransform and Text component settings for HighScore and ScoreCounter

a. In the RectTransform component of the HighScore Inspector:
 Set Anchors Min X=0, Min Y=1, Max X=0, and Max Y=1.
 Set Pivot X=0 and Y=1.
 Set Pos X=10, Pos Y = –6, and Pos Z = 0.
 Set Width=256 and Height=32.

After doing this, you should double-click HighScore in the Hierarchy again to re-
center the view of it in the Scene pane.

b. In the Text (Script) component of the HighScore Inspector:
 Set the Text section to "High Score: 1000" (without the quotes around it).
 Set the Font Style to Bold.
 Set the Font Size to 28.
 Set the Color to white, which will make it much more visible in the Game pane.

6. Right-click on HighScore in the Hierarchy and choose Duplicate.8

7. Select the new HighScore (1) GameObject and change its name to ScoreCounter.
8. Alter the RectTransform and Text values of ScoreCounter in the Inspector to match

those shown in Figure 28.10. Don't forget to set the Anchors and Pivot in the
RectTransform component and the Alignment in the Text component. Notice that when
you change the Anchors or Pivot in the RectTransform, Unity automatically changes the

523

Pos X to keep the ScoreCounter in the same place within the Canvas. To prevent Unity
from doing this, click the R button in the RectTransform that is shown under the mouse
cursor in the ScoreCounter Inspector in Figure 28.10.

As you've seen here, the coordinates for uGUI GameObjects differ completely from those
for regular GameObjects and use a RectTransform instead of a regular Transform. The
coordinates for a RectTransform are all relative to the Canvas parent of the uGUI
GameObject. Clicking the help icon for the RectTransform component (circled in Figure
28.10) can give you more information about how this works. Be sure to save your scene
before moving on.

Add Points for Each Caught Apple
When a collision occurs between an apple and a basket, two scripts are notified: the Apple
and Basket scripts. In this game, there is already an OnCollisionEnter() method on
the Basket C# script, so in the following steps you modify the Basket script to give the
player points for each Apple that is caught. One hundred points per apple seems like a
reasonable number (though I've personally always thought it was a little ridiculous to have
those extra zeroes at the end of scores).

1. Open the Basket script in MonoDevelop and add the bolded lines shown here:
Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI; // This line enables use of uGUI features. // a

public class Basket : MonoBehaviour {
 [Header("Set Dynamically")]
 public Text scoreGT; // a

 void Start() {
 // Find a reference to the ScoreCounter GameObject
 GameObject scoreGO = GameObject.Find("ScoreCounter"); // b
 // Get the Text Component of that GameObject
 scoreGT = scoreGO.GetComponent<Text>(); // c
 // Set the starting number of points to 0
 scoreGT.text = "0";
 }

 void Update () { … }

 void OnCollisionEnter(Collision coll) {
 // Find out what hit this basket
 GameObject collidedWith = coll.gameObject;
 if (collidedWith.tag == "Apple") {
 Destroy(collidedWith);

524

 // Parse the text of the scoreGT into an int
 int score = int.Parse(scoreGT.text); // d
 // Add points for catching the apple
 score += 100;
 // Convert the score back to a string and display it
 scoreGT.text = score.ToString();
 }
 }
}

a. Be sure you don't neglect to enter these lines. They are separated from the others.
b. GameObject.Find("ScoreCounter") searches through all the GameObjects

in the scene for one named "ScoreCounter" and assigns it to the local variable
scoreGO. Make sure "ScoreCounter" does not contain a space in code or in the
Hierarchy.

c. scoreGO.Getcomponent<Text>() searches for a Text component on the
scoreGO GameObject, and this is assigned to the public field scoreGT. The starting
score is then set to zero on the next line. Without the earlier using
UnityEngine.UI; line, the Text component would not be defined for C# within
Unity. As Unity Technology's coding practices get stronger, they are moving to more of
a model like this where you must include the code libraries for their new features
manually.

d. int.Parse(scoreGT.text) takes the text shown in ScoreCounter and
converts it to an integer. 100 points are added to the int score, and it is then
assigned back to the text of scoreGT after being parsed from an int to a string by
score.ToString().

Notifying Apple Picker That an Apple Was Dropped
Another aspect of making Apple Picker feel more like a game is ending the round and
deleting a basket if an apple is dropped. At this point, apples manage their own destruction,
which is fine, but the apple needs to somehow notify the ApplePicker script of this event so
that it can end the round and destroy the rest of the apples. This involves one script calling
a function on another.

1. Start by making these modifications to the Apple C# script in MonoDevelop:
Click here to view code image

public class Apple : MonoBehaviour {
 [Header("Set in Inspector")]
 public static float bottomY = -20f;

 void Update () {
 if (transform.position.y < bottomY) { // a
 Destroy(this.gameObject);

525

 // Get a reference to the ApplePicker component of Main Camera
 ApplePicker apScript = Camera.main.GetComponent<ApplePicker>
(); // b
 // Call the public AppleDestroyed() method of apScript
 apScript.AppleDestroyed(); // c
 }
 }
}

a. Note that all of these added lines are within this if statement.
b. This grabs a reference to the ApplePicker (Script) component on the Main Camera.

Because the Camera class has a built-in static variable Camera.main that
references the Main Camera, using GameObject.Find("Main Camera") to
obtain a reference to Main Camera is not necessary.
GetComponent<ApplePicker>() is then used to grab a reference to the
ApplePicker (Script) component on Main Camera and assign it to apScript. After
this is done, accessing public variables and methods of the ApplePicker class
instance attached to Main Camera becomes possible.

c. This calls a non-existent AppleDestroyed() method of the ApplePicker class.
Because it doesn't exist yet, MonoDevelop will color it red, and you will not be able
to play the game in Unity until AppleDestroyed() is defined.

2. A public AppleDestroyed() method does not yet exist in the ApplePicker script,
so open the ApplePicker C# script in MonoDevelop and make the following bolded
changes:

Click here to view code image

public class ApplePicker : MonoBehaviour {
 …
 void Start () { … }

 public void AppleDestroyed() { // a
 // Destroy all of the falling apples
 GameObject[] tAppleArray=GameObject.FindGameObjectsWithTag("Apple");
// b
 foreach (GameObject tGO in tAppleArray) {
 Destroy(tGO);
 }
 }
}

a. The AppleDestroyed() method must be declared public for other classes
(like Apple) to be able to call it. By default, methods are all private and unable to be
called (or even seen) by other classes.

b. GameObject.FindGameObjectsWithTag("Apple") will return an array
of all existing Apple GameObjects.9 The subsequent foreach loop iterates through
each of these and destroys them.

526

Save All scripts in MonoDevelop. With AppleDestroyed() now defined, the game is
once again playable in Unity.

Destroying a Basket When an Apple Is Dropped
The final bit of code for this scene will manage the deletion of one of the baskets each time
an apple is dropped and stop the game when all the baskets have been destroyed. Make the
following changes to the ApplePicker C# script (this time, the entire code is listed, just in
case):
Click here to view code image

using System.Collections;
using System.Collections.Generic; // a
using UnityEngine;
using UnityEngine.SceneManagement; // b

public class ApplePicker : MonoBehaviour {
 [Header("Set in Inspector")]
 public GameObject basketPrefab;
 public int numBaskets = 3;
 public float basketBottomY = -14f;
 public float basketSpacingY = 2f;
 public List<GameObject> basketList;

 void Start () {
 basketList = new List<GameObject>(); // c
 for (int i=0; i<numBaskets; i++) {
 GameObject tBasketGO = Instantiate<GameObject>(basketPrefab);
 Vector3 pos = Vector3.zero;
 pos.y = basketBottomY + (basketSpacingY * i);
 tBasketGO.transform.position = pos;
 basketList.Add(tBasketGO); // d
 }
 }

 public void AppleDestroyed() {
 // Destroy all of the falling apples
 GameObject[] tAppleArray=GameObject.FindGameObjectsWithTag("Apple");
 foreach (GameObject tGO in tAppleArray) {
 Destroy(tGO);
 }

 // Destroy one of the baskets // e
 // Get the index of the last Basket in basketList
 int basketIndex = basketList.Count-1;
 // Get a reference to that Basket GameObject
 GameObject tBasketGO = basketList[basketIndex];
 // Remove the Basket from the list and destroy the GameObject
 basketList.RemoveAt(basketIndex);
 Destroy(tBasketGO);
 }
}

527

a. You will be storing the Basket GameObjects in a List, so it is necessary to use the
System.Collections.Generic code library, which as of Unity 5.5 is
included in all new scripts. (For more information about lists, see Chapter 23,
"Collections in C#.") The public List<GameObject> basketList is
declared at the beginning of the class, and it is defined and initialized in the first line
of Start().

b. This will be used in step 3 of Adding a High Score later in the chapter.
c. This line defines basketList as a new List<GameObject>. Though this was

already declared by the line at // b, the value of basketList after declaration is
null. The initialization on this line makes it an actual List that can be used.

d. A new line is added to the end of the for loop that Adds the baskets to
basketList. The baskets are added in the order they are created, which means that
they are added bottom to top.

e. In the method AppleDestroyed() a new section has been added to destroy one
of the baskets. Because the baskets are added from bottom to top, it's important that
the last basket in the list is destroyed first (to destroy the baskets top to bottom).

If you play the game now and run out of baskets, Unity will throw an IndexOutOfRange
exception.

Adding a High Score
Now you'll make use of the HighScore Text GameObject that you created earlier:

1. Create a new C# script named HighScore, and attach it to the HighScore GameObject
in the Hierarchy pane.

2. Open the HighScore script in MonoDevelop and give it the following code:
Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI; // Remember, we need this line for uGUI to work.

public class HighScore : MonoBehaviour {
 static public int score = 1000; // a

 void Update () { // b
 Text gt = this.GetComponent<Text>();
 gt.text = "High Score: "+score;
 }
}

a. Making the int score not only public but also static gives you the ability to
access it from any other script by simply typing HighScore.score. This is one of

528

the powers of static variables that you will use throughout the prototypes in this book.
b. The lines in Update() simply display the value of score in the Text component.

Calling ToString() on the score is not necessary in this instance because when
the + operator is used to concatenate a string with another data type (the "High
Score: " string literal is concatenated with the int score in this case),
ToString() is called implicitly (that is, automatically).

3. Open the Basket C# script and add the following bolded lines to see how this is used:
Click here to view code image

public class Basket : MonoBehaviour {
 …
 void OnCollisionEnter(Collision coll) {
 …
 if (collidedWith.tag == "Apple") {
 …
 // Convert the score back to a string and display it
 scoreGT.text = score.ToString();

 // Track the high score
 if (score > HighScore.score) {
 HighScore.score = score;
 }
 }
 }
}

Now HighScore.score will be set any time the current score exceeds it.
4. Open the ApplePicker C# script and add the following lines to reset the game whenever

a player runs out of baskets. This code avoids the IndexOutOfRange exception
mentioned earlier.

Click here to view code image

public class ApplePicker : MonoBehaviour {
 …
 public void AppleDestroyed() {
 …
 // Remove the Basket from the list and destroy the GameObject
 basketList.RemoveAt(basketIndex);
 Destroy(tBasketGO);

 // If there are no Baskets left, restart the game
 if (basketList.Count == 0) {
 SceneManager.LoadScene("_Scene_0");
 // a
 }
 }
}

a. SceneManager.LoadScene("_Scene_0") will reload _Scene_0. It will

529

not work unless you added the line using
UnityEngine.SceneManagement; under the Destroying a Basket When an
Apple Is Dropped heading earlier. Reloading the scene effectively resets the game to
its beginning state.10

5. You've changed a number of scripts now. Did you remember to save after changing each
one? If not—or if you're not sure, as I often am—you can choose File > Save All from
the MonoDevelop menu bar to save all modified but unsaved scripts. If Save All is
grayed out, then congratulations—all your scripts are already saved.

Preserving the High Score in PlayerPrefs
Because HighScore.score is a static variable, it is not reset along with the rest of the
game. This means that high scores will remain from one round to the next. However,
whenever you stop the game (by clicking the Play button again), HighScore.score will
reset. You can fix this through the use of Unity's PlayerPrefs. PlayerPrefs variables store
information from Unity scripts on the computer so that the information can be recalled later
and isn't destroyed when playback stops. PlayerPrefs also work across the Unity editor,
compiled builds, and WebGL builds, so the high score you get in one will carry over to the
others, as long as they're run on the same machine.

1. Open the HighScore C# script and add the following bolded changes:
Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI; // Remember, we need this line for uGUI to work.

public class HighScore : MonoBehaviour {
 static public int score = 1000;

 void
Awake() { // a
 // If the PlayerPrefs HighScore already exists, read it
 if (PlayerPrefs.HasKey("HighScore")) { // b
 score = PlayerPrefs.GetInt("HighScore");
 }
 // Assign the high score to HighScore
 PlayerPrefs.SetInt("HighScore", score); // c
 }

 void Update () {
 Text gt = this.GetComponent<Text>();
 gt.text = "High Score: "+score;
 // Update the PlayerPrefs HighScore if necessary
 if (score > PlayerPrefs.GetInt("HighScore")) { // d
 PlayerPrefs.SetInt("HighScore", score);
 }
 }

530

}

a. Awake() is a built-in Unity MonoBehaviour method (like Start() or
Update()) that happens when this instance of the HighScore class is first created
(so Awake()always occurs before Start()).

b. PlayerPrefs is a dictionary of values that are referenced through keys (that is, unique
strings). In this case, you're referencing the key HighScore. This line checks to see
whether a HighScore int already exists in PlayerPrefs and reads it in if it does exist.
PlayerPrefs are stored separately for each project/application, so naming this
HighScore is okay; it won't conflict with a HighScore stored in PlayerPrefs by a
different project.

c. The last line of Awake() assigns the current value of score to the HighScore
PlayerPrefs key. If a HighScore int already exists, this will rewrite the value back to
PlayerPrefs; if the key does not already exist, however, this ensures that an HighScore
key is created.

d. With the added lines, Update() now checks every frame to see whether the current
HighScore.score is higher than the one stored in PlayerPrefs and updates
PlayerPrefs if that is the case.

This usage of PlayerPrefs enables the Apple Picker high score to be remembered on this
machine, and the high score will survive stopping playback, quitting Unity, and even
restarting your computer.

2. Save All in MonoDevelop again, just to be sure. Switch back to Unity and click Play.

Now, you should be able to play the game complete with score and high score. If you attain
a new high score, try stopping the game and restarting it, and you'll see that your high score
is saved.

Summary
Now you have a game prototype that plays very similarly to the classic Activision game
Kaboom!. Although this game still lacks elements like steadily increasing difficulty and an
opening and closing screen, you can add these things yourself after you gain more
experience.

Next Steps
Here are some ideas for additional elements that you could add to the prototype in the
future. One of the best ways to learn coding is to follow a tutorial like this chapter and then
try to add your own modifications to it.

 Start screen: You could build a start screen in its own scene and give it a splash image

531

and a Start button. The Start button could then call SceneManager.LoadScene (
"_Scene_0"); to start the game. Remember that you need to enable SceneManager
by adding the line using UnityEngine.SceneManagement; to the top of your
script.
 Game Over screen: You could also create a Game Over screen. The Game Over
screen could display the final score that the player achieved and could let the player
know if she exceeded the previous high score. It should have a button labeled Play
Again that calls SceneManager.LoadScene("_Scene_0").
 Increasing difficulty: Varying difficulty levels are discussed in later prototypes, but if
you wanted to add them here, it would make sense to store an array or list for each of the
values on AppleTree, such as speed, chanceToChangeDirections, and
secondsBetweenAppleDrops. Each element in the list could be a different level of
difficulty, with the 0th element being the easiest and the last element being the most
difficult. As the player played the game, a level counter could increase over time and be
used as the index for these lists; so at level=0, the 0th element of each variable would be
used.

If you choose to add either a Start screen or Game Over scene to the game, you will need to
add every scene in your game to the Build Settings scene list one at a a time. To do so, open
each scene in Unity and then choose File > Build Settings… from the Unity menu. In the
Build Settings window that opens, click Add Open Scenes, and the name of the currently
open scene will be added to the Scenes in Build list. If you do create a build of this game,
the scene numbered zero will be the one that loads when the game first runs.

1. Steve Swink, Game Feel: A Game Designer's Guide to Virtual Sensation (Boston:
Elsevier, 2009).

2. When you work with the Unity Standard Shader, Albedo is the main color of the shader.
To learn more about the Standard Shader, search for "Standard Shader" in the Unity
Manual (http://docs.unity.com). This is a pretty deep topic with several subsections in
the table of contents at the left side of the Unity documentation. If you want to learn
about Albedo directly, you can search for "Albedo Color and Transparency."

3. I chose Metallic=0 and Smoothness=0.25. As you adjust these, you can see the effect on
the Trunk in the Scene pane. You can also look at the material preview sphere at the
bottom of the Inspector.

4. See Chapter 19, "Hello World: Your First Program," for a discussion of prefabs.
5. Another reason for omitting line numbers is that I needed every single character I could

get to fit some long lines of code on a single line of the printed page.
6. The reference is located at https://docs.unity3d.com/ScriptReference/. Be sure to click

the C# button there so that you're looking C# documentation (as opposed to JavaScript).
7. Once, when I was testing this section of the tutorial, the GameObject > UI > Text

532

http://docs.unity.com
https://docs.unity3d.com/ScriptReference/

option of the Unity menu was grayed out for some reason. If that happens for you, right-
click in the empty part of the Hierarchy pane and choose UI > Text from the right-click
menu.

8. You might need to click once in the Hierarchy pane to see the HighScore (1) duplicate
appear.

9. GameObject.FindGameObjectsWithTag() is actually a rather processor-
intensive function, so I wouldn't recommend using it inside an Update() or
FixedUpdate(). However, because this is only happening when the player loses a
Basket (and the gameplay is already slowed here), in this case, it's fine to use.

10. In all recent versions of Unity up to at least Unity 2017, a known bug often occurs when
reloading a level. If you see the scene get much darker when it reloads using the
SceneManager, then you're encountering this issue. Until Unity fixes the bug, one interim
fix for this is to disable automatic light baking (which pre-computes some of the lighting
for the scene). To do so, open the Lighting pane by selecting Window > Lighting >
Settings from the Unity menu bar. Uncheck Auto Generate at the bottom of the Lighting
pane (next to the Generate Lighting button). Then click the Generate Lighting button
once to manually rebuild lighting, wait for it to complete, and close the Lighting
window. This bug should only occur inside the Unity editor and shouldn't affect any
WebGL or standalone application builds that you make.

533

CHAPTER 29

PROTOTYPE 2: MISSION DEMOLITION

Physics games are some of the most popular around, making games like Angry
Birds household names. In this chapter, you make your own physics game that is
inspired by Angry Birds and all the other physics games that came before it, such
as Crossbows and Catapults, Worms, Scorched Earth, and so on.

This chapter covers the following: physics, collision, mouse interaction, levels,
and game state management.

Getting Started: Prototype 2
Because this is the second prototype, and you now have some experience under your belt,
this chapter is going to move a bit faster than the last on things that you already know. Of
course, I still cover new topics in detail. I recommend using a pencil to check off each step
in this tutorial as you complete them.

SET UP THE PROJECT FOR THIS CHAPTER
Following the standard project setup procedure, create a new project in Unity. If
you need a refresher on the procedure, see Appendix A, "Standard Project Setup
Procedure."

 Project name: Mission Demolition Prototype
 Scene name: _Scene_0
 C# script names: None yet

Game Prototype Concept
In this game, the player uses a slingshot to fire projectiles at a castle, hoping to demolish it.
Each castle has a goal area that the projectile must touch for the player to continue to the
next level.

534

This is the desired sequence of events:
1. When the player's mouse pointer is in range of the slingshot, the slingshot should glow.
2. If the player presses the left mouse button (mouse button 0 in Unity) down while the

slingshot is glowing, a projectile will instantiate at the location of the mouse pointer.
3. As the player moves and drags the mouse around with the button held down, the

projectile follows it, yet remains within the limits of the Sphere Collider on the
slingshot.

4. A white line stretches from each arm of the slingshot around the projectile to make it
look more like an actual slingshot.

5. When the player releases mouse button 0, the projectile fires from the slingshot.
6. The player's goal is to knock down a castle that is several meters away and hit a target

area inside.
7. The player has a total of three shots to hit the goal. The most recent shot will leave a

trail so that the player can better judge her next shot.

Many of the preceding events relate to mechanics, but one is exclusively aesthetics: step 4.
All the other elements that mention art use that art for the purpose of game mechanics, but
step 4 is just to make the game look nicer, so it's less critical to the prototype. When you're
writing down your concepts for games, this is an important thing to keep in mind. That isn't
to say that you shouldn't implement things that are entirely aesthetic in a prototype; you just
need to be aware of and prioritize the elements that will have the most direct impact on the
game mechanics. For the sake of time and space, this prototype focuses on the other
elements, and I leave the implementation of step 4 for you to tackle later.

Art Assets
You should create several art assets now to prepare the project for coding.

Ground
To create the ground, follow these steps:

1. Open _Scene_0. Make sure that you can see the contents of _Scene_0 in the Hierarchy
pane, which should be Main Camera and Directional Light (if you can't see them, click
the disclosure triangle next to _Scene_0 in the Hierarchy pane).

2. Create a cube (select GameObject > 3D Object > Cube from the menu bar). Rename
the cube to Ground. To make Ground a rectangular solid that is very wide in the X
direction, set its transform to the following:
Ground (Cube)  P:[0, -10, 0]  R:[0, 0, 0]  S:[100, 1, 4]

3. Create a new material (Assets > Create > Material) and name it Mat_Ground.

535

a. Give Mat_Ground a brown Albedo color.
b. Also set the Smoothness of the material to 0 (the ground is not very shiny).
c. Attach Mat_Ground to the Ground GameObject in the Hierarchy. (The previous

chapter describes how to do this.)
4. Save your scene.

Directional Light
In the most recent versions of Unity, a Directional Light exists in a new scene by default,
but you still need to give it the right settings for your project.

1. Select Directional Light in the Hierarchy pane. One of the features of directional lights
is that their position doesn't matter to the scene; only the rotation of a directional light is
taken into consideration. That being the case, move it out of the way by setting its
transform to the following:
Directional Light  P:[-10, 0, 0]  R:[50, -30, 0]  S:[1, 1, 1].

2. Save your scene.

Camera Settings
Camera settings are next:

1. Select the Main Camera in the Hierarchy and rename it to _MainCamera.
2. Give _MainCamera the following Transform settings (be sure that you set the Y

position to 0):
_MainCamera  P:[0, 0, -10]  R:[0, 0, 0]  S:[1, 1, 1].

3. Give the _MainCamera Camera component these settings:
a. Set Clear Flags to Solid Color.
b. Choose a brighter Background color to look more like a sky blue.
c. Set Projection to Orthographic.
d. Set Size to 10.

The final settings should look like Figure 29.1. Note in particular that the bar at the bottom
of the Background color should be white, not black. If it is black, that means that the Alpha
(or transparency) value of the color is set to 0 (or fully transparent/invisible). To fix this,
click on the color and set the A value of the color to 255.1

536

Figure 29.1 _MainCamera settings for Transform and Camera components

Though you have used orthographic cameras before, I did not previously clarify the
meaning of the Size setting. In an orthographic projection, Size sets the distance from the
center to the bottom of the camera view, so Size is half the height of what the camera is able
to see. You can see that illustrated in the Game pane shown in Figure 29.2. Ground is at a Y
position of -10, and it is perfectly bisected by the bottom of the Game window.2 Try
changing the aspect ratio of the Game pane via the pop-up menu highlighted under the
mouse pointer in Figure 29.2. You will see that no matter what aspect ratio you select, the
center of the Ground cube is still positioned perfectly at the bottom of the Game pane.

4. After you've explored this for a while, choose an aspect ratio of 16:9, as shown in the
figure.

537

Figure 29.2 Demonstration of the meaning of an orthographic camera size of 10

5. Save your scene. Always save your scene.

The Slingshot
Now make a simple slingshot out of three cylinders:

1. Create an empty GameObject (GameObject > Create Empty). Change the
GameObject's name to Slingshot and set its transform to the following:
Slingshot (Empty)  P:[0, 0, 0]  R:[0, 0, 0]  S:[1, 1, 1].

2. Create a new cylinder (GameObject > 3D Object > Cylinder) and change its name to
Base. In the Hierarchy, drag Base onto Slingshot, making Slingshot its parent. Click the
disclosure triangle next to Slingshot and select Base again. Set Base's transform to the
following:
Base (Cylinder)  P:[0, 1, 0]  R:[0, 0, 0]  S:[0.5, 1, 0.5]

3. With Base selected, click the gear icon next to the Capsule Collider component in the
Inspector and select Remove Component (see Figure 29.3). This removes the Collider
component from Base.

538

Figure 29.3 Removing the Collider Component

4. Create a new Material named Mat_Slingshot, color its Albedo a light yellow (or
whatever color you want), and set its smoothness to 0. Drag Mat_Slingshot onto Base
to apply the material to the GameObject.

5. Select Base in the Hierarchy pane and duplicate it by pressing Command-D on your
keyboard (Ctrl+D on Windows machines; or by selecting Edit > Duplicate from the
menu bar). By duplicating, you ensure that the new duplicate is also a child of Slingshot,
that it retains the Mat_Slingshot material, and that it won't have a Collider.

6. Change the name of the new duplicate from Base (1) to LeftArm. Set the transform of
LeftArm to the following:
LeftArm (Cylinder)  P:[0, 3, 1]  R:[45, 0, 0]  S:[0.5, 1.414, 0.5]

This makes one of the arms of the slingshot.
7. Select LeftArm in the Hierarchy and duplicate it (Command-D or Ctrl+D). Rename this

instance RightArm. Set the transform of RightArm to the following:
RightArm (Cylinder)  P:[0, 3, -1]  R:[-45, 0, 0]  S:[0.5, 1.414, 0.5].

8. Select the Slingshot in the Hierarchy. Add a Sphere Collider component to Slingshot
(Component > Physics > Sphere Collider). Set the Sphere Collider component to the
settings shown in Figure 29.4 (Is Trigger = true, Center = [0, 4, 0], Radius = 3).

539

Figure 29.4 Settings for the Sphere Collider component of Slingshot

As you might expect, a collider with Is Trigger = true is known as a trigger. Triggers are
part of the physics simulation in Unity and send notifications when other colliders or
triggers pass through them. However, other objects don't bounce off of triggers as they do
normal colliders. You'll use this large spherical trigger to handle the mouse interaction with
Slingshot.

9. Set the transform of Slingshot to the following:
Slingshot (Empty)  P:[-10, -10, 0]  R:[0, -15, 0]  S:[1, 1, 1]

This grounds it on the left side of the screen, and the -15° Y rotation gives it a bit of
dimensionality, even through an orthographic camera.
10. Add a launch point to the slingshot to give it a specific location from which to shoot the

projectiles. Right-click Slingshot in the Hierarchy and choose Create Empty from the
pop-up menu to make a new empty child GameObject of Slingshot. Rename this
GameObject LaunchPoint. Set the transform of LaunchPoint to the following:
LaunchPoint (Empty)  P:[0, 4, 0]  R:[0, 15, 0]  S:[1, 1, 1]

The 15° Y rotation causes LaunchPoint to align with the XYZ axes in world coordinates.
(That is, it removes the -15° rotation that was added to Slingshot.) If you choose the Move
tool (press W on your keyboard), you can see the location and orientation of LaunchPoint in
the Scene pane.3

11. Save your scene.

Projectile

540

Next comes the projectile.
1. Create a sphere in the scene (GameObject > 3D Object > Sphere) and name it

Projectile.
2. Select Projectile in the Hierarchy and attach a Rigidbody component (Component >

Physics > Rigidbody). This Rigidbody component enables the projectile to be
physically simulated, similar to the apples in Apple Picker.
a. Set Mass to 5 in the Projectile Rigidbody Inspector.

3. Create a new material and name it Mat_Projectile. Make Mat_Projectile's Albedo a
dark gray color. Set Metallic to 0.5 and Smoothness to 0.65 to make it look more like a
metal ball. Apply Mat_Projectile to the Projectile in the Hierarchy.

4. Drag Projectile from the Hierarchy pane to the Project pane to make it a prefab. Delete
the Projectile instance that remains in the Hierarchy pane.

Your Project and Hierarchy panes should now look like those shown in Figure 29.5.

Figure 29.5 Project and Hierarchy panes at this point. The asterisk next to _Scene_0
means I should save.

5. Save your scene.

Coding the Prototype
With the art assets in place, it's time to start adding code to this project. The first script to
add is one for Slingshot that will cause it to react to mouse input, instantiate a projectile,
and fire that projectile. You will write this script an iterative manner by adding only small
sections of code at a time, testing the code, and then adding a little more. When you start
creating your own scripts, this is a fantastic way to approach them: Implement something
small and easy to code, test it, implement another small thing, repeat.

Creating the Slingshot Class
Follow these steps to create the Slingshot class:

1. Create a new C# script and name it Slingshot (Assets > Create > C# Script). Attach it
to the Slingshot in the Hierarchy and open the Slingshot C# script in MonoDevelop.

541

Enter the following code and delete any extra lines that were placed there by default:
Click here to view code image

using UnityEngine;
using System.Collections;

public class Slingshot : MonoBehaviour {

 void OnMouseEnter() {
 print("Slingshot:OnMouseEnter()");
 }

 void OnMouseExit() {
 print("Slingshot:OnMouseExit()");
 }

}

2. Save the Slingshot script in MonoDevelop and return to Unity.
3. Click Play and move the mouse within the Sphere Collider of Slingshot in the Game

pane. Doing so outputs "Slingshot:OnMouseEnter()" to the Console pane.
Moving the mouse out of the Slingshot Sphere Collider causes
"Slingshot:OnMouseExit()" to output. The OnMouseEnter() and
OnMouseExit()functions in this script work automatically on any collider or trigger.

This is just the first step of the script you'll write to launch projectiles, but it's important to
start with small steps and build progressively.

Showing When the Slingshot Is Active
Next, add a highlight to show the player that the slingshot is active:

1. Select LaunchPoint in the Hierarchy. Add a Halo component to LaunchPoint
(Component > Effects > Halo), which will create a glowing sphere effect at the Launch
Point location. Set the Size of the halo to 3 and make the Color a light gray to make sure
that it's visible (my settings are [r:191, g:191, b:191, a:255]).

2. Now add the following code to the Slingshot C# script. As you can see, this is also a
good time to comment out the print() statements from the last test:

Click here to view code image

public class Slingshot : MonoBehaviour {
 public GameObject launchPoint;

 void Awake() {
 Transform launchPointTrans =
transform.Find("LaunchPoint"); // a
 launchPoint = launchPointTrans.gameObject;
 launchPoint.SetActive(false

542

); // b
 }

 void OnMouseEnter() {
 //print("Slingshot:OnMouseEnter()");
 launchPoint.SetActive(true
); // b
 }

 void OnMouseExit() {
 //print("Slingshot:OnMouseExit()");
 launchPoint.SetActive(false
); // b
 }

}

a. transform.Find("LaunchPoint") searches for a child of Slingshot named
LaunchPoint and returns its Transform. The next line gets the GameObject associated
with that Transform and assigns it to the GameObject field launchPoint.

b. The SetActive() method on GameObjects like launchPoint tells the game
whether or not to ignore them. More on this soon.

3. Save the Slingshot script, return to Unity, and click Play. You can see that as your mouse
enters and leaves the sphere collider trigger of Slingshot, the halo turns on and off,
indicating the range at which the player can interact with the slingshot.

As mentioned in // b, the SetActive() method on GameObjects like launchPoint tells
the game whether or not to ignore them. If a GameObject has active set to false, it will
not render on screen, and it will not receive any calls to functions like Update() or
OnCollisionEnter(). This does not destroy the GameObject, but just removes it
from being an active part of the game. In the Inspector for a GameObject, the check box at
the top of the Inspector just to the left of the GameObject's name indicates whether the
GameObject is active (see Figure 29.6).

543

Figure 29.6 The GameObject active check box and the component enabled check box.

Components have a similar check box. This sets whether a component is enabled. For most
components (e.g., Renderer and Colliders) this can also be set in code (e.g.,
Renderer.enabled = false), but for some reason, Halo is not an accessible
component in Unity, meaning that we can't affect a Halo component from C#. Every once in
a while, you will encounter an inconsistency like this, and you need to find a workaround.
In this case, we can't disable the Halo, so instead let's deactivate the GameObject that
contains it.

4. Save your scene.

Instantiating a Projectile
The next step is to instantiate the projectile when the player presses mouse button 0.

Warning
DON'T CHANGE THE OnMouseEnter() OR OnMouseExit() CLAUSES
IN THE FOLLOWING CODE LISTING! This was mentioned in previous
chapters, but I repeat it here just in case.

In the OnMouseEnter() and OnMouseExit()clauses of the code listing for
Slingshot, you will see the symbol { … } (braces around ellipses). As we write
more and more complicated games, the scripts are going to get longer and longer.

544

Whenever you see the name of a preexisting function followed by { … }, this
indicates that all the code from the previous listing is to remain unchanged
between those braces. In this example, OnMouseEnter() and
OnMouseExit() should still remain:

Click here to view code image

 void OnMouseEnter() {
 //print("Slingshot:OnMouseEnter()");
 launchPoint.SetActive(true);
 }
 void OnMouseExit() {
 //print("Slingshot:OnMouseExit()");
 launchPoint.SetActive(false);
 }

Be sure to watch for these. Anywhere that you see ellipses in code, it means that
I've used them to help shorten the code listings in this book and eliminate things
you've already typed. { … } is not actual C# code.

1. Add the following bolded code to Slingshot:
Click here to view code image

public class Slingshot : MonoBehaviour {
 // fields set in the Unity Inspector pane
 [Header("Set in Inspector")] // a
 public GameObject prefabProjectile;

 // fields set dynamically
 [Header("Set Dynamically")] // a

 public GameObject launchPoint;
 public Vector3 launchPos; // b
 public GameObject projectile; // b
 public bool aimingMode; // b

 void Awake() {
 Transform launchPointTrans = transform.FindChild("LaunchPoint");
 launchPoint = launchPointTrans.gameObject;
 launchPoint.SetActive(false);
 launchPos = launchPointTrans.position; // c
 }

 void OnMouseEnter() { … } // Do not change OnMouseEnter()

 void OnMouseExit() { … } // Do not change OnMouseExit()

 void OnMouseDown() { // d
 // The player has pressed the mouse button while over Slingshot

545

 aimingMode = true;
 // Instantiate a Projectile
 projectile = Instantiate(prefabProjectile) as GameObject;
 // Start it at the launchPoint
 projectile.transform.position = launchPos;
 // Set it to isKinematic for now
 projectile.GetComponent<Rigidbody>().isKinematic = true;
 }
}

a. Code between brackets like this is called a compiler attribute, and it gives specific
instructions to either Unity or the compiler. In this case, the Header attribute tells
Unity to create a header in the Inspector view of this script. After you have saved this
code, select Slingshot in the Hierarchy pane and look at the Slingshot (Script)
component. You will see headers separating the public fields into two sections: one
that you are meant to set within the Inspector, and a second section that will be set
dynamically when your game is running.
In this example, you must set prefabProjectile (a reference to the prefab for all
the projectiles) in the Unity Inspector before running the game, whereas all the other
variables are meant to be set dynamically. The headers allow you to easily see the
difference between these in the Inspector.

b. Looking now at the other new fields:
 launchPos stores the 3D world position of launchPoint.
 projectile is a reference to the new Projectile instance that is created.
 aimingMode is normally false, but is set to true when the player presses mouse
button 0 down over Slingshot. This state variable lets the rest of the code know
how to behave. In the next section, we'll write code for Slingshot's Update()
that only runs when aimingMode == true.

c. In Awake(), we've added a single line to set launchPos.
d. The OnMouseDown() method contains the bulk of changes for this listing.

OnMouseDown() will only be called on the frame that the player presses the mouse
button down over the Collider component of the Slingshot GameObject, so this method can
only be called if the mouse is in a valid start position. An instance of
prefabProjectile is created and assigned to projectile. Then projectile is
placed at the launchPos location. Finally, isKinematic on the projectile's Rigidbody
is set to true. When a Rigidbody is kinematic, it is not moved automatically by physics but
is still part of the simulation (meaning that a kinematic Rigidbody will not move as a result
of a collision or gravity but can still cause other nonkinematic Rigidbodies to move).

2. Save and return to Unity. Select Slingshot in the Hierarchy pane and set
prefabProjectile to be the Projectile prefab in the Project pane (either by clicking the
target to the right of prefabProjectile in the Inspector or by dragging the Projectile

546

prefab from the Project pane onto the prefabProjectile in the Inspector).
3. Click Play, move your mouse pointer inside the active area for the slingshot, and click.

The Projectile instance appears.
4. Let's make it do more. Add the following field and Update() method to the Slingshot

class:
Click here to view code image

public class Slingshot : MonoBehaviour {
 // fields set in the Unity Inspector pane
 [Header("Set in Inspector")]
 public GameObject prefabProjectile;
 public float velocityMult =
8f; // a

 // fields set dynamically
 [Header("Set Dynamically")]
 …

 public bool aimingMode;

 private Rigidbody
 projectileRigidbody; // a

 void Awake() { … }
 …

 void OnMouseDown() {
 …

 // Set it to isKinematic for now
 projectileRigidbody = projectile.GetComponent<Rigidbody>
(); // a
 projectileRigidbody.isKinematic =
true; // a
 }

 void Update() {
 // If Slingshot is not in aimingMode, don't run this code
 if (!aimingMode)
return; // b

 // Get the current mouse position in 2D screen coordinates
 Vector3 mousePos2D =
Input.mousePosition; // c
 mousePos2D.z = -Camera.main.transform.position.z;
 Vector3 mousePos3D = Camera.main.ScreenToWorldPoint(mousePos2D);

 // Find the delta from the launchPos to the mousePos3D
 Vector3 mouseDelta = mousePos3D-launchPos;
 // Limit mouseDelta to the radius of the Slingshot
SphereCollider // d
 float maxMagnitude = this.GetComponent<SphereCollider>().radius;

547

 if (mouseDelta.magnitude > maxMagnitude) {
 mouseDelta.Normalize();
 mouseDelta *= maxMagnitude;
 }

 // Move the projectile to this new position
 Vector3 projPos = launchPos + mouseDelta;
 projectile.transform.position = projPos;

 if (Input.GetMouseButtonUp(0))
{ // e
 // The mouse has been released
 aimingMode = false;
 projectileRigidbody.isKinematic = false;
 projectileRigidbody.velocity = -mouseDelta * velocityMult;
 projectile = null;
 }
 }
}

a. Be sure that you make all three of these changes. These new last two lines of
OnMouseDown() replace the line you typed in the previous code listing.

b. If Slingshot is not in aimingMode, then return and don't run the rest of this code.
c. Convert the mouse position from screen coordinates to world coordinates. The

previous chapter provides a discussion of how this works.
d. This code limits the movement of the projectile to keep the center of the projectile

within the radius of the Sphere Collider on Slingshot. More on this soon.
e. Input.GetMouseButtonUp(0) is another way to read the state of the mouse

buttons.

Most of this is explained in the in-line comments; however, the vector math involved bears
a closer examination.

As you can see in Figure 29.7, vectors are added and subtracted one component at a time.
The figure is two dimensional, but the same methods work for 3D. The X components of the
vectors A and B are subtracted as are the Y components, making a new Vector2 defined as
Vector2(2-5, 8-3), which becomes Vector2(-3, 5). The figure illustrates that A-B gives us
the vector distance between A and B, which is also the distance and direction that one must
move to get from point B to point A. A mnemonic to remember which one the vector will
point at is "A minus B looks at A."

548

Figure 29.7 Two-dimensional vector subtraction: A minus B looks at A.

This is important in the Update() method because projectile needs to be positioned
along the vector from launchPos to the current mousePos3D, and this vector is named
mouseDelta. However, the distance that the projectile can move along mouseDelta is
limited to maxMagnitude, which is the radius of the SphereCollider on Slingshot
(currently set to 3m in the Inspector for the Collider component).

If mouseDelta is longer than maxMagnitude, its magnitude is clamped to
maxMagnitude. This is accomplished by first calling mouseDelta.Normalize()
(which sets the length of mouseDelta to 1 but keeps it pointing in the same direction)
and then multiplying mouseDelta by maxMagnitude.

projectile is moved to this new position, and if you play the game, you will see that
the projectile moves with the mouse but is limited to a specific radius.

Input.GetMouseButtonUp(0) returns true only on the first frame that the left mouse
button (the 0th button) has been released.4 That means that the if statement at the end of
Update() is executed on the frame that the mouse button is released. On this frame:

 aimingMode is set to false.
 projectile's Rigidbody is set to non-kinematic , allowing it to once again move due
to velocity and gravity.
 The Rigidbody of projectile is given a velocity that is proportional to the distance
that it is from launchPos.
 Finally, projectile is set back to null. This doesn't delete the Projectile instance
that was created; it just opens the field projectile to be filled by another instance
when the slingshot is fired again.

5. Click Play and see how the Slingshot feels. Is the Projectile instance launching at
a good velocity? Try adjusting velocityMult in the Inspector to see what value
feels right to you. I ended up with a value of 10. Remember to stop Unity playback to
make settings that stay.

549

6. Save your scene.

As it is now, the Projectile instance flies off screen very quickly. Let's make a follow
camera to chase after the projectile as it flies.

Making a Follow Camera
You need _MainCamera to follow the projectile when it is launched, but the behavior is a
little more complicated than that. The eventual full behavior should be as follows:

A. The camera sits at an initial position and doesn't move during Slingshot's
aimingMode.

B. After the projectile is launched, the camera follows it (with a little easing to make it
feel smoother).

C. As the camera moves up into the air, increase the Camera.orthographicSize to keep
the ground in view.

D. When the projectile comes to rest, the camera stops following it and returns to the
initial position.

Follow these steps:
1. Start by creating a new C# script (Assets > Create > C# Script) and name it

FollowCam.
2. Drag the FollowCam Script onto _MainCamera in the Hierarchy pane to make it a

component of _MainCamera.
3. Double-click the FollowCam script to open it and input the following code:

Click here to view code image

using UnityEngine;
using System.Collections;

public class FollowCam : MonoBehaviour {
 static public GameObject POI; // The static point of
interest // a

 [Header("Set Dynamically")]
 public float camZ; // The desired Z pos of the camera

 void Awake() {
 camZ = this.transform.position.z;
 }

 void FixedUpdate () {
 // if there's only one line following an if, it doesn't need braces
 if (POI == null) return; // return if there is no
poi // b

550

 // Get the position of the poi
 Vector3 destination = POI.transform.position;
 // Force destination.z to be camZ to keep the camera far enough away
 destination.z = camZ;
 // Set the camera to the destination
 transform.position = destination;
 }
}

a. POI is the point of interest that the camera should follow (e.g., a Projectile). As
a static public field, the same value for POI is shared by all instances of the
FollowCam class, and POI can be accessed anywhere in code as
FollowCam.POI. This makes it easy for the Slingshot code to tell _MainCamera
which Projectile to follow.

b. If POI is set to null (the default), the FixedUpdate() method returns, and none
of the rest of the code in this method is executed.

The camZ field holds the initial z position of the camera. In FixedUpdate(), the
camera is moved to the position of POI, except for the z coordinate, which is set to camZ
every frame. (This prevents the camera from being so close to POI that POI fills the frame
or becomes invisible.) We chose FixedUpdate() here instead of Update() because
we're following a projectile that is moved by the PhysX physics engine, and that engine
updates in sync with FixedUpdate().

4. Open the Slingshot C# script and add the single bold line near the end of Update():
Click here to view code image

public class Slingshot : MonoBehaviour {
 …
 void Update() {
 …
 if (Input.GetMouseButtonUp(0)) {
 …
 projectileRigidbody.velocity = -mouseDelta * velocityMult;
 FollowCam.POI = projectile;
 projectile = null;
 }
 }
}

This new line sets the static public field FollowCam.POI to be the newly fired
projectile. Save All scripts in MonoDevelop, return to Unity, and try clicking Play to see
how it looks.

You should notice a few issues:
A. If you zoom out the Scene pane view enough, you can see that the projectile actually

flies past the end of the ground.

551

B. If you fire at the ground, the projectile neither bounces nor stops after it has hit the
ground. If you pause right after firing, select the projectile in the Hierarchy (to highlight
it and center the Scene pane gizmos around it), and then unpause, you'll see that it rolls
upon hitting the ground and never stops rolling.

C. When the projectile is first launched, the camera immediately jumps to the position of
the projectile, which is visually jarring.

D. After the projectile is at a certain height—or if it's gone past the end of the ground—all
you see is sky, so it's difficult to tell how high up the projectile is.

Use the following steps (which are generally ordered from the easiest fix to the most
difficult) to fix each of these issues in order.

First, fix issue A by setting the transform of the Ground to P:[100, -10, 0] R:[0, 0, 0] S:[
400, 1, 4]. This makes the ground extend much farther to the right.

To fix issue B, you must add both Rigidbody constraints and a Physic Material to
Projectile:

1. Select the Projectile prefab in the Project pane.
2. In the Rigidbody component, set the pop-up menu for Collision Detection to

Continuous. For information about the types of collision detection, click the help icon
in the top-right corner of the Rigidbody component. In short, continuous collision
detection takes more processor power than discrete, but it is more accurate for fast-
moving objects like the projectile.

3. Also in the Projectile Rigidbody component:
a. Open the disclosure triangle next to Constraints.
b. Check Freeze Position Z
c. Check Freeze Rotation X, Y, and Z.

Freeze Position Z keeps the projectile from moving toward or away from the camera
(basically keeping it in the same Z depth as both the ground and the castle that will be
added later). Freeze Rotation X, Y, and Z keep it from rolling around.

4. Save the scene, click Play, and try launching the projectile again.

These Rigidbody settings keep the projectile from rolling endlessly, but it still doesn't feel
right. You've spent your whole life experiencing physics, and that gives you an intuitive feel
for the kinds of behaviors that feel like natural, real-world physics. This is true for your
players as well, which means that even though physics is a complex system that requires a
lot of math to model, if you make your game physics feel like the physics that players are
used to, you won't have to explain that math to them. Adding a Physic Material can make

552

your physically simulated objects feel a lot more realistic.
5. From the Unity menu bar, choose Assets > Create > Physic Material.
6. Name this Physic material PMat_Projectile.
7. Click PMat_Projectile and set the bounciness to 1 in the Inspector.
8. Drag PMat_Projectile in the Project pane onto the Projectile prefab (also in the Project

pane) to apply it to Projectile.SphereCollider.
9. Save the scene, click Play, and try launching the projectile again.

Selecting Projectile should reveal that PMat_Projectile has been assigned as the material of
the Sphere Collider in the Inspector. Now when you launch a projectile, you'll see that it
bounces to a stop instead of just gliding on the ground.

You will fix issue C via two means: easing through interpolation and adding limits on the
camera's location. Let's do that:

1. To start with easing, add the following bolded lines to FollowCam:
Click here to view code image

public class FollowCam : MonoBehaviour {
 static public GameObject POI; // The static point of interest

 [Header("Set in Inspector")]
 public float easing = 0.05f;

 [Header("Set Dynamically")]
 …
 void FixedUpdate () {
 // if there's only one line following an if, it doesn't need braces
 if (POI == null) return; // return if there is no poi

 // Get the position of the poi
 Vector3 destination = POI.transform.position;
 // Interpolate from the current Camera position toward destination
 destination = Vector3.Lerp(transform.position, destination, easing);
 // Force destination.z to be camZ to keep the camera far enough away
 destination.z = camZ;
 // Set the camera to the destination
 transform.position = destination;
 }
}

The Vector3.Lerp() method interpolates between two points, returning a weighted
average of the two. If easing is 0, Lerp()returns the first point
(transform.position); if easing is 1, Lerp()returns the second point
(destination). If easing is any value in between 0 and 1, Lerp() returns a point
between the two (with an easing of 0.5 returning the midpoint halfway between the two).
Setting easing = 0.05f tells Unity to move the camera about 5% of the way from its

553

current location to the location of the POI every FixedUpdate (i.e., each update of the
physics engine, which occur 50 times per second). Because the POI is constantly moving,
this gives you a nice smooth camera follow movement. Try playing with the value of
easing to see how it affects the camera movement. This kind of use of Lerp() is a very
simplistic form of linear interpolation. For more information on linear interpolation, you
can read about it in Appendix B, "Useful Concepts."

2. Add some limits to the FollowCam position by adding the bolded lines to FollowCam:
Click here to view code image

public class FollowCam : MonoBehaviour {
 …
 [Header("Set in Inspector")]
 public float easing = 0.05f;
 public Vector2 minXY = Vector2.zero;

 [Header("Set Dynamically")]
 …
 void FixedUpdate () {
 // if there's only one line following an if, it doesn't need braces
 if (POI == null) return; // return if there is no
poi // b

 // Get the position of the poi
 Vector3 destination = POI.transform.position;
 // Limit the X & Y to minimum values
 destination.x = Mathf.Max(minXY.x, destination.x);
 destination.y = Mathf.Max(minXY.y, destination.y);
 // Interpolate from the current Camera position toward destination
 …
 }
}

The default value of Vector2 minXY is [0, 0], which works perfectly for your needs. The
Mathf.Max() function chooses the maximum value of the two floats passed in. When the
projectile is initially launched, its X coordinate is negative, so the Mathf.Max() ensures
that the camera never moves left of the X = 0 plane into negative territory. Similarly, the
second Mathf.Max() line keeps the camera from dipping below the Y = 0 plane when
the projectile's Y coordinate is less than 0. (Remember that the Y position of Ground is
-10.)

To fix issue D you must dynamically adjust the orthographicSize of the camera.
1. Add the following bolded lines to the FollowCam script:

Click here to view code image

public class FollowCam : MonoBehaviour {
 …
 void FixedUpdate () {
 …

554

 // Set the camera to the destination
 transform.position = destination;
 // Set the orthographicSize of the Camera to keep Ground in view
 Camera.main.orthographicSize = destination.y + 10;
 }
}

This works because you know that due the Mathf.Max() lines you just added, the
destination.y will never be allowed to be less than 0. So, the minimum
orthographicSize is 10, and the camera's orthographicSize will expand as
needed to always keep the ground in view.

2. Double-click Ground in the Hierarchy to zoom out and show the entire Ground
GameObject in the Scene pane.

3. Select _MainCamera, click Play, and launch a projectile straight up. In the Scene pane,
you can see the field of view of the camera expand smoothly as the projectile flies.

4. Save your scene.

Providing Vection and a Sense of Speed
The FollowCam moves pretty well now, but it's still difficult to tell how fast the projectile
is moving, especially when it's high in the air. To fix this issue, let's take advantage of the
concept of vection. Vection is the sensation of movement that you get from seeing other
things passing by quickly, and it is the concept that led to parallax scrolling in 2D video
games. Parallax scrolling causes foreground objects to pass by quickly while background
objects move more slowly relative to the movement of the main camera in a 2D game.
While a full parallax system is beyond the scope of this tutorial, you can at least get a
simple feeling of vection by creating a lot of clouds and distributing them randomly through
the sky. As the projectile passes by them, the player will get more of a feeling of movement.

Making Cloud Art
To make this work, you must make some simple clouds:

1. Create a new sphere (GameObject > 3D Object > Sphere).
a. Hover your mouse over the name of the Sphere Collider component in the Inspector

for the sphere. Right-click and choose Remove Component from the pop-up menu.
b. Set the Transform.Position of the Sphere to P:[0, 0, 0] so that it is visible in the

Game pane as well as the Scene pane.
c. Rename Sphere to CloudSphere.

2. Create a new material and name it Mat_Cloud (Assets > Create > Material).
a. Drag Mat_Cloud onto CloudSphere and then select Mat_Cloud in the Project pane.
b. From the pop-up menu next to Shader in the Mat_Cloud Inspector, choose Legacy

555

Shaders > Self-Illumin > Diffuse. This shader is self-illuminating (it generates its
own light), and it also responds to the directional light in the scene.

c. Click the color swatch next to Main Color in the Inspector for Mat_Cloud and set it
to a 50% gray (or RGBA of [128, 128, 128, 255] in the Unity color picker). This
should give CloudSphere just a little gray on the bottom-left side in the Game pane,
which looks a bit like a cloud in the sun.

d. Drag CloudSphere to the Project pane to make it a prefab.
e. Delete the instance of CloudSphere from the Hierarchy.

3. Create an Empty GameObject in the Scene (GameObject > Create Empty) named
Cloud.
a. Select Cloud in the Hierarchy and set its Transform to P:[0, 0, 0].
b. In the Cloud Inspector, click the Add Component button and choose New Script.
c. Name the new script Cloud, make sure the Language is C Sharp, and click Create

and Add. This creates a new script and automatically attaches it to Cloud.

Rather than make a bunch of clouds ourselves, let's generate them procedurally (i.e.,
through randomization and code). This is how games like Minecraft create their worlds.
The code for creating these clouds will be very simplistic relative to things like Minecraft,
but it will give you a little experience with randomization and tweaking procedural
generation.

4. Open the Cloud script in MonoDevelop and enter this code:
Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Cloud : MonoBehaviour {
 [Header("Set in
Inspector")] // a
 public GameObject cloudSphere;
 public int numSpheresMin = 6;
 public int numSpheresMax = 10;
 public Vector3 sphereOffsetScale = new Vector3(5,2,1);
 public Vector2 sphereScaleRangeX = new Vector2(4,8);
 public Vector2 sphereScaleRangeY = new Vector2(3,4);
 public Vector2 sphereScaleRangeZ = new Vector2(2,4);
 public float scaleYMin = 2f;

 private
List<GameObject> spheres; // b

 void Start () {
 spheres = new List<GameObject>();

556

 int num = Random.Range(numSpheresMin,
numSpheresMax); // c
 for (int i=0; i<num; i++) {
 GameObject sp = Instantiate<GameObject>(cloudSphere
); // d
 spheres.Add(sp);
 Transform spTrans = sp.transform;
 spTrans.SetParent(this.transform);

 // Randomly assign a position
 Vector3 offset =
Random.insideUnitSphere; // e
 offset.x *= sphereOffsetScale.x;
 offset.y *= sphereOffsetScale.y;
 offset.z *= sphereOffsetScale.z;
 spTrans.localPosition =
offset; // f

 // Randomly assign scale
 Vector3 scale =
Vector3.one; // g
 scale.x = Random.Range(sphereScaleRangeX.x, sphereScaleRangeX.y);
 scale.y = Random.Range(sphereScaleRangeY.x, sphereScaleRangeY.y);
 scale.z = Random.Range(sphereScaleRangeZ.x, sphereScaleRangeZ.y);

 // Adjust y scale by x distance from core
 scale.y *= 1 - (Mathf.Abs(offset.x) /
sphereOffsetScale.x); // h
 scale.y = Mathf.Max(scale.y, scaleYMin);

 spTrans.localScale =
scale; // i

 }
 }

 // Update is called once per frame
 void Update () {
 if (Input.GetKeyDown(KeyCode.Space))
{ // j
 Restart();
 }
 }

 void Restart()
{ // k
 // Clear out old spheres
 foreach (GameObject sp in spheres) {
 Destroy(sp);
 }

 Start();
 }
}

557

a. All of these fields are used to set the parameters of the random generation of clouds.
 numSpheresMin / numSpheresMax—The min and max (actually 1 more than
the actual max) number of CloudSpheres that could be instantiated.
 sphereOffsetScale—The maximum distance (positive or negative) that a
CloudSphere could be from the center of the Cloud in each dimension.
 sphereScaleRangeX / Y / Z—The range in scales in each dimension. The
default settings create CloudSpheres that are usually wider than they are tall.
 scaleYMin—At the end of the Start() function, each CloudSphere is scaled
down in the Y dimension based on how far it is from the center in the X dimension.
This makes clouds taper at their left and right extents. scaleYMin is the lowest Y
scale that you will allow (otherwise, you would get some super skinny clouds).

b. The List<GameObject> spheres holds a reference to all the CloudSpheres
that are instantiated by this Cloud.

c. Randomly choose how many CloudSpheres to attach to this Cloud.
d. Each CloudSphere is instantiated and added to spheres. The CloudSphere's

transform is then assigned to spTrans, and the parent of each CloudSphere is set to
the transform of this Cloud. this.transform is identical to transform; the
this is optional.

e. A random point inside a unit sphere is chosen (that is a point anywhere within 1 unit
of the origin: [0, 0, 0]). Each dimension (X, Y, Z) of that point is then multiplied by
the corresponding sphereOffsetScale.

f. The offset is assigned to the localPosition of the CloudSphere.
transform.position is always in world coordinates, whereas
transform.localPosition is relative to the center of the parent (which is this
Cloud in this case).

g. Randomization of scales is handled differently. For each of the
sphereScaleRange Vector2s, the X dimension stores the minimum value, and the
Y dimension holds the maximum value.

h. After the randomized scale is chosen, the Y dimension is altered based on how far the
CloudSphere is offset from Cloud in the X direction. The further out in X, the smaller
the scale in Y.

i. scale is assigned to the localScale of the CloudSphere. Because scale is
always relative to the parent transform, there is no transform.scale field. Just
localScale and lossyScale. The read-only property lossyScale attempts
to return the scale in world coordinates, with the understanding that it is just an
estimate.

j. This section of the code is just for testing. Pressing the space bar in Unity will call
Restart() (see // k).

558

k. When Restart() is called, it destroys all the child CloudSpheres and calls
Start() again to generate new ones.

5. Save the Cloud script and return to Unity.
6. Select Cloud in the Hierarchy and assign the CloudSphere prefab to the cloudSphere

field in the Cloud (Script) Inspector.

Click Play, and you will see that a randomized cloud is generated. Every time you press the
space bar, Restart() is called, destroying the current cloud and creating a new one.
This ability allows you to repeatedly press the space bar to test different settings in the
Cloud (Script) Inspector. Try it out for a little while and adjust the settings to fine ones you
like.

Avoid Losing Inspector Values Set During Play
As you've experienced in previous chapters, the moment you stop the game (by clicking the
Play button again), any values you changed in the Cloud (Script) Inspector return to their
initial values before you started the game. Here's a way to get around this.

1. While the game is still playing, click the little gear to the right of the Cloud (Script)
component name. Choose Copy Component from the pop-up menu.

2. Stop playback (by clicking Play again).
3. Click the gear next to Cloud (Script) again, and this time choose Paste Component

Values.

This replaces the values in the Inspector with the ones that you had chosen while the game
was running.

Commenting Out Test Code
The ability to press the space bar and generate new clouds was really only needed for
testing, so after you have Cloud (Script) Inspector values that you're happy with, it's time to
get rid of the testing code. You might want to use this test code again later, so instead of
deleting the code, just comment it out.

1. Open the Cloud script in MonoDevelop.
2. Comment out all the lines in the Update() method.

Click here to view code image

public class Cloud : MonoBehaviour {
 …
 void Update () {
// if (Input.GetKeyDown(KeyCode.Space)) {
// Restart();
// }

559

 }
 …
}

Because Restart() will now no longer be called, there's no reason to comment out the
Restart() method.

Crafting Many Clouds
Now that you have one cloud, let's make several.

1. Make a Cloud prefab by dragging the Cloud GameObject from the Hierarchy to the
Project pane. Delete the Cloud instance from Hierarchy.

2. Create a new empty GameObject named CloudAnchor (GameObject > Create Empty).
This gives you a GameObject to act as the parent for all Cloud instances, which will
keep the Hierarchy tidy while the game is running. Set the CloudAnchor transform to P:[
0, 0, 0].

3. Create a new C# script titled CloudCrafter and attach it to _MainCamera. This adds a
second Script component to _MainCamera, which is perfectly fine in Unity as long as
the two scripts don't conflict with each other (e.g., as long as they don't both try to set
the position of the GameObject each frame). Because FollowCam is moving the camera,
and CloudCrafter will just be placing Cloud_#s in the air, they shouldn't conflict at all.

4. Open CloudCrafter in MonoDevelop and enter the following code:
Click here to view code image

using UnityEngine;
using System.Collections;

public class CloudCrafter : MonoBehaviour {
 [Header("Set in Inspector")]
 public int numClouds = 40; // The # of clouds to make
 public GameObject cloudPrefab; // The prefab for the clouds
 public Vector3 cloudPosMin = new Vector3(-50,-5,10);
 public Vector3 cloudPosMax = new Vector3(150,100,10);
 public float cloudScaleMin = 1; // Min scale of each cloud
 public float cloudScaleMax = 3; // Max scale of each cloud
 public float cloudSpeedMult = 0.5f; // Adjusts speed of clouds

 private GameObject[] cloudInstances;

 void Awake() {
 // Make an array large enough to hold all the Cloud_ instances
 cloudInstances = new GameObject[numClouds];
 // Find the CloudAnchor parent GameObject
 GameObject anchor = GameObject.Find("CloudAnchor");
 // Iterate through and make Cloud_s
 GameObject cloud;
 for (int i=0; i<numClouds; i++) {

560

 // Make an instance of cloudPrefab
 cloud = Instantiate<GameObject>(cloudPrefab);
 // Position cloud
 Vector3 cPos = Vector3.zero;
 cPos.x = Random.Range(cloudPosMin.x, cloudPosMax.x);
 cPos.y = Random.Range(cloudPosMin.y, cloudPosMax.y);
 // Scale cloud
 float scaleU = Random.value;
 float scaleVal = Mathf.Lerp(cloudScaleMin, cloudScaleMax, scaleU);
 // Smaller clouds (with smaller scaleU) should be nearer the ground
 cPos.y = Mathf.Lerp(cloudPosMin.y, cPos.y, scaleU);
 // Smaller clouds should be further away
 cPos.z = 100 - 90*scaleU;
 // Apply these transforms to the cloud
 cloud.transform.position = cPos;
 cloud.transform.localScale = Vector3.one * scaleVal;
 // Make cloud a child of the anchor
 cloud.transform.SetParent(anchor.transform);
 // Add the cloud to cloudInstances
 cloudInstances[i] = cloud;
 }
 }

 void Update() {
 // Iterate over each cloud that was created
 foreach (GameObject cloud in cloudInstances) {
 // Get the cloud scale and position
 float scaleVal = cloud.transform.localScale.x;
 Vector3 cPos = cloud.transform.position;
 // Move larger clouds faster
 cPos.x -= scaleVal * Time.deltaTime * cloudSpeedMult;
 // If a cloud has moved too far to the left...
 if (cPos.x <= cloudPosMin.x) {
 // Move it to the far right
 cPos.x = cloudPosMax.x;
 }
 // Apply the new position to cloud
 cloud.transform.position = cPos;
 }
 }
}

5. Save the CloudCrafter script and return to Unity.
6. Assign the Cloud prefab from the Project pane to the cloudPrefab field of the

CloudCrafter (Script) Inspector of _MainCamera. All the other values should be fine at
their default settings.

7. Save your scene.
In the CloudCrafter class, the Awake() method creates all the clouds and positions
them. The Update() method moves each cloud a little to the left of every frame. When
a cloud moves to the left past cloudPosMin.x, it is moved to cloudPosMax.x on the far

561

right.
8. Click Play, and you can see several clouds are instantiated and moves across the

screen.

Zoom out in the Scene pane and watch the clouds blow by. Now when you launch the
projectile, the vection of the clouds passing by should make it feel much more like the
projectile is actually moving.

Organizing the Project Pane
Now that you've created many different assets, it's time to talk about organizing the Project
pane. The mess you have now should look like the image on the left side of Figure 29.8.

Figure 29.8 Disorganized (left) and organized (right) Project panes

On the right side of Figure 29.8, you can see that I've added folders to organize my Project
pane. I usually do this at the very beginning of a project but have waited until now on this
project so that you can experience how much better the project feels when it's organized.

1. Create three folders (Assets > Create > Folder) named __Scripts, _Materials, and
_Prefabs. The underscores in their names help sort them above any non-folder assets,
and the double-underscore of the __Scripts folder ensures that it is the top folder in the
Project pane. This simultaneously creates folders on your hard drive inside the Assets
folder for your project, so not only your Project pane but also your Assets folder will be
organized.

2. Drag the proper assets into each folder in the Project pane. Both the physic material and
regular materials go into the _Materials folder.

Unity's Two-Column Project pane layout does attempt to do some of this organizing for you,
but I've always hated the way that the Two-Column view defaults to an icon view of all the
assets, and using the Two-Column view does not have the same benefit of organizing the

562

Assets folder on your hard drive that making folders does.

Building the Castle
Mission Demolition needs something to demolish, so let's build a castle to serve that
purpose. Figure 29.10 shows how the final castle will look.

1. Adjust the Scene pane so that you are viewing the scene from the back in isometric
view by clicking the arrow on the axes gizmo opposite the z-axis (see the left side of
Figure 29.9). If you have a wedge (<) next to the word Back under the axes gizmo, click
the wedge, and it will become three parallel lines, signifying that you've switched from
a perspective to an isometric (i.e., orthographic) view.

Figure 29.9 Selecting the Back view

2. This would also be a good time to get rid of the Skybox view in the Scene pane. To do
so, click the mountain-looking button to the right of the speaker button at the top of the
Scene pane (under the mouse cursor shown on the right side of Figure 29.9) until the
background turns gray.

3. Double click _MainCamera in the Hierarchy to zoom the Scene pane to a good view
from which to build the castle.

Making Walls and Slabs
Start by making the GameObject prefabs for the castle bits:

1. Create a duplicate of the Mat_Cloud material and name it Mat_Stone.5

a. Select Mat_Cloud in the Project pane.
b. Choose Edit > Duplicate from the Unity menu bar.
c. Change the name from Mat_Cloud 1 to Mat_Stone.
d. Select Mat_Stone and set the Main Color to 25% gray (RGBA: [64, 64, 64, 255]).

2. Create a new cube (GameObject > 3D Object > Cube) and rename it Wall.
a. Set the Wall Transform to P:[0, 0, 0] R:[0, 0, 0] S:[1, 4, 4].
b. Add a Rigidbody component to Wall (Component > Physics > Rigidbody).
c. Constrain the Z position of the Wall by setting the Rigidbody FreezePosition Z to

true.

563

d. Constrain rotation by setting the Rigidbody FreezeRotation X and Y to true.
e. Set the Rigidbody.mass to 4.
f. Drag the Mat_Stone material onto Wall to color it gray.

3. Create a new script in the __Scripts folder named RigidbodySleep and enter this code:
Click here to view code image

using UnityEngine;

public class RigidbodySleep : MonoBehaviour {
 void Start () {
 Rigidbody rb = GetComponent<Rigidbody>();
 if (rb != null) rb.Sleep();
 }
}

This will cause the Wall's Rigidbody to initially assume that it should not be moving, which
will help castles to initially be stable (there were issues in some versions of Unity with
castles falling down before the projectile hit them).

4. Attach the RigidbodySleep script to Wall.
5. Drag Wall to the Project pane to make it a prefab (be sure to put it in the _Prefabs

folder), and after doing so, delete the Wall instance from the Hierarchy pane.
6. Select the Wall prefab in the _Prefabs folder of the Project pane and duplicate it.

a. Rename Wall 1 to Slab.
b. Select Slab in the _Prefabs folder and set its transform scale to S:[4, 0.5, 4].

Making a Castle from Walls and Slabs
Now make a castle from the walls and slabs:

1. Create an empty GameObject to be the root node of the castle (GameObject > Create
Empty).
a. Name it Castle.
b. Set its transform to P:[0, -9.5, 0] R:[0, 0, 0] S:[1, 1, 1]. This positions it well for

construction and puts its base resting exactly on top of the Ground.
2. Drag Wall from the _Prefabs folder to the Hierarchy under Castle, making it a child of

Castle.
3. Make three duplicates of Wall and set their positions to:

Wall P:[-6, 2, 0] Wall (1) P:[-2, 2, 0] Wall (2) P:[2, 2, 0] Wall (3) P:[6, 2, 0]
4. Drag Slab from the _Prefabs folder of the Project pane to the Hierarchy under Castle,

making it a child as well.
5. Make two duplicates of Slab and set their positions to:

564

Slab P:[-4, 4.25, 0] Slab (1) P:[0, 4.25, 0] Slab (2) P:[4, 4.25, 0]
6. To make the second floor of the castle, use your mouse to select three adjacent Walls

and the two Slabs above them. Duplicate them (Command-D or Ctrl+D) and hold
Command (Ctrl on PC) while moving them to be resting above the others.6 You will
need to tweak their positions, and the final positions for the new Walls should be as
follows:
Wall (4) P:[-4, 6.5, 0] Wall (5) P:[0, 6.5, 0] Wall (6) P:[4, 6.5, 0]
Slab (3) P:[-2, 8.75, 0] Slab (4) P:[2, 8.75, 0]

7. Continue the duplication trick to make the third and fourth levels by adding three more
vertical walls and one more horizontal wall:
Wall (7) P:[-2, 11, 0] Wall (8) P:[2, 11, 0] Slab (5) P:[0, 13.25, 0] Wall (9) P:[0,
15.5, 0]

One of the major advantages of building a castle out of prefabs like this is that you can
easily change every Slab simultaneously by changing the Slab prefab.

8. Select the Slab prefab in the Project pane and set its transform.scale.x to 3.5. Every
Slab in your castle should reflect this change. Your castle should now look like Figure
29.10, though it doesn't yet have the green goal area.

Figure 29.10 The finished castle

Making a Goal
The final GameObject to add to Castle is a goal for the player to hit with the projectile.

1. Create a cube named Goal and:
a. Make it a child of Castle.
b. Set the transform of Goal to P:[0, 2, 0] R:[0, 0, 0] S:[3, 4, 4].

565

c. In the Goal Inspector, set BoxCollider.isTrigger to true.
d. Drag Goal into the _Prefabs folder in the Project pane to make it a prefab.

2. Create a new material in the _Materials folder named MatGoal.
a. Drag Mat_Goal onto the Goal prefab in the _Prefabs folder of the Project to apply it.
b. Select Mat_Goal in the Project pane and choose the Legacy Shaders > Transparent

> Diffuse shader.
c. Set the Main Color of Mat_Goal to a bright green with an opacity of 25% (an RGBA

in the Unity color picker of [0, 255, 0, 64]).

Testing the Castle
To test the castle, do the following:

1. Set the Castle position to P:[50, -9.5, 0], and then click Play. You might have to try
and restart a couple of times, but you should be able to hit the castle with the projectile.

2. Save your scene.

Returning for Another Shot
Now that there's a castle to knock down, it's time to add a little more game logic. After the
projectile has settled, the camera should move back to focus on the slingshot again:

1. Before doing anything else, you should add a tag of Projectile to the projectile.
a. Select the Projectile prefab in the Project pane.
b. In the Inspector, click the pop-up menu next to Tag and choose Add Tag. This opens

the Tags & Layers Inspector.
c. Click the + button at the bottom-right of the empty Tags list.
d. Set New Tag Name to Projectile and click Save.
e. Select Projectile in the Project pane again.
f. Give it the Projectile tag by selecting Projectile from the Tag pop-up menu in the

Inspector.
2. Open the FollowCam C# script in MonoDevelop and modify the following lines:

Click here to view code image

public class FollowCam : MonoBehaviour {
 …
 void FixedUpdate () {
//-- // if there's only one line following an if, it doesn't need braces //
a
//-- if (POI == null) return; // return if there is no poi
//--
//-- // Get the position of the poi

566

//-- Vector3 destination = POI.transform.position;

 Vector3 destination;
 // If there is no poi, return to P:[0, 0, 0]
 if (POI ==null) {
 destination =Vector3.zero;
 }else {
 // Get the position of the poi
 destination = POI.transform.position;
 // If poi is a Projectile, check to see if it's at rest
 if (POI.tag == "Projectile") {
 // if it is sleeping (that is, not moving)
 if (POI.GetComponent<Rigidbody>().IsSleeping()) {
 // return to default view
 POI =null ;
 // in the next update
 return ;
 }
 }
 }

 // Limit the X & Y to minimum values
 destination.x = Mathf.Max(minXY.x, destination.x);
 …
 }
}

a. All of the lines preceded by //–– should be deleted or commented out.

Now, after the projectile has stopped moving (which makes
Rigidbody.IsSleeping() true), the FollowCam will nullify its POI, resetting the
camera back to its default position. However, it sure does take a long time for the projectile
to come to rest. Let's make the physics engine "sleep a little easier," meaning that we will
cause it to stop simulating physics on an object earlier than it otherwise would.

3. Adjust the Sleep Threshold of the PhysicsManager:
a. Open the PhysicsManager (Edit > Project Settings > Physics).
b. Change Sleep Threshold from 0.005 to 0.02. The Sleep Threshold is the amount of

movement in a single physics engine frame that will cause a Rigidbody to continue to
be simulated in the following frame. If an object moves less than this amount (now
2cm) in a single frame, PhysX will sleep that Rigidbody object and cease simulating
it (i.e., cease moving the GameObject) until something happens to make it move again.

4. Save your scene. Now when you play the game, the camera will reset, and you can fire
again.

Adding a Projectile Trail
While Unity does have a built-in Trail Renderer effect, it won't really serve our purpose

567

because we need more control over the trail than it allows. Instead, we'll make use of the
Line Renderer upon which the Trail Renderer is built:

1. Start by creating an empty GameObject (GameObject > Create Empty) and naming it
ProjectileLine.
a. Add a Line Renderer component (Components > Effects > Line Renderer).
b. In the Inspector for ProjectileLine, expand the disclosure triangle for Materials. Set

all Line Renderer component settings to those shown in Figure 29.11.

568

Figure 29.11 Settings for ProjectLine

2. Create a C# script (Asset > Create > C# Script) in the __Scripts folder. Name it
ProjectileLine and attach it to the ProjectileLine GameObject. Open the ProjectileLine
script in MonoDevelop and write the following code:

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class ProjectileLine : MonoBehaviour {
 static publicProjectileLine S; // Singleton

 [Header("Set in Inspector")]
 public float minDist = 0.1f;

 privateLineRenderer line;
 privateGameObject _poi;
 private List<Vector3> points;

 void Awake() {
 S =this;// Set the singleton
 // Get a reference to the LineRenderer
 line = GetComponent<LineRenderer>();
 // Disable the LineRenderer until it's needed
 line.enabled = false;
 // Initialize the points List
 points = new List<Vector3>();
 }

 // This is a property (that is, a method masquerading as a field)
 public GameObject poi {
 get {
 return (_poi);
 }
 set {
 _poi =value ;
 if (_poi !=null) {
 // When _poi is set to something new, it resets everything
 line.enabled = false;
 points = new List<Vector3>();
 AddPoint();
 }
 }
 }

 // This can be used to clear the line directly
 public void Clear() {
 _poi =null;
 line.enabled = false;
 points = new List<Vector3>();

569

 }
 public void AddPoint() {
 // This is called to add a point to the line
 Vector3 pt = _poi.transform.position;
 if (points.Count > 0 && (pt - lastPoint).magnitude < minDist) {
 // If the point isn't far enough from the last point, it returns
 return;
 }
 if (points.Count == 0) { // If this is the launch point...
 Vector3 launchPosDiff = pt -Slingshot.LAUNCH_POS; // To be defined
 // ...it adds an extra bit of line to aid aiming later
 points.Add(pt + launchPosDiff);
 points.Add(pt);
 line.positionCount = 2;
 // Sets the first two points
 line.SetPosition(0, points[0]);
 line.SetPosition(1, points[1]);
 // Enables the LineRenderer
 line.enabled = true;
 } else {
 // Normal behavior of adding a point
 points.Add(pt);
 line.positionCount = points.Count;
 line.SetPosition(points.Count-1, lastPoint);
 line.enabled = true;
 }
 }

 // Returns the location of the most recently added point
 public Vector3 lastPoint {
 get {
 if (points == null) {
 // If there are no points, returns Vector3.zero
 return (Vector3.zero);
 }
 return (points[points.Count-1]);
 }
 }

 void FixedUpdate () {
 if (poi == null) {
 // If there is no poi, search for one
 if (FollowCam.POI != null) {
 if (FollowCam.POI.tag == "Projectile") {
 poi = FollowCam.POI;
 }else {
 return; // Return if we didn't find a poi
 }
 } else {
 return; // Return if we didn't find a poi
 }
 }
 // If there is a poi, it's loc is added every FixedUpdate

570

 AddPoint();
 if (FollowCam.POI == null) {
 // Once FollowCam.POI is null, make the local poi nulll too
 poi = null;
 }
 }
}

3. You must also add a static LAUNCH_POS property to the Slingshot C# script to allow
AddPoint() to reference the location of Slingshot's launchPoint:

Click here to view code image

public class Slingshot : MonoBehaviour {
 static private Slingshot S; //
a
 // fields set in the Unity Inspector pane
 [Header("Set in Inspector")]
 …
 private Rigidbody projectileRigidbody;

 static public Vector3 LAUNCH_POS { //
b
 get {
 if (S == null) return Vector3.zero;
 return S.launchPos;
 }
 }

 void Awake() {
 S = this; //
c
 Transform launchPointTrans = transform.FindChild("LaunchPoint");
 …
 }
 …
}

a. This is a private static instance of Slingshot that will act like a Singleton, except it
will be private, so only instances of the Slingshot class can access it.

b. This static public property uses the static private Slingshot instance S to allow public
access to read the value of the Slingshot's launchPos. If somehow S is null, [0, 0, 0]
returns.

c. Here, this instance of Slingshot is assigned to S. Because Awake() is the first thing
that runs on any instance of a MonoBehaviour subclass, S should be set before
LAUNCH_POS is ever requested.

Now when you play the game, you should get a nice gray line that traces the path of the
projectile as it moves. The line is replaced with each subsequent shot.

4. Save your scene.

571

Hitting the Goal
The goal of the castle needs to react when hit by the projectile:

1. Create a new C# script named Goal and attach it to the Goal prefab in the _Prefabs
folder of the Project pane. Then, enter the following code into the Goal script.

Click here to view code image

using UnityEngine;
using System.Collections;

public class Goal : MonoBehaviour {
 // A static field accessible by code anywhere
 static public bool goalMet = false;

 void OnTriggerEnter(Collider other) {
 // When the trigger is hit by something
 // Check to see if it's a Projectile
 if (other.gameObject.tag == "Projectile") {
 // If so, set goalMet to true
 Goal.goalMet = true;
 // Also set the alpha of the color to higher opacity
 Material mat = GetComponent<Renderer>().material;
 Color c = mat.color;
 c.a = 1 ;
 mat.color = c;
 }
 }
}

Now, if you can hit the goal with a projectile, the goal will turn bright green. It might take
several shots to actually get through this castle. To make this easier, you can select a lot of
the walls of the castle and deactivate them by unchecking the check box directly beneath the
word Inspector at the top of the Inspector pane. Just be sure to reactivate them after you've
tested the Goal.

2. Save your scene.

Adding More Castles
The single castle as served well so far, but let's add a few more.

1. Rename Castle to Castle_0 .
2. Make Castle_0 a prefab by dragging it into the _Prefabs folder of the Project pane.

When you're sure there is a Castle_0 prefab, delete the Castle_0 instance in the
Hierarchy.7

3. Make a duplicate of the Castle_0 prefab in the Project pane (which will name itself
Castle_1).

572

4. Drop Castle_1 into the Scene pane, and change its layout. You will likely "Break
Prefab Instance" if you delete one of the walls. That is completely fine. Just structure
Castle_1 however you like.8

5. When you have finished designing your Castle_1, select Castle_1 in the Hierarchy and
click the Prefab Apply button near the top of the Castle_1 Inspector (it's in a row with
the Select and Revert buttons). Clicking Apply assigns changes to this instance back to
the Castle_1 prefab.

6. Now you can delete the Castle_1 instance in the Hierarchy.

Repeat this process to make a few different castles. Figure 29.12 shows a few that I made.

Figure 29.12 More castles

7. After you've created all the castles, make sure that none are left in the Hierarchy, and
save your scene.

Adding UI to the Scene
Follow these steps to add UI to the scene:

1. Add a UI Text to your scene (GameObject > UI > Text) and name it UIText_Level.
2. Create a second UI Text and name it UIText_Shots.
3. Give each the settings shown in Figure 29.13.

573

Figure 29.13 Settings for UIText_Level and UIText_Shots

4. Create a UI Button (GameObject > UI > Button). Name this button UIButton_View.
5. Set the Rect Transform of UIButton_View to the settings shown in Figure 29.14, but

ignore the settings outside of Rect Transform for now.

574

Figure 29.14 Settings for UIButton_View and its Text child

6. Open the disclosure triangle next to UIButton_View in the Hierarchy and give the Text
child of UIButton_View the Text (Script) settings shown in Figure 29.14. You shouldn't
need to change anything outside the Character section. Save your scene when you're
done.

Adding More Game Management
First, you need a camera location from which you can view both the slingshot and castle.

1. Create a new empty GameObject (GameObject > Create Empty) and name it
ViewBoth. Set the transform of ViewBoth to P:[25, 25, 0] R:[0, 0, 0] S:[1, 1, 1].
This serves as the POI for the camera when you want to view both the castle and the

575

slingshot.
2. Create a new C# script in the __Scripts folder named MissionDemolition, and attach it

to _MainCamera. This serves as the game state manager for the game. Open the
MissionDemolition script and write the following code:

Click here to view code image

using UnityEngine;
using System.Collections;
using UnityEngine.UI; // a

public enum GameMode { // b
 idle,
 playing,
 levelEnd
}

public class MissionDemolition: MonoBehaviour {
 static private MissionDemolition S; // a private Singleton

 [Header("Set in Inspector")]
 public Text uitLevel; // The UIText_Level Text
 public Text uitShots; // The UIText_Shots Text
 public Text uitButton; // The Text on UIButton_View
 public Vector3 castlePos; // The place to put castles
 public GameObject[] castles; // An array of the castles

 [Header("Set Dynamically")]
 public int level; // The current level
 public int levelMax; // The number of levels
 public int shotsTaken;
 public GameObject castle; // The current castle
 public GameMode mode = GameMode.idle;
 public string showing = "Show Slingshot" ; // FollowCam mode

 void Start() {
 S = this; // Define the Singleton

 level = 0;
 levelMax = castles.Length;
 StartLevel();
 }

 void StartLevel() {
 // Get rid of the old castle if one exists
 if (castle != null) {
 Destroy(castle);
 }

 // Destroy old projectiles if they exist
 GameObject[] gos = GameObject.FindGameObjectsWithTag("Projectile");
 foreach (GameObject pTempin gos) {

576

 Destroy(pTemp);
 }

 // Instantiate the new castle
 castle = Instantiate< GameObject>(castles[level]);
 castle.transform.position = castlePos;
 shotsTaken = 0 ;

 // Reset the camera
 SwitchView("wShow Both");
 ProjectileLine.S.Clear();

 // Reset the goal
 Goal.goalMet = false;

 UpdateGUI();

 mode = GameMode.playing;
 }

 void UpdateGUI() {
 // Show the data in the GUITexts
 uitLevel.text = "Level: " +(level+1)+ "of " +levelMax;
 uitShots.text = "Shots Taken: " +shotsTaken;
 }

 void Update() {
 UpdateGUI();

 // Check for level end
 if ((mode == GameMode.playing) && Goal.goalMet) {
 // Change mode to stop checking for level end
 mode = GameMode.levelEnd;
 // Zoom out
 SwitchView("Show Both");
 // Start the next level in 2 seconds
 Invoke("NextLevel" ,2f);
 }
 }

 void NextLevel() {
 level++;
 if (level == levelMax) {
 level = 0;
 }
 StartLevel();
 }

 public void SwitchView(string eView ="")
{ // c
 if (eView =="") {
 eView = uitButton.text;
 }
 showing = eView;

577

 switch (showing) {
 case"Show Slingshot" :
 FollowCam.POI = null;
 uitButton.text = "Show Castle";
 break;

 case"Show Castle":
 FollowCam.POI = S.castle;
 uitButton.text = "Show Both" ;
 break;

 case"Show Both" :
 FollowCam.POI = GameObject.Find("ViewBoth");
 uitButton.text = "Show Slingshot";
 break;

 }
 }

 // Static method that allows code anywhere to increment shotsTaken
 public static void ShotFired()
{ // d
 S.shotsTaken++;
 }
}

a. You must add this using UnityEngine.UI; statement to use any of the uGUI
classes like Text and Button.

b. This is the first instance of an enum in this part of the book. See the "Enum" sidebar
for more info.

c. The public SwitchView() method will be called both by this instance of
MissionDemolition and by the Button in the GUI (that you'll implement soon). The
string eView = "" default parameter gives eView a default value of "",
meaning that you don't need to pass in a string. This allows SwitchView() to be
called either as SwitchView("Show Both") or as SwitchView(). If no
string is passed in, the first if statement of the method sets eView to the current text
on the Button at the top of the GUI.

d. ShotFired() is a static public method that Slingshot calls to let
MissionDemolition know when a shot was fired.

ENUM
An enum (or enumeration) is a way of defining specific, named numbers in C#.
The enum definition at the top of the MissionDemolition C# script declares an
enum type GameMode with three potential values: idle, playing, and
levelEnd. After you define an enum, you can then declare a variable that uses

578

the defined enum as its type.
Click here to view code image

public GameMode mode = GameMode.idle;

The preceding line creates a new variable named mode that is of the type
GameMode and has the value GameMode.idle.

You often use enums in code when only a few specific options exist for a variable
and you want those options to be easily readable by humans. Alternatively,
passing the type of game mode as a string (e.g., "idle," "playing," or "levelEnd")
would be possible, but the enum is a much cleaner way of doing this that isn't as
susceptible to misspelling and that allows for autocomplete while typing.

For more information about enums, see Appendix B, "Useful Concepts."

3. Now that a static ShotFired() method exists in the MissionDemolition class,
calling it from the Slingshot class is possible. Add the following bold line to the
Slingshot C# script:

Click here to view code image

public class Slingshot : MonoBehaviour {
 …
 void Update() {
 …
 if (Input.GetMouseButtonUp(0)) {
 // The mouse has been released
 …
 FollowCam.POI = projectile;
 projectile = null;
 MissionDemolition.ShotFired(); // a
 ProjectileLine.S.poi = projectile; // b
 }
 }
}

a. Because the ShotFired() method on MissionDemolition is static, you can access
it through the MissionDemolition class itself rather than being required to access it
via a specific instance of MissionDemolition. When Slingshot calls
MissionDemolition.ShotFired(), it causes
MissionDemolition.S.shotsTaken to increment.

b. This line causes the ProjectileLine to follow the new Projectile when it's fired.
4. Save all of your scripts and switch back to Unity.
5. Select UIButton_View in the Hierarchy, and look at the bottom of the Button (Script)

579

Inspector. Click the + button in the On Click() section of that Inspector.
a. Underneath the Runtime Only button is a field that currently displays None (Object).
b. Click the tiny circular target to the right of this None (Object) field and choose

_MainCamera from the window that pops up (double-click _MainCamera). This
chooses _MainCamera as the GameObject that will receive the call from
UIButton_View.

c. Click the pop-up menu button that currently displays No Function and choose
MissionDemolition > SwitchView(String).9

As a result of this, whenever UIButton_View is clicked, it calls the public
SwitchView() method of the MissionDemolition instance attached to _MainCamera.
Your Button (Script) inspector should now look like the one shown in Figure 29.14.

6. Select _MainCamera in the Hierarchy. In the MissionDemolition (Script) component
Inspector, you must set a few variables.
a. Set castlePos to [50, -9.5, 0], placing the castles a nice distance from your

slingshot.
b. To set uitLevel, click the target in the Inspector to the right of uitLevel and select

UIText_Level from the Scene tab in the pop-up dialog box.
c. Click the target next to uitShots in the Inspector and choose UIText_Shots from

the Scene tab.
d. Click the target next to uitButton and choose Text from the Scene tab (this is the

only other uGUI Text in the scene, and it's the Text label on UIButton_View).
e. Click the disclosure triangle next to castles and set Size to the number of castles

you made previously. (In the example in Figure 29.15, I made four castles.)
f. Drag each of the numbered Castle prefabs you made into an element of the castles

array to set the levels for your game. Try to order them from easiest to most difficult.

580

Figure 29.15 Final settings (with Castles array) for _MainCamera:MissionDemolition

7. Save your scene!

Now the game can play through various levels and keep track of how many shots you've
fired. You can also click the button at the top of the screen to switch views.

Summary

581

That's it for the Mission Demolition prototype. In just one chapter, you've made a physics-
based game like Angry Birds that you can continue to improve and expand on your own.
This and all the following tutorials are really meant to be frameworks on top of which you
can build whatever game you want.

Next Steps
You could add a ton of additional features, some of which include the following:

 Use PlayerPrefs to store the best score on each level as you did in Apple Picker.
 Make the castle parts out of various materials, some of which would have more or less
mass. Some materials could even break if struck hard enough.
 Show lines for multiple previous paths rather than just the most recent one.
 Use a Line Renderer to draw the rubber band of the slingshot.
 Implement actual parallax scrolling on the background clouds, and add more
background elements like mountains or buildings.
 Anything else you want!

After you've worked your way through the other prototypes in this book, come back to this
one and think about what you could add to it. Create your own designs, show them to
people, and iterate to make the game better. Remember that design is always an iterative
process. If you make a change you don't like, don't let it discourage you; just chalk it up to
experience and try something else.

1. Setting the Alpha of the Background color doesn't really matter that much, but Unity
commonly defaults to an Alpha of 0 for colors—and I've had it cause problems in the
past—so I want to get you in the habit of checking the Alpha of any colors set in the
Inspector.

2. If you don't see Ground at the bottom of your Game pane, double-check that the Y
position of _Main-Camera is 0 and the Y position of Ground is -10. If you don't see the
Directional Light in the Game pane, you can click the Gizmos button to make it visible.

3. At the top-left of the Unity window are two buttons: one that toggles between Pivot and
Center, and the other that toggles between Local and Global. The Local/Global button
sets whether the move gizmo shows local or global coordinates. Try choosing the Move
tool (W), selecting a rotated object (e.g., Slingshot), and toggling each of these buttons
to see the effect they have on the positioning of the gizmo.

4. This is why Input.GetMouseButtonUp(), Input.GetKeyDown(), and
other similar Input methods ending in Up or Down, can't be used reliably inside of
FixedUpdate(). A FixedUpdate occurs exactly 50 times per second, while an
Update (or visual frame) could happen up to 400 times per second. If that occurs,
multiple Updates could occur between two FixedUpdates; and if Input.

582

GetKeyDown() was true on anything other than the very last of those multiple
Updates, it would be false within the FixedUpdate(). When this happens, the result
is that it feels like the keyboard or mouse button is broken because it doesn't work most
of the time when you press it. Move the Input …Up or …Down code into Update(),
and all will be well.

5. When I taught at the University of Michigan, I had a great TA named Matt Stone. If you
see him at a game conference, tell him "Jeremy says hi."

6. Holding Command (Ctrl on PC) while moving objects in Unity will snap them to a grid,
which may obviate the need for tweaking their positions.

7. When you make Castle_0 a prefab, all the Slab and Wall instances lose their links to the
Slab and Wall prefabs. Unity is in the middle of changing this and allowing nested
prefabs, but this was not yet complete in Unity 2017. See http://book.prototools.net for
more information if your prefabs seem to work strangely, and I'll have an update there.

8. If you hold down the Command key on macOS (or the Ctrl key on Windows), it should
snap your movement of Walls and Slabs to every 0.5m, which can make it easier to
arrange a castle. Also, you want to avoid having any castle blocks actually intersect
each other, or they could push apart like the blocks did in the Chapter 19, "Hello
World" example. Because the RigidbodySleep function forces the blocks to sleep
initially, this pushing-apart effect won't happen until the projectile hits the castle, so it
could make a nice exploding castle effect, if that's what you want.

9. The gray field that appears below the MissionDemolition.SwitchView button allows
you to enter a string to be passed into the SwitchView method. Leaving this blank
passes the empty string "" into SwitchView, which is the same as the default value for
the optional eView parameter, so you do not need to change this field.

583

http://book.prototools.net

CHAPTER 30

PROTOTYPE 3: SPACE SHMUP

The SHMUP (or shoot 'em up) game genre includes such classic games as Galaga
and Galaxian from the 1980s and the modern masterpiece Ikaruga.

In this chapter, you create a SHMUP using several programming techniques that
will serve you well throughout your programming and prototyping careers. These
include class inheritance, static fields and methods, and the singleton pattern.
Though you've seen many of these techniques before, you will use them more
extensively in this prototype.

Getting Started: Prototype 3
In this project, you make a prototype for a classic space-based SHMUP. This chapter will
get you to the same basic prototype level as the previous two chapters, and the next chapter
will show you how to implement several additional features. Figure 30.1 shows an image
of what the finished prototype will look like after both chapters. These images show the
player ship at the bottom surrounded by a green shield as well as several enemy types and
upgrades (the power-up cubes marked B, O, and S).

584

Figure 30.1 Two views of the Space SHMUP game prototype. The player is using the
blaster weapon in the left image and the spread weapon in the right.

Importing a Unity Asset Package
One new thing in the setup for this prototype is that you must download and import a custom
Unity asset package. The creation of complex art and imagery for games is beyond the
scope of this book, but I've created a package of some simple assets for you that will allow
you to create all the visual effects required for this game. Of course, as mentioned several
times throughout this book, when you're making a prototype, how it plays and feels are
much more important than how it looks, but having an understanding of how to work with
art assets is still important.

SET UP THE PROJECT FOR THIS CHAPTER
Following the standard project setup procedure, create a new project in Unity. If
you need a refresher on this procedure, see Appendix A, "Standard Project Setup
Procedure."

 Project name: Space SHMUP Prototype
 Scene name: _Scene_0
 Project folders: __Scripts (2 underscores before "Scripts"), _Materials,
_Prefabs
 Download and import package: Find Chapter 30 at http://book.prototools.net

585

http://book.prototools.net

 C# script names: (none yet)
 Rename: Change Main Camera to _MainCamera

To download and install the package mentioned in the sidebar "Set Up the Project for This
Chapter," first follow the URL listed (http://book.prototools.net) and search for this chapter.
Download C30_Space_SHMUP_Starter.unitypackage to your machine, which will usually
place it in your Downloads folder. Open your project in Unity and select Assets > Import
Package > Custom Package from the menu bar. Navigate to and select
C30_Space_SHMUP_Starter.unitypackage from your Downloads folder. The import
dialog box opens, as shown in Figure 30.2.

Figure 30.2 The .unitypackage import dialog box

Select all the files as shown in Figure 30.2 (by clicking the All button), and click Import.
This places four new textures and one new shader into the _Materials folder. Textures are
usually just image files. The creation of textures is beyond the scope of this book, but many
books and online tutorials cover texture creation. Adobe Photoshop is probably the most
commonly used image editing tool, but it is very expensive. A common open source
alternative is Gimp (http://www.gimp.org), and a very good, surprisingly cheap
commercial competitor is Affinity Photo (https://affinity.serif.com/photo).

The creation of shaders is also far beyond the scope of this book. Shaders are programs
that tell your computer how to render a texture on a GameObject. They can make a scene
look realistic, cartoony, or however else you like, and they are an important part of the
graphics of any modern game. Unity uses its own unique shader language called ShaderLab.

586

http://book.prototools.net
http://www.gimp.org
https://affinity.serif.com/photo

If you want to learn more about it, a good place to start is the Unity Shader Reference
documentation (http://docs.unity3d.com/Documentation/Components/SL-Reference.html).

The included shader is a simple one that bypasses most of the things a shader can do to
simply render a colored, non-lit shape on the screen. For on-screen elements that you want
to be a specific bright color, this custom UnlitAlpha.shader is perfect. UnlitAlpha also
allows for alpha blending and transparency, which will be very useful for the power-up
cubes in this game.

Setting the Scene
Follow these steps to set the scene (use a pencil to check them off as you go):

1. Select Directional Light in the Hierarchy and set its transform to:
P:[0, 20, 0]  R:[50, –30, 0]  S:[1, 1, 1]

2. Make sure that you renamed Main Camera to _MainCamera (as you were instructed in
the project setup sidebar). Select _MainCamera and set its transform to:
P:[0, 0, -10]  R:[0, 0, 0]  S:[1, 1, 1]

3. In the Camera component of _MainCamera, set the following. Then save your scene.
 Clear Flags to Solid Color
 Background to black (with 255 alpha; RGBA:[0, 0, 0, 255])
 Projection to Orthographic
 Size to 40 (after setting Projection)
 Near Clipping Plane to 0.3
 Far Clipping Plane to 100

4. Because this game will be a vertical, top-down shooter, you need to set an aspect ratio
for the Game pane that is in portrait orientation. In the Game pane, click the pop-up
menu list of aspect ratios that should currently show Free Aspect (see Figure 30.3). At
the bottom of the list is a + symbol. Click it to add a new aspect ratio preset. Set the
values to those shown in Figure 30.3, and then click Add. Set the Game pane to this new
Portrait (3:4) aspect ratio.

587

http://docs.unity3d.com/Documentation/Components/SL-Reference.html

Figure 30.3 Adding a new aspect ratio preset to the Game pane

Making the Hero Ship
In this chapter, you will interleave the construction of artwork and code rather than building
all the art first. To make the player's spaceship, complete these steps:

1. Create an empty GameObject and name it _Hero (GameObject > Create Empty). Set
its transform to P:[0, 0, 0] R:[0, 0, 0] S:[1, 1, 1].

2. Create a cube (GameObject > 3D Object > Cube) and drag it onto _Hero, making it a
child thereof. Name the cube Wing and set its transform to P:[0, -1, 0] R:[0, 0, 45] S:[
3, 3, 0.5].

3. Create an empty GameObject, name it Cockpit, and make it a child of _Hero.
4. Create a cube and make it a child of Cockpit (you can do this by right-clicking on

Cockpit and choosing 3D Object > Cube). Set the Cube's transform to P:[0, 0, 0] R:[
315, 0, 45] S:[1, 1, 1].

5. Select Cockpit again and set its transform to P:[0, 0, 0] R:[0, 0, 180] S:[1, 3, 1].
This uses the same trick you learned in Chapter 27, "Object-Oriented Thinking," to
make a quick, angular ship.

6. Select _Hero in the Hierarchy and click the Add Component button in the Inspector.
Choose New Script from the pop-up menu. Name the script Hero, double-check that
Language is C Sharp, and click Create and Add. This is another way to make a new
script and attach it to a GameObject. In the Project pane, move the Hero script into the
__Scripts folder.

7. Add a Rigidbody component to _Hero by selecting _Hero in the Hierarchy and then
choosing Add Component > Physics > Rigidbody from the Add Component button in
the Inspector. Set the following on the Rigidbody component of _Hero:
 Use Gravity to false (unchecked)
 isKinematic to true (checked)
 Constraints: freeze Z position and X, Y, and Z rotation (by checking them)

588

You'll add more to _Hero later, but this will suffice for now.

8. Save your scene! Remember that you should be saving your scene every time you make
a change to it. I'll quiz you later.

The Hero Update() Method
In the code listing that follows, the Update() method first reads the horizontal and
vertical axes from the InputManager (see the "Input.GetAxis() and The
InputManager" sidebar), placing values between –1 and 1 into the floats xAxis and
yAxis. The second chunk of Update() code moves the ship in a time-based way, taking
into account the speed setting.

The last line (marked // c) rotates the ship based on the input. Although you earlier froze
the rotation in _Hero's Rigidbody component, you can still manually set the rotation on a
Rigidbody with isKinematic set to true. (As discussed in the previous chapter, isKinematic
= true means that the Rigidbody will be tracked by the physics system but that it will not
move automatically due to Rigidbody.velocity.) This rotation makes the movement of the
ship feel more dynamic and expressive, or "juicy."1

Open the Hero C# script in MonoDevelop and enter the following code:

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Hero : MonoBehaviour {
 static public Hero S; // Singleton // a

 [Header("Set in Inspector")]
 // These fields control the movement of the ship
 public float speed = 30;
 public float rollMult = -45;
 public float pitchMult = 30;

 [Header("Set Dynamically")]
 public float shieldLevel = 1;

 void Awake() {
 if (S == null) {
 S = this; // Set the Singleton // a
 } else {
 Debug.LogError("Hero.Awake() - Attempted to assign second Hero.S!");
 }
}

589

void Update () {
 // Pull in information from the Input class
 float xAxis = Input.GetAxis("Horizontal"); // b
 float yAxis = Input.GetAxis("Vertical"); // b

 // Change transform.position based on the axes
 Vector3 pos = transform.position;
 pos.x += xAxis * speed * Time.deltaTime;
 pos.y += yAxis * speed * Time.deltaTime;
 transform.position = pos;

 // Rotate the ship to make it feel more dynamic // c
 transform.rotation = Quaternion.Euler(yAxis*pitchMult,xAxis*rollMult,0);
 }
}

a. The singleton for the Hero class (see Software Design Patterns in Appendix B). The
code in Awake()shows an error in the Console pane if you try to set Hero.S after it
has already been set (which would happen if somehow there were two GameObjects
in the same scene that both had Hero scripts attached or two Hero components
attached to a single GameObject).

b. These two lines use Unity's Input class to pull information from the Unity
InputManager. See the sidebar for more information.

c. The transform.rotation… line below this comment is used to give the ship a
bit of rotation based on the speed at which it is moving, which can make the ship feel
more reactive and juicy.

Try playing the game and moving the ship with the WASD or arrow keys to see how it
feels. The settings for speed, rollMult, and pitchMult work for me, but this is your
game, and you should have settings that feel right to you. Make changes as necessary in the
Unity Inspector for _Hero.

Part of what makes this feel nice is the apparent inertia that the ship carries. When you
release the movement key, the ship takes a little while to slow down. Similarly, upon
pressing a movement key, the ship takes a little while to get up to speed. This apparent
movement inertia is caused by the sensitivity and gravity axis settings that are described in
the sidebar. Changing these settings in the InputManager will affect the movement and
maneuverability of _Hero.

INPUT.GETAXIS() AND THE INPUTMANAGER
Much of the code in the Hero.Update() code listing should look familiar to
you, though this is the first time in the book that you've seen the
Input.GetAxis() method. Unity's InputManager allows you to configure

590

various input axes, and those axes can be read through Input.GetAxis(). To
view the default Input axes, choose Edit > Project Settings > Input from the menu
bar.

One thing to note about the settings in Figure 30.4 is that several axis names are
listed twice (e.g., Horizontal, Vertical, and Jump). As you can see in the expanded
view of the two Horizontal axes in the figure, this allows the Horizontal axis to be
controlled by either presses on the keyboard (shown in the left image of Figure
30.4) or a joystick axis (shown in the right image). This is one of the great
strengths of the input axes; several different types of input can control a single
axis. As a result, your games only need one line to read the value of an axis rather
than a line to handle joystick input, a line for each arrow key, and a line each for
the A and D keys to handle horizontal input.

Figure 30.4 Unity's InputManager showing some of the default settings (split in
two halves)

Every call to Input.GetAxis()returns a float between –1 and 1 in value
(with a default of 0). Each axis in the InputManager also includes values for
Sensitivity and Gravity, though these are only used for Key or Mouse Button input
(see the left image of Figure 30.4). Sensitivity and gravity cause the axis value to
interpolate smoothly when a key is pressed or released (i.e., instead of
immediately jumping to the final value, the axis value will blend from the original
value to the final value over time). In the Horizontal axis shown, a sensitivity of 3
means that when the right-arrow key is pressed, it takes 1/3 of a second for the
value to interpolate from 0 to 1. A gravity of 3 means that when the right-arrow
key is released, it takes 1/3 of a second for the axis value to interpolate back to 0.
The higher the sensitivity or gravity, the faster the interpolation takes place.

As with many things in Unity, you can find out a lot more about the InputManager

591

by clicking the Help button (that looks like a blue book with a question mark and
is between the name InputManager and the gear at the top of the Inspector).

The Hero Shield
The shield for _Hero is a combination of a transparent, textured quad (to provide the
visuals) and a Sphere Collider (for collision handling):

1. Create a new quad (GameObject > 3D Object > Quad). Rename the quad Shield and
make it a child of _Hero. Set the transform of Shield to P:[0, 0, 0], R:[0, 0, 0], S:[8,
8, 8].

2. Select Shield in the Hierarchy and delete the existing Mesh Collider component by
clicking the tiny gear to the right of the Mesh Collider name in the Inspector and
choosing Remove Component from the pop-up menu. Add a Sphere Collider component
(Component > Physics > Sphere Collider).

3. Create a new material (Assets > Create > Material), name it Mat_Shield, and place it
in the _Materials folder in the Project pane. Drag Mat_Shield onto the Shield under
_Hero in the Hierarchy to assign it to the Shield quad.

4. Select Shield in the Hierarchy, and you can now see Mat_Shield in the Inspector for
Shield. Set the Shader of Mat_Shield to ProtoTools > UnlitAlpha. Below the shader
selection pop-up for Mat_Shield, you should see an area that allows you to choose the
main color for the material as well as the texture. (If you don't see the shader properties,
click once on the name Mat_Shield in the Inspector, and it should appear.)

5. Click Select in the bottom-right corner of the texture square and select the texture
named Shields. Click the color swatch next to Main Color and choose a bright green
(RGBA:[0, 255, 0, 255]). Then set:
 Tiling.x to 0.2
 Offset.x to 0.4
 Tiling.y should remain 1.0
 Offset.y should remain 0

The Shield texture was designed to be split into five sections horizontally. The X Tiling of
0.2 causes Mat_Shield to only use 1/5 of the total Shield texture in the X direction, and the
X Offset chooses which fifth. Try X Offsets of 0, 0.2, 0.4, 0.6, and 0.8 to see the different
levels of shield strength.

6. Create a new C# script named Shield (Asset > Create > C# Script). Drop it into the
__Scripts folder in the Project pane and then drag it onto Shield in the Hierarchy to

592

assign it as a component of the Shield GameObject.
7. Open the Shield script in MonoDevelop and enter the following code:

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Shield : MonoBehaviour {
 [Header("Set in Inspector")]
 public float rotationsPerSecond = 0.1f;

 [Header("Set Dynamically")]
 public int levelShown = 0;

 // This non-public variable will not appear in the Inspector
 Material mat; // a

 void Start() {
 mat = GetComponent<Renderer>().material; // b
 }

 void Update () {
 // Read the current shield level from the Hero Singleton
 int currLevel = Mathf.FloorToInt(Hero.S.shieldLevel); // c
 // If this is different from levelShown...
 if (levelShown != currLevel) {
 levelShown = currLevel;
 // Adjust the texture offset to show different shield level
 mat.mainTextureOffset = new Vector2(0.2f*levelShown, 0); // d
 }
 // Rotate the shield a bit every frame in a time-based way
 float rZ = -(rotationsPerSecond*Time.time*3600) % 360f; // e
 transform.rotation = Quaternion.Euler(0, 0, rZ);
 }
}

a. The Material field mat is not declared public, so it will not be visible in the
Inspector, and it will not be able to be accessed outside of this Shield class.

b. In Start(), mat is defined as the material of the Renderer component on this
GameObject (Shield in the Hierarchy). This allows you to quickly set the texture
offset in the line marked // d.

c. currLevel is set to the floor of the current Hero.S.shieldLevel float.
Flooring the shieldLevel ensures that the shield jumps to the new X Offset rather
than show an Offset between two shield icons.

d. This line adjusts the X Offset of Mat_Shield to show the proper shield level.
e. This line and the next cause the Shield GameObject to rotate slowly about the z axis.

593

Keeping _Hero on Screen
The motion of your _Hero ship should feel pretty good now, and the rotating shield looks
pretty nice, but at this point, you can easily drive the ship off the screen. To resolve this,
you're going to make a reusable component script.2 You can read more about the component
software design pattern in Chapter 27, "Object-Oriented Thinking" and under Software
Design Patterns in Appendix B, "Useful Concepts." In brief, a component is a small piece
of code that is meant to work alongside others to add functionality to a GameObject without
conflicting with other code on that object. Unity's components that you've worked with in
the Inspector (e.g., Renderer, Transform, and so on) all follow this pattern. Now, you'll do
the same with a small script to keep _Hero on screen. Note that this script only works with
orthographic cameras.

1. Select _Hero in the Hierarchy and using the Add Component button in the Inspector,
choose Add Component > New Script. Name the script BoundsCheck and click Create
and Add. Drag the BoundsCheck script in the Project pane into the __Scripts folder.

2. Open the BoundsCheck script and add the following code:
Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

// To type the next 4 lines, start by typing /// and then Tab.
/// <summary>
/// Keeps a GameObject on screen.
/// Note that this ONLY works for an orthographic Main Camera at [0, 0, 0].
/// </summary>
public class BoundsCheck : MonoBehaviour { //
a
 [Header("Set in Inspector")]
 public float radius = 1f;

 [Header("Set Dynamically")]
 public float camWidth;
 public float camHeight;

 void Awake() {
 camHeight = Camera.main.orthographicSize; //
b
 camWidth = camHeight * Camera.main.aspect; //
c
 }

 void LateUpdate () { //
d
 Vector3 pos = transform.position;

 if (pos.x > camWidth - radius) {

594

 pos.x = camWidth - radius;
 }

 if (pos.x < -camWidth + radius) {
 pos.x = -camWidth + radius;
 }

 if (pos.y > camHeight - radius) {
 pos.y = camHeight - radius;
 }
 if (pos.y < -camHeight + radius) {
 pos.y = -camHeight + radius;
 }

 transform.position = pos;
 }

 // Draw the bounds in the Scene pane using OnDrawGizmos()
 void OnDrawGizmos () { //
e
 if (!Application.isPlaying) return;
 Vector3boundSize = newVector3(camWidth* 2, camHeight* 2, 0.1f);
 Gizmos.DrawWireCube(Vector3.zero, boundSize);
 }
}

a. Because this is intended to be a reusable piece of code, adding some internal
documentation to it is useful. The lines above the class declaration that all begin with
/// are part of C#'s built-in documentation system.3 After you've typed this, it
interprets the text between the <summary> tags as a summary of what the class is
used for. After typing it, hover your mouse over the name BoundsCheck on the line
marked // a, and you should see a pop-up with this class summary.

b. Camera.main gives you access to the first camera with the tag MainCamera in
your scene. Then, if the camera is orthographic, .orthographicSize gives you
the Size number from the Camera Inspector (which is 40 in this case). This makes
camHeight the distance from the origin of the world (position [0, 0, 0]) to the top
or bottom edge of the screen in world coordinates.

c. Camera.main.aspect is the aspect ratio of the camera in width/height as
defined by the aspect ratio of the Game pane (currently set to Portrait (3:4)). By
multiplying camHeight by .aspect, you can get the distance from the origin to
the left or right edge of the screen.

d. LateUpdate() is called every frame after Update() has been called on all
GameObjects. If this code were in the Update() function, it might happen either
before or after the Update() call on the Hero script. Putting this code in
LateUpdate()avoids causing a race condition between the two Update()
functions and ensures that Hero.Update() moves the _Hero GameObject to the

595

new position each frame before this function is called and bounds _Hero to the
screen.

e. OnDrawGizmos() is a built-in MonoBehaviour method that can draw to the Scene
pane.

A race condition is an instance where the order in which two pieces of code execute (i.e.,
A before B or B before A) matters, but you don't have control over that order. For example,
in this code, if BoundsCheck.LateUpdate() were to execute before
Hero.Update(), the _Hero GameObject would potentially be moved out of bounds
(because it would first limit the ship to the bounds and then move the ship). Using
LateUpdate() in BoundsCheck enforces the execution order of the two scripts.

3. Click Play and try flying your ship around. Based on the default setting for radius,
you should see that the ship stops while it is still 1m on screen. If you set
BoundsCheck. radius to 4 in the _Hero Inspector, the ship stays entirely on
screen. If you set radius to -4, the ship can exit the edge of the screen but will be
locked there, ready to come right back on. Stop playback and set radius to 4.

Adding Some Enemies
Chapter 26, "Classes," covered a bit about the Enemy class and subclasses for a game like
this. There you learned about setting up a superclass for all enemies that can be extended by
subclasses. For this game, will you extend that further in the next chapter, but first, let's
create the artwork.

Enemy Artwork
Because the hero ship has such an angular aesthetic, all the enemies will be constructed of
spheres as shown in Figure 30.5.

Figure 30.5 Each of the five enemy ship types (lighting will differ slightly in Unity)

To create the artwork for Enemy_0 do the following:

1. Create an empty GameObject, name it Enemy_0, and set its transform to P:[-20, 10, 0
], R:[0, 0, 0], S:[1, 1, 1]. This position is to make sure it doesn't overlap with _Hero
as you build it.

596

2. Create a sphere named Cockpit, make it a child of Enemy_0, and set its transform to P:[
0, 0, 0], R:[0, 0, 0], S:[2, 2, 1].

3. Create a second sphere named Wing, make it a child of Enemy_0, and set its transform
to P:[0, 0, 0], R:[0, 0, 0], S:[5, 5, 0.5].

Another way of writing the preceding three steps for Enemy_0 would be:

Enemy_0 (Empty) P:[-20, 10, 0
]

R:[0, 0, 0
]

S:[1, 1, 1]

Cockpit
(Sphere)

P:[0, 0, 0] R:[0, 0, 0
]

S:[2, 2, 1]

Wing (Sphere) P:[0, 0, 0] R:[0, 0, 0
]

S:[5, 5, 0.5
]

4. Follow this formatting to make the remaining four enemies. When finished, they should
look like the enemies shown in Figure 30.5.

Enemy_1
Enemy_1 (Empty) P:[-10,

10, 0]
R:[0, 0,

0]
S:[1, 1, 1]

 Cockpit
(Sphere)

P:[0, 0, 0
]

R:[0, 0,
0]

S:[2, 2, 1]

 Wing
(Sphere)

P:[0, 0, 0
]

R:[0, 0,
0]

S:[6, 4, 0.5
]

Enemy_2
Enemy_2 (Empty) P:[0, 10,

0]
R:[0, 0,

0]
S:[1, 1, 1]

 Cockpit
(Sphere)

P:[-1.5,
0, 0]

R:[0, 0,
0]

S:[1, 3, 1]

 Reactor
(Sphere)

P:[2, 0, 0
]

R:[0, 0,
0]

S:[2, 2, 1]

 Wing
(Sphere)

P:[0, 0, 0
]

R:[0, 0,
0]

S:[6, 4, 0.5
]

Enemy_3
Enemy_3 (Empty) P:[10,

10, 0]
R:[0, 0,

0]
S:[1, 1, 1]

597

 CockpitL
(Sphere)

P:[-1, 0,
0]

R:[0, 0,
0]

S:[1, 3, 1]

 CockpitR
(Sphere)

P:[1, 0, 0
]

R:[0, 0,
0]

S:[1, 3, 1]

 Wing
(Sphere)

P:[0, 0.5,
0]

R:[0, 0,
0]

S:[5, 1, 0.5
]

Enemy_4
Enemy_4 (Empty) P:[20,

10, 0]
R:[0, 0,

0]
S:[1, 1, 1]

 Cockpit
(Sphere)

P:[0, 1, 0
]

R:[0, 0,
0]

S:[1.5, 1.5,
1.5]

 Fuselage
(Sphere)

P:[0, 1, 0
]

R:[0, 0,
0]

S:[2, 4, 1]

 WingL
(Sphere)

P:[-1.5,
0, 0]

R:[0, 0,
-30]

S:[5, 1, 0.5
]

 WingR
(Sphere)

P:[1.5, 0,
0]

R:[0, 0,
30]

S:[5, 1, 0.5
]

5. You must add a Rigidbody component to each of the enemy GameObjects (i.e.,
Enemy_0, Enemy_1, Enemy_2, Enemy_3, and Enemy_4). To add a Rigidbody, complete
these steps:
a. Select Enemy_0 in the Hierarchy and choose Component > Physics > Rigidbody

from the menu bar to add the Rigidbody component.
b. In the Rigidbody component for the enemy, set Use Gravity to false.
c. Set isKinematic to true.
d. Open the disclosure triangle for Constraints and freeze Z position and X, Y, and Z

rotation.
6. Now copy the Rigidbody component from Enemy_0 to all four other enemies. Do the

following steps for each of the four other enemies:
a. Select Enemy_0 in the Hierarchy and click the little gear button in the top-right

corner of the Enemy_0 Rigidbody component.
b. From the pop-up menu, choose Copy Component.
c. Select the enemy that you want to add a Rigidbody to (e.g., Enemy_1).
d. Click the gear button in the top-right of the Transform component on the enemy.
e. Choose Paste Component As New from the pop-up menu.

598

This attaches a Rigidbody component to the enemy with the same settings as the Rigidbody
that you copied from Enemy_0. Be sure to do this for all enemies. If a moving GameObject
doesn't have a Rigidbody component, the GameObject's collider location will not move
with the GameObject, but if a moving GameObject does have a Rigidbody, the colliders of
both it and all of its children are updated every frame (which is why you don't need to add a
Rigidbody component to any of the children of the enemy GameObjects).

7. Drag each of these enemies to the _Prefabs folder of the Project pane to create a prefab
for each.

8. Delete all the enemy instances from the Hierarchy except for Enemy_0.

The Enemy C# Script
To create the Enemy script, follow these steps:

1. Create a new C# script named Enemy and place it into the __Scripts folder.
2. Select Enemy_0 in the Project pane (not in the Hierarchy). In the Inspector for

Enemy_0, click the Add Component button and choose Scripts > Enemy from the pop-
up menu. After doing this, when you click on Enemy_0 in either the Project or Hierarchy
panes, you should see an Enemy (Script) component attached.

3. Open the Enemy script in MonoDevelop and enter the following code:
Click here to view code image

using System.Collections; // Required for Arrays & other Collections
using System.Collections.Generic; // Required for Lists and Dictionaries
using UnityEngine; // Required for Unity

public class Enemy : MonoBehaviour {
 [Header("Set in Inspector: Enemy")]
 public float speed = 10f; // The speed in m/s
 public float fireRate = 0.3f; // Seconds/shot (Unused)
 public float health = 10;
 public int score = 100; // Points earned for destroying this

 // This is a Property: A method that acts like a field
 public Vector3 pos { //
a
 get {
 return(this.transform.position);
 }
 set {
 this.transform.position = value;
 }
 }

 void Update() {
 Move();

599

 }

 public virtual void Move() { //
b
 Vector3 tempPos = pos;
 tempPos.y -= speed * Time.deltaTime;
 pos = tempPos;
 }
}

a. As was discussed in Chapter 26, "Classes," a property is a function masquerading as
a field. This means that you can get and set the value of pos as if it were a class
variable of Enemy.

b. The Move() method gets the current position of this Enemy_0, moves it in the
downward Y direction, and assigns it back to pos (setting the position of the
GameObject).

4. In Unity, click Play, and the instance of Enemy_0 in the scene should move toward the
bottom of the screen. However, with the current code, this instance will continue off
screen and exist until you stop your game. You need to have the enemy destroy itself
after it has moved entirely off screen. This is a great place to reuse the BoundsCheck
component.

5. To attach the BoundsCheck script to the Enemy_0 prefab, select the Enemy_0 prefab in
the Hierarchy (not the Project pane this time). In the Inspector, click Add Component
and choose Add Component > Scripts > BoundsCheck. This attaches the script to the
instance of Enemy_0 in the Hierarchy, but it has not yet attached it to the Enemy_0
prefab in the Project pane. You can tell this because all the text in the BoundsCheck
(Script) component is bold.

6. To apply this change made to the Enemy_0 instance back to its prefab, click Apply at the
top of the Inspector for the Enemy_0 instance in the Hierarchy. Now check the Enemy_0
prefab in the Project pane to see that the script is attached.

7. Select the Enemy_0 instance in the Hierarchy and set the radius value in the
BoundsCheck Inspector to -2.5. Note that this value is bolded because it is different
from the value on the prefab. Click Apply at the top of the Inspector again, and the radius
value will no longer be bolded, showing you that it is the same value as the one on the
prefab.

8. Click Play, and you'll see that the Enemy_0 instance stops right after it has gone off
screen. However, instead of forcing Enemy_0 to remain on screen, you really want to be
able to check whether it has gone off screen and then destroy it when it has.

9. To do so, make the following bolded modifications to the BoundsCheck script.
Click here to view code image

/// <summary>
/// Checks whether a GameObject is on screen and can force it to stay on screen.

600

/// Note that this ONLY works for an orthographic Main Camera.
/// </summary>
public class BoundsCheck : MonoBehaviour {
 [Header("Set in Inspector")]
 public float radius = 1f;
 public bool keepOnScreen = true; // a

 [Header("Set Dynamically")]
 public bool isOnScreen = true; // b
 public float camWidth;
 public float camHeight;

 void Awake() { … } // Remember, ellipses mean to not alter this method.

 void LateUpdate () {
 Vector3 pos = transform.position; // c
 isOnScreen = true; // d

 if (pos.x > camWidth - radius) {
 pos.x = camWidth - radius;
 isOnScreen = false; // e
 }
 if (pos.x < -camWidth + radius) {
 pos.x = -camWidth + radius;
 isOnScreen = false; // e
 }

 if (pos.y > camHeight - radius) {
 pos.y = camHeight - radius;
 isOnScreen = false; // e
 }
 if (pos.y < -camHeight + radius) {
 pos.y = -camHeight + radius;
 isOnScreen = false; // e
 }

 if (keepOnScreen && !isOnScreen) { // f
 transform.position = pos; // g
 isOnScreen = true;
 }
 }

 …
}

a. keepOnScreen allows you to choose whether BoundsCheck forces a GameObject
to stay on screen (true) or allows it to exit the screen and notifies you that it has
done so (false).

b. isOnScreen turns false if the GameObject exits the screen. More accurately, it
turns false if the GameObject goes past the edge of the screen minus the value of
radius. This is why radius is set to –2.5 for Enemy_0, so that it is completely off
screen before isOnScreen is set to false.

601

c. Remember that ellipses in code mean you should not modify the Start() method.
d. isOnScreen is set to true until proven false. This allows the value of
isOnScreen to return to true if the GameObject was off screen in the last frame but
has come back on in this frame.

e. If any of these four if statements are true, then the GameObject is outside of the area
it is supposed to be in. isOnScreen is set to false, and pos is adjusted to a
position that would bring the GameObject back "on screen."

f. If keepOnScreen is true, then you are trying to force the GameObject to stay on
screen. If keepOnScreen is true and isOnScreen is false, then the
GameObject has gone out of bounds and needs to be brought back in. In this case,
transform.position is set to the updated pos that is on screen, and
isOnScreen is set to true because this position assignment has now moved the
GameObject back on screen.
If keepOnScreen is false, then pos is not assigned back to
transform.position, the GameObject is allowed to go off screen, and
isOnScreen is allowed to remain false. The other possibility is that the
GameObject was on screen the whole time, in which case, isOnScreen would still
be true from when it was set on line // d.

g. Note that this line is now indented and inside the if statement on line // f.

Happily, all of these modifications to the code do not negatively impact the way it was used
for _Hero, and everything there still works fine. You've created a reusable component that
you can apply to both _Hero and the Enemy GameObjects.

Deleting the Enemy When It Goes Off Screen
Now that BoundsCheck can tell you when Enemy_0 goes off screen, you need to set it to
properly do so.

1. Set keepOnScreen to false in the BoundsCheck (Script) component of the
Enemy_0 prefab in the _Prefabs folder of the Project pane.

2. To ensure that this propagates to the Enemy_0 instance in the Hierarchy, select the
instance in the Hierarchy and click the gear to the right of the BoundsCheck (Script)
component heading in the Inspector. From the gear pop-up menu, choose Revert to
Prefab to set the values of the instance in the Hierarchy to those on the prefab. When
you've done this, the BoundsCheck (Script) component on both the Enemy_0 prefab in
the Project pane and the Enemy_0 instance in the Hierarchy should look like Figure
30.6.

602

Figure 30.6 The BoundsCheck (Script) component settings for both the prefab and instance
of Enemy_0

3. Add the following bold code to the Enemy script:
Click here to view code image

public class Enemy : MonoBehaviour {
 …
 public int score = 100; // Points earned for destroying this

 private BoundsCheck bndCheck; // a

 void Awake() { // b
 bndCheck = GetComponent<BoundsCheck>();
 }

 …

 void Update() {
 Move();

 if (bndCheck != null && !bndCheck.isOnScreen) { //
c
 // Check to make sure it's gone off the bottom of the screen
 if (pos.y < bndCheck.camHeight - bndCheck.radius) { //
d
 // We're off the bottom, so destroy this GameObject
 Destroy(gameObject);
 }
 }
 }

 …
}

a. This private variable allows this Enemy script to store a reference to the
BoundsCheck (Script) component attached to the same GameObject.

b. This Awake() method searches for the BoundsCheck script component attached to
this same GameObject. If there is not one, bndCheck will be set to null. Code like
this that searches for components and caches references is often placed in the

603

Awake() method so that the references are ready immediately when the GameObject
is instantiated.

c. First checks to make sure bndCheck is not null. If you attached the Enemy script
to a GameObject without attaching a BoundsCheck script as well, this could be the
case. Only if bndCheck != null does the script check to see whether the
GameObject is not on screen (according to BoundsCheck).

d. If isOnScreen is false, this line checks to see whether it is off screen because it
has a pos.y that is too negative (i.e., it has gone off the bottom of the screen). If this
is the case, the GameObject is destroyed.

This works and does what we want, but it seems a bit messy to be doing the same
comparison of pos.y versus the camHeight and radius both here and in
BoundsCheck.

It is generally considered good programming style to let each C# class (or component)
handle the job it is meant to do and not have crossover like this. As such, let's alter
BoundsCheck to be able to tell you in which direction the GameObject has gone off screen.

3. Modify the BoundsCheck script by adding the bolded code that follows:
Click here to view code image

public class BoundsCheck : MonoBehaviour {
 …
 public float camHeight;
 [HideInInspector]
 public bool offRight, offLeft, offUp, offDown; //
a

 void Start() { … }

 void LateUpdate () {
 Vector3 pos = transform.position;
 isOnScreen = true;
 offRight = offLeft = offUp = offDown = false; // b

 if (pos.x > camWidth - radius) {
 pos.x = camWidth - radius;
 offRight = true; // c
 }
 if (pos.x < -camWidth + radius) {
 pos.x = -camWidth + radius;
 offLeft = true; // c
 }

 if (pos.y > camHeight - radius) {
 pos.y = camHeight - radius;
 offUp = true; // c
 }

604

 if (pos.y < -camHeight + radius) {
 pos.y = -camHeight + radius;
 offDown = true; // c
 }

 isOnScreen = !(offRight || offLeft || offUp || offDown); // d
 if (keepOnScreen && !isOnScreen) {
 transform.position = pos;
 isOnScreen = true;
 offRight = offLeft = offUp = offDown = false; // e
 }
 }

 …
}

a. Here you declare four variables, one for each direction in which the GameObject
could go off screen. As bools, they all will default to false. The
[HideInInspector] line preceding this causes these four public fields to not
appear in the Inspector, though they are still public variables and can still be read (or
set) by other classes. [HideInInspector] applies to all four off__bools
(i.e., offRight, offLeft, and so on) because they are all declared on the line
beneath it. If the off__ bools were declared on four separate lines, a
[HideInInspector] line would need to precede each line individually to
achieve the same effect.

b. At the beginning of each LateUpdate() you set all four off__ bools to false.
In this line, offDown is first set to false, then offUp is set to the value of
offDown (i.e., false), and so on until all off__ bools hold the value false.
This takes the place of the old line that set isOnScreen to true.

c. Each instance of isOnScreen = false; has now been replaced with an off__
= true; so that you know in which direction the GameObject has exited the screen.
The possibility exists for two of these off__ bools to both be true; for example,
when the GameObject has exited the bottom-right corner of the screen.

d. Here, you set isOnScreen based on the values of all the off__ bools. First,
inside the parentheses, you take the logical OR (||) of all the off__ bools. If one or
more of them are true, this evaluates to true. You then take the NOT (!) of that
and assign it to isOnScreen. So, if one or more of the off__ bools are true,
isOnScreen will be false, otherwise isOnScreen is set to true.

e. If keepOnScreen is true, and this GameObject is forced back on screen,
isOnScreen is set to true, and all the off__ bools are set to false.

4. Now, make the following bolded changes to the Enemy script to take advantage of the
improvements to BoundsCheck.

Click here to view code image

605

public class Enemy : MonoBehaviour {
 …

 void Update() {
 Move();
 if (bndCheck != null && bndCheck.offDown) { // a
 // We're off the bottom, so destroy this GameObject // b
 Destroy(gameObject); // b
 }
 }

 …
}

a. Now, you just need to check against bndCheck.offDown to determine whether
the Enemy instance has gone off the bottom of the screen.

b. These two lines have lost one tab of indentation because there is now only one if
clause instead of two.

This is a much simpler implementation from the viewpoint of the Enemy class, and it makes
good use of the BoundsCheck component, allowing it to do its job without needlessly
duplicating its functionality in the Enemy class.

Now, when you play the scene, you should see that the Enemy_0 ship moves down the
screen and is destroyed as soon as it exits the bottom of the screen.

Spawning Enemies at Random
With all of this in place, instantiating a number of Enemy_0s randomly is now possible.

1. Attach a BoundsCheck script to _MainCamera and set its keepOnScreen field to
false.

2. Create a new C# script called Main inside the __Scripts folder. Attach it to
_MainCamera, and then enter the following code:

Click here to view code image

using System.Collections; // Required for Arrays & other Collections
using System.Collections.Generic; // Required to use Lists or Dictionaries
using UnityEngine; // Required for Unity
using UnityEngine.SceneManagement; // For loading & reloading of scenes

public class Main : MonoBehaviour {
 static public Main S; // A singleton for Main

 [Header("Set in Inspector")]
 public GameObject[] prefabEnemies; // Array of Enemy
prefabs
 public float enemySpawnPerSecond = 0.5f; // # Enemies/second

606

 public float enemyDefaultPadding = 1.5f; // Padding for position

 private BoundsCheck bndCheck;

 void Awake() {
 S = this;
 // Set bndCheck to reference the BoundsCheck component on this
GameObject
 bndCheck = GetComponent<BoundsCheck>();

 // Invoke SpawnEnemy() once (in 2 seconds, based on default values)
 Invoke("SpawnEnemy", 1f/enemySpawnPerSecond); //
a
 }

 public void SpawnEnemy() {
 // Pick a random Enemy prefab to instantiate
 int ndx = Random.Range(0, prefabEnemies.Length); //
b
 GameObject go = Instantiate<GameObject>(prefabEnemies[ndx]); //
c

 // Position the Enemy above the screen with a random x position
 float enemyPadding = enemyDefaultPadding; //
d
 if (go.GetComponent<BoundsCheck>() != null) { //
e
 enemyPadding = Mathf.Abs(go.GetComponent<BoundsCheck>().radius);
 }

 // Set the initial position for the spawned Enemy //
f
 Vector3 pos = Vector3.zero;
 float xMin = -bndCheck.camWidth + enemyPadding;
 float xMax = bndCheck.camWidth - enemyPadding;
 pos.x = Random.Range(xMin, xMax);
 pos.y = bndCheck.camHeight + enemyPadding;
 go.transform.position = pos;

 // Invoke SpawnEnemy() again
 Invoke("SpawnEnemy", 1f/enemySpawnPerSecond); //
g
 }
}

a. This Invoke() function calls the SpawnEnemy() method in 1/0.5 seconds (i.e.,
2 seconds) based on the default values.

b. Based on the length of the array prefabEnemies, this chooses a random number
between 0 and one less than prefabEnemies.Length, so if four prefabs are in
the prefabEnemies array, it will return 0, 1, 2, or 3. The int version of
Random.Range() will never return a number as high as the max (i.e., second)

607

integer passed in. The float version is able to return the max number.
c. The random ndx generated is used to select a GameObject prefab from
prefabEnemies.

d. The enemyPadding is initially set to the enemyDefaultPadding set in the Inspector.
e. However, if the selected enemy prefab has a BoundsCheck component, you instead

read the radius from that. The absolute value of the radius is taken because
sometimes the radius is set to a negative value so that the GameObject must be
entirely off screen before registering as isOnScreen = false, as is the case for
Enemy_0.

f. This section of the code sets an initial position for the enemy that was instantiated. It
uses the BoundsCheck on this _MainCamera GameObject to get the camWidth and
camHeight and chooses an X position where the spawned enemy is entirely on screen
horizontally. It then chooses a Y position where the enemy is just above the screen.

g. Invoke is called again. The reason that Invoke() is used instead of
InvokeRepeating() is that you want to be able to dynamically adjust the amount
of time between each enemy spawn. After InvokeRepeating() is called, the
invoked function is always called at the rate specified. Adding an Invoke() call at
the end of SpawnEnemy() allows the game to adjust enemySpawnPerSecond
on the fly and have it affect how frequently SpawnEnemy() is called.

3. After you've typed this code and saved the file, switch back to Unity and follow these
instructions:
a. Delete the instance of Enemy_0 from the Hierarchy (leaving the prefab in the Project

pane alone, of course).
b. Select _MainCamera in the Hierarchy.
c. Open the disclosure triangle next to prefabEnemies in the Main (Script)

component of _MainCamera and set the Size of prefabEnemies to 1.
d. Drag Enemy_0 from the Project pane into Element 0 of the prefabEnemies array.
e. Save your scene! Have you been remembering?

If you didn't save your scene after creating all of those enemies, you really should have. All
sorts of things beyond your control could cause Unity to crash, and you don't want to have
to redo work. Getting into a habit of saving your scene frequently can save you a ton of
wasted time and sorrow as a developer.

4. Play your scene. You should now see an Enemy_0 spawn about once every 2 seconds,
travel down to the bottom of the screen, and then disappear after it exits the bottom of
the screen.

However, right now, when the _Hero collides with an enemy, nothing happens. This needs

608

to be fixed, and to do so, you have to look at layers.

Setting Tags, Layers, and Physics
As was presented in Chapter 28, "Prototype 1: Apple Picker," one of the things that layers
control in Unity is which objects may or may not collide with each other. First, let's think
about the Space SHMUP prototype. In this game, several different types of GameObjects
could be placed on different layers and interact with each other in different ways:

 Hero: The _Hero ship should collide with enemies, enemy projectiles, and power-
ups but should not collide with hero projectiles.
 ProjectileHero: Projectiles fired by _Hero should only collide with enemies.
 Enemy: Enemies should collide with _Hero and hero projectiles but not with power-
ups.
 ProjectileEnemy: Projectiles fired by enemies should only collide with _Hero.
 PowerUp: Power-ups should only collide with _Hero.

To create these layers as well as some tags that will be useful later, complete these steps:
1. Open the Tags & Layers manager in the Inspector pane (Edit > Project Settings > Tags

and Layers). Tags and physics layers are different from each other, but both are set here.
2. Open the disclosure triangle next to Tags. Click the + below the Tags list and enter the

tag name for each of the tags shown in the left image of Figure 30.7.

Figure 30.7 TagManager showing tags and layer names for this prototype

In case it's difficult to see, the Tag names are: Hero, Enemy, ProjectileHero,
ProjectileEnemy, PowerUp, and PowerUpBox.

3. Open the disclosure triangle next to Layers. Starting with User Layer 8, enter the layer
names shown in the right image of Figure 30.7. Builtin Layers 0–7 are reserved by
Unity, but you can set the names of User Layers 8–31.
The Layer names are: Hero, Enemy, ProjectileHero, ProjectileEnemy, and PowerUp.

609

4. Open the PhysicsManager (Edit > Project Settings > Physics) and set the Layer
Collision Matrix as shown in Figure 30.8.

Figure 30.8 PhysicsManager with proper settings for this prototype

Note
Unity has settings for both Physics and Physics2D. In this chapter, you should be
setting Physics (the standard 3D PhysX physics library), not Physics2D.

As you experienced in Chapter 28, the grid at the bottom of the PhysicsManager sets which
layers collide with each other. If there is a check, objects in the two layers are able to

610

collide, if there is no check, they won't. Removing checks can speed the execution of your
game because it will test fewer objects versus each other for collision. As you can see in
Figure 30.8, the Layer Collision Matrix that is selected achieves the collision behavior we
specified earlier.

Assigning the Proper Layers to GameObjects
Now that the layers have been defined, you must assign the GameObjects you've created to
the correct layer, as follows:

1. Select _Hero in the Hierarchy and choose Hero from the Layer pop-up menu in the
Inspector. When Unity asks whether you want to also assign the children of _Hero to this
new layer, choose Yes, change children.

2. Set the tag of _Hero to Hero using the Tag pop-up menu in the Inspector. You do not
need to change the tags of the children of _Hero.

3. Select all five of the Enemy prefabs in the Project pane and set them to the Enemy layer.
When asked, elect to change the layer of their children as well.

4. Also set the tags of all Enemy prefabs to Enemy. You do not need to set the tags of the
children of each enemy.

Making the Enemies Damage the Player
Now that the enemies and hero have colliding layers, you need to make them react to
collisions with each other.

1. Open the disclosure triangle next to _Hero in the Hierarchy and select its child Shield.
In the Inspector, set the Sphere Collider of Shield to be a trigger (check the box next to
Is Trigger). You don't need things to bounce off of Shield; you just need to know when
they've hit.

2. Add the following bolded method to the end of the Hero C# script:
Click here to view code image

public class Hero : MonoBehaviour {
 …
 void Update() {
 …
 }

 void OnTriggerEnter(Collider other) {
 print("Triggered: "+other.gameObject.name);
 }
}

3. Play the scene and try running into some enemies. You can see that you get a separate

611

trigger event for each of the child GameObjects of the enemy (e.g., Cockpit and Wing)
but not for the enemy itself. You need to be able to get the Enemy_0 GameObject that is
the parent of Cockpit and Wing, and if you had even more deeply nested child
GameObjects, you would need to still find this topmost or root parent.

Luckily, this is a pretty common thing to need to do, so it's part of the Transform component
of any GameObject. Calling transform.root on any GameObject gives you the
transform of the root GameObject, from which it is easy to get the GameObject itself.

4. Replace the OnTriggerEnter() code of the Hero C# script with these bolded
lines:

Click here to view code image

public class Hero : MonoBehaviour {
 …
 void OnTriggerEnter(Collider other) {
 Transform rootT = other.gameObject.transform.root;
 GameObject go = rootT.gameObject;
 print("Triggered: "+go.name);
 }
}

Now when you play the scene and run the ship into enemies, you should see that
OnTriggerEnter() announces it has hit Enemy_0(Clone), an instance of Enemy_0.

Tip
ITERATIVE CODE DEVELOPMENT When prototyping on your own, this
kind of console announcement test is something that you will do often to test
whether the code you've written is working properly. I find that doing small tests
along the way like this is much better than working on code for hours only to find
at the end that something is causing a bug. Testing incrementally makes things a
lot easier to debug because you know that you've only made slight changes since
the last test that worked, so finding the place where you added a bug is easier.

Another key element of this approach is using the debugger. Throughout the
authoring of this book, any time I ran into something that worked a little
differently than I expected, I used the debugger to understand what was
happening. If you don't remember how to use the MonoDevelop debugger, I
highly recommend rereading Chapter 25, "Debugging."

Using the debugger effectively is often the difference between solving your code
problems and just staring at pages of code blankly for several hours. Try putting a
debug breakpoint into the OnTriggerEnter() method you just modified and

612

watching how code is called and variables change.

Iterative code development also has the same strengths as the iterative process of
design, and it is the key to the agile development methodology discussed in
Chapter 14, "The Agile Mentality."

5. Modify the OnTriggerEnter() method of the Hero class to make a collision with
an enemy decrease the player's shield by 1 and destroy the enemy that was hit. It is also
important to make sure that the same parent GameObject doesn't trigger the collider
twice (which can happen with very fast-moving objects where two child colliders of
one object hit the Shield trigger in the same frame).

Click here to view code image

public class Hero : MonoBehaviour {
 …
 public float shieldLevel = 1;
 // This variable holds a reference to the last triggering GameObject
 private GameObject lastTriggerGo = null; //
a

 …

 void OnTriggerEnter(Collider other) {
 Transform rootT = other.gameObject.transform.root;
 GameObject go = rootT.gameObject;
 //print("Triggered: "+go.name); //
b

 // Make sure it's not the same triggering go as last time
 if (go == lastTriggerGo) { //
c
 return;
 }
 lastTriggerGo = go; //
d

 if (go.tag == "Enemy") { // If the shield was triggered by an enemy
 shieldLevel--; // Decrease the level of the shield by 1
 Destroy(go); // … and Destroy the enemy //
e
 } else {
 print("Triggered by non-Enemy: "+go.name); //
f
 }
 }
}

a. This private field will hold a reference to the last GameObject that triggered _Hero's

613

collider. It is initially set to null.
b. Comment out this line here.
c. If lastTriggerGo is the same as go (the current triggering GameObject), this

collision is ignored as a duplicate, and the function returns (i.e., exits). This can
happen if two child GameObjects of the same Enemy both trigger the hero collider in
the same single frame.

d. Assign go to lastTriggerGo so that it is updated before the next time
OnTriggerEnter() is called.

e. go, the enemy GameObject, is destroyed by hitting the shield. Because the actual
GameObject go that you're testing is the Enemy GameObject found by
transform.root, this will delete the entire enemy (and by extension, all of its
children), and not just one of the enemy's child GameObjects.

f. If _Hero collides with something that is not tagged "Enemy", then this will print to the
Console and let you know what it is.

6. Play the scene and try running into some ships. After running into more than a few, you
might notice a strange shield behavior. The shield will loop back around to full strength
after being completely drained. What do you think is causing this? Try selecting _Hero
in the Hierarchy while playing the scene to see what's happening to the shieldLevel
field. Because there is no bottom limit to shieldLevel, it continues past 0 into
negative territory. The Shield C# script then translates this into negative X offset values
for Mat_Shield, and because the material's texture is set to loop, it looks like the shield
is returning to full strength.
To fix this, you must convert shieldLevel to a property that protects and limits a
new private field named _shieldLevel. The shieldLevel property watches the
value of the _shieldLevel field and makes sure that _shieldLevel never gets
above 4 and that the ship is destroyed if _shieldLevel ever drops below 0. You
should set a protected field like _shieldLevel to private because it does not need to
be accessed by other classes; however, in Unity, private fields are not normally
viewable in the Inspector. The remedy is to add the line [SerializeField] above
the private declaration of _shieldLevel to instruct Unity to show it in the Inspector
even though it is a private field. Properties are never visible in the Inspector, even if
they're public.

7. In the Hero class, change the name of the public variable shieldLevel to _shieldLevel
near the top of the class, set it to private, and add the [SerializeField] line:

Click here to view code image

public class Hero : MonoBehaviour {
 …
 [Header("Set Dynamically")]
 [SerializeField]
 private float _shieldLevel = 1; // Remember the underscore

614

 // This variable holds a reference to the last triggering GameObject
 …
}

8. Add the shieldLevel property to the end of the Hero class.
Click here to view code image

public class Hero : MonoBehaviour {
 …

 void OnTriggerEnter(Collider other) {
 …
 }

 public float shieldLevel {
 get {
 return(_shieldLevel); // a
 }
 set {
 _shieldLevel = Mathf.Min(value,4); //
b
 // If the shield is going to be set to less than zero
 if (value < 0) { //
c
 Destroy(this.gameObject);
 }
 }
 }
}

a. The get clause just returns the value of _shieldLevel.
b. Mathf.Min() ensures that _shieldLevel is never set to a number higher than

4.
c. If the value passed into the set clause is less than 0, _Hero is destroyed.

The shieldLevel--; line in OnTriggerEnter() uses both the get and set clauses
of the shieldLevel property. First, it uses the get clause to determine the current value
of shieldLevel, and then it subtracts 1 from that value and calls the set clause to assign
that value back.

Restarting the Game
From your testing, you can see that the game gets exceedingly boring after _Hero has been
destroyed. You'll now modify both the Hero and Main classes to call a method when _Hero
is destroyed that waits for 2 seconds and then restarts the game.

1. Add a gameRestartDelay field near the top of the Hero class:
Click here to view code image

615

public class Hero : MonoBehaviour {
 static public Hero S; // Singleton // a

 [Header("Set in Inspector")]
 …
 public float pitchMult = 30;
 public float gameRestartDelay = 2f;

 [Header("Set Dynamically")]
 …
}

2. Add the following lines to the shieldLevel property definition in the Hero class:
Click here to view code image

public class Hero : MonoBehaviour {
 …
 public float shieldLevel {
 get { … }
 set {
 …
 if (value < 0) {
 Destroy(this.gameObject);
 // Tell Main.S to restart the game after a delay
 Main.S.DelayedRestart(gameRestartDelay); // a
 }
 }
 }
}

a. When you initially type DelayedRestart() into MonoDevelop, it appears red
because the DelayedRestart() function does not yet exist in the Main class.

3. Add the following methods to the Main class to make the delayed restart work.
Click here to view code image

public class Main : MonoBehaviour {
 …

 public void SpawnEnemy() { … }

 public void DelayedRestart(float delay) {
 // Invoke the Restart() method in delay seconds
 Invoke("Restart", delay);
 }

 public void Restart() {
 // Reload _Scene_0 to restart the game
 SceneManager.LoadScene("_Scene_0");
 }
}

4. Click Play to test the game. Now, after the player ship has been destroyed, the game

616

waits a couple of seconds and then restarts by reloading the scene.

Note
If your lighting looks strange after you've reloaded the scene (e.g., your ship and
enemy ships look a bit darker), then you might be experiencing a known bug with
Unity's lighting system (as I also mentioned in Chapter 28). Hopefully, Unity has
now resolved this, but if you are seeing issues, an interim fix is available.
Follow these directions to resolve it for this project:

1. From the menu bar, choose Window > Lighting > Settings.
2. Click the Scene button at the top of the Lighting pane.
3. Uncheck the Auto Generate selection at the bottom of the Lighting pane (next

to the Generate Lighting button). This stops Unity from constantly
recalculating the global illumination settings.

4. To make sure the lighting is built properly, click the Generate Lighting button
at the bottom of the Lighting pane to manually calculate the global
illumination.

5. Wait a few seconds for this to finish, and then click Play to test. You should
see that the lighting is consistent even after reloading the scene. You should
not have to recalculate the lighting again in this chapter, but if you do change
lighting in the game, be sure to come back and manually recalculate.

Shooting (Finally)
Now that the enemy ships can hurt the player, it's time to give _Hero a way to fight back.
This chapter only includes a single type and level of projectile. In the next chapter, you will
do much more interesting things with the weapons in the game.

ProjectileHero, the Hero's Bullet
Follow these steps to create the Hero's bullet:

1. Create a cube named ProjectileHero in the Hierarchy with the following transform
values:
ProjectileHero (Cube)  P:[10, 0, 0]  R:[0, 0, 0]  S:[0.25, 1, 0.5]

2. Set both the Tag and Layer of ProjectileHero to ProjectileHero.
3. Create a new material named Mat_Projectile, place it in the _Materials folder of the

Project pane, give it the ProtoTools > UnlitAlpha shader, and assign it to the

617

ProjectileHero GameObject.
4. Add a Rigidbody component to the ProjectileHero GameObject with these settings:

 Use Gravity to false (unchecked)
 isKinematic to false (unchecked)
 Collision Detection to Continuous
 Constraints: freeze Z position and X, Y, and Z rotation (by checking them)

5. In the Box Collider component of the ProjectileHero GameObject, set Size.Z to 10.
This ensures that the projectile is able to hit anything that is slightly off of the XY (i.e.,
Z=0) plane.

6. Create a new C# script named Projectile and attach it to ProjectileHero. You'll edit the
script later.

When you're finished with these steps, your settings should match those shown in Figure
30.9 (though you won't see the BoundsCheck (Script) component until you add it in step 8).

618

Figure 30.9 ProjectileHero with the proper settings showing the large Size.Z of the Box
Collider

7. Save your scene.
8. Attach a BoundsCheck script component to ProjectileHero as well. Set
keepOnScreen to false and radius to –1. The BoundsCheck radius will not
affect collisions with other GameObjects; it only affects when the ProjectileHero thinks
it has gone off screen.

9. Make ProjectileHero into a prefab by dragging it from the Hierarchy into the _Prefabs
folder in the Project pane. Then delete the instance remaining in the Hierarchy.

10. Save your scene—yes, save it again. As I've said, you want to save as often as you can.

Giving _Hero the Ability to Shoot
Now you add the capability for the Hero to shoot the bullet.

1. Open the Hero C# script and make the following bolded changes:
Click here to view code image

public class Hero : MonoBehaviour {
 …
 public float gameRestartDelay = 2f;
 public GameObject projectilePrefab;
 public float projectileSpeed = 40;

 …

 void Update () {
 …
 transform.rotation = Quaternion.Euler(yAxis*pitchMult,
xAxis*rollMult,0);

 // Allow the ship to fire
 if (Input.GetKeyDown(KeyCode.Space)) { //
a
 TempFire();
 }
 }

 void TempFire() { //
b
 GameObject projGO = Instantiate<GameObject>(projectilePrefab);
 projGO.transform.position = transform.position;
 Rigidbody rigidB = projGO.GetComponent<Rigidbody>();
 rigidB.velocity = Vector3.up * projectileSpeed;
 }

 void OnTriggerEnter(Collider other) { … }

619

 …
}

a. This causes the ship to fire every time the space bar is pressed.
b. This method is named TempFire() because you will be replacing it in the next

chapter.
2. In Unity, select _Hero in the Hierarchy and assign ProjectileHero from the Project pane

to the projectilePrefab of the Hero script.
3. Save and click Play. Now, you can fire projectiles by pressing the space bar, but they

don't yet destroy enemy ships, and they continue forever when they go off screen.

Scripting the Projectile
To script the projectile, follow these steps:

1. Open the Projectile C# script and make the following bolded changes. All you need the
Projectile to do is destroy itself when it goes off screen. You'll add more in the next
chapter.

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Projectile : MonoBehaviour {

 private BoundsCheck bndCheck;

 void Awake () {
 bndCheck = GetComponent<BoundsCheck>();
 }
 void Update () {
 if (bndCheck.offUp) { // a
 Destroy(gameObject);
 }
 }
}

a. If the Projectile goes off the top of the screen, destroy it.
2. Of course, remember to save.

Allowing Projectiles to Destroy Enemies
You also need the capability of destroying enemies with the bullets.

1. Open the Enemy C# script and add the following method to the end of the script:

620

Click here to view code image

public class Enemy : MonoBehaviour {
 …
 public virtual void Move() { … }

 void OnCollisionEnter(Collision coll) {
 GameObject otherGO = coll.gameObject; //
a
 if (otherGO.tag == "ProjectileHero") { // b
 Destroy(otherGO); // Destroy the Projectile
 Destroy(gameObject); // Destroy this Enemy GameObject
 } else {
 print("Enemy hit by non-ProjectileHero: " + otherGO.name); //
c
 }
 }
}

a. Get the GameObject of the Collider that was hit in the Collision.
b. If otherGO has the ProjectileHero tag, then destroy it and this Enemy instance.
c. If otherGO doesn't have the ProjectileHero tag, print the name of what was hit to the

Console for debugging purposes. If you want to test this, you can temporarily remove
the ProjectileHero tag from the ProjectileHero prefab and shoot an Enemy.4

Now, when you click Play, Enemy_0s will come down the screen, and you can shoot them
with projectiles. That's it for this chapter—you have a nice, simple prototype—but the next
chapter, expands on it considerably by showing you how to add additional enemies, three
kinds of power-ups, and two additional kinds of guns. It also offers some more interesting
coding tricks.

Summary
In most chapters, I include a next steps section here to give you ideas of what you can do to
extend the project and push yourself. However, for the Space SHMUP prototype, you're
going to do some of those things in the next chapter and see some new coding concepts in
the process. Take a break now so you can approach the next chapter fresh and congratulate
yourself on a prototype well done.

1. Juiciness, as a term that relates to gameplay, was coined in 2005 by Kyle Gabler and
the other members of the Experimental Gameplay Project at Carnegie Mellon
University's Entertainment Technology Center. To them, a juicy element had "constant
and bountiful user feedback." You can read about it more in their Gamasutra article by
searching online for "Gamasutra How to Prototype a Game in Under 7 Days."

2. The first edition of this book had a much more complex system for keeping

621

GameObjects on screen that was more than was needed for this chapter and somewhat
confusing. I've replaced it with this version in the second edition to both streamline the
chapter and to reinforce the concept of components.

3. Search online for "C# XML documentation" to learn more.
4. You can't test this by running the _Hero into an Enemy because the collider on the

Shield child of _Hero is a trigger, and triggers will not invoke a call to
OnCollisionEnter().

622

CHAPTER 31

PROTOTYPE 3.5: SPACE SHMUP PLUS

Most of these prototype chapters end with a "Next Steps" section that suggests
things you might want to add to the game. This chapter shows you the steps to do
just that for the Space SHMUP game that you built in the previous chapter.

In this chapter, you add power-ups, multiple enemies, and different weapon types
to the Space SHMUP game. In doing so, you learn more about class inheritance,
enums, function delegates, and several other important topics. As an added bonus,
you also make the game a lot more fun!

Getting Started: Prototype 3.5
At the end of the previous chapter, you had a pretty basic version of a space shooter. In this
chapter, you'll make it more fun and expansive. In case you had any issues with the game as
built in the previous chapter, you can download it from the website for the book.

SET UP THE PROJECT FOR THIS CHAPTER
Rather than following the standard project setup procedure, you have two options
for this chapter:

1. Make a duplicate of your project folder from the previous chapter.

2. Download a finished version of the last chapter from the website for the book.
To do so, find Chapter 31 at http://book.prototools.net.

After you've acquired a project folder, open _Scene_0 in Unity to get started.

Programming Other Enemies
Let's start by expanding the kinds of enemies that the hero will face. Later, you'll give your
hero the chance to fight back against these more dire enemies.

623

http://book.prototools.net

1. Create new C# scripts named Enemy_1, Enemy_2, Enemy_3, and Enemy_4.

2. Place these scripts into the __Scripts folder in the Project pane.

3. Assign each of these scripts to their respective Enemy_# prefab in _Prefabs folder of
the Project pane.

We'll work on the script for each enemy in turn.

Enemy_1
Enemy_1 moves down the screen in a sine wave. It extends the Enemy class, which means
that it inherits all the fields, functions, and properties of Enemy (as long as they are public
or protected; private elements are not inherited). For more information on classes and class
inheritance (including method overriding), check out Chapter 26, "Classes."

1. Open the Enemy_1 script in MonoDevelop and enter the following bolded code:
Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

// Enemy_1 extends the Enemy class
public class Enemy_1 : Enemy { // a
[Header("Set in Inspector: Enemy_1")]
// # seconds for a full sine wave
public float waveFrequency = 2;
// sine wave width in meters
public float waveWidth = 4;
public float waveRotY = 45;

private float x0; // The initial x value of pos
private float birthTime;

// Start works well because it's not used by the Enemy superclass
void Start() {
 // Set x0 to the initial x position of Enemy_1
 x0 = pos.x; // b

 birthTime = Time.time;
}

// Override the Move function on Enemy
public override void Move() { // c
 // Because pos is a property, you can't directly set pos.x
 // so get the pos as an editable Vector3
 Vector3 tempPos = pos;
 // theta adjusts based on time
 float age = Time.time - birthTime;

624

 float theta = Mathf.PI * 2 * age / waveFrequency;
 float sin = Mathf.Sin(theta);
 tempPos.x = x0 + waveWidth * sin;
 pos = tempPos;

 // rotate a bit about y
 Vector3 rot = new Vector3(0, sin*waveRotY, 0);
 this.transform.rotation = Quaternion.Euler(rot);

 // base.Move() still handles the movement down in y
 base.Move(); // d

 // print(bndCheck.isOnScreen);
 }
}

a. As an extension of the Enemy class, Enemy_1 inherits the public speed,
fireRate, health, and score fields as well as the public pos property and the
public Move() method. However, it does not inherit the private bndCheck field,
which I discuss more in the next step.

b. Setting x0 to the initial X position of this Enemy_1 works fine here in Start()
because the position will have already been set by the time Start() is called. Had
this line been put in an Awake() method, it would have been incorrect because
Awake() is called in the instant that a GameObject is instantiated (i.e., before the
position is set by the Main:SpawnEnemy() method (in Main.cs)). Another reason
to avoid adding an Awake() method to Enemy_1 is that it would override the
Awake() method on Enemy. Awake(), Start(), Update(), and other built-in
MonoBehaviour methods are scripted in a special manner so that—unlike standard
methods in C# class inheritance—you don't need to use the virtual or override
keywords to allow them to be overridden by subclasses (see Chapter 26, "Classes").

c. For normal C# methods like the Move() method that you wrote in Enemy, you must
declare the method virtual in the superclass and override in the subclass for
the subclass version properly override the superclass version of the method. Because
Move() is marked as a virtual method in the Enemy superclass, you can override it
here and replace it with another method (also named Move()).

d. base.Move() calls the Move() method on the superclass Enemy. In this case,
the Move() method in the Enemy_1 subclass is responsible for moving horizontally
in a sine wave, while the Move() method in the Enemy superclass still handles
vertical movement.

2. Back in Unity, select _MainCamera in the Hierarchy and change Element 0 of
prefabEnemies from Enemy_0 to Enemy_1 (i.e., the Enemy_1 prefab in the
_Prefabs folder) in the Main (Script) component. This allows you to test with Enemy_1
instead of Enemy.

625

3. Click Play. The Enemy_1 ship now appears instead of Enemy_0, and it moves
downward in a wave. However, notice in the Scene pane that Enemy_1 instances don't
disappear when they go off the bottom of the screen. This is because Enemy_1 doesn't
have a BoundsCheck component attached to it.

4. You want to attach BoundsCheck to the Enemy_1 prefab and keep all the same values
that it has set on the Enemy_0 prefab. To do this, follow these steps to learn another way
to attach a script to a GameObject:
a. Select Enemy_0 in the _Prefabs folder of the Project pane.
b. In the Inspector for Enemy_0, click the gear icon in the top-right corner of the

BoundsCheck (Script) component and choose Copy Component.
c. Select Enemy_1 in the _Prefabs folder of the Project pane.
d. In the Inspector for Enemy_1, click the gear icon in the top-right corner of the

Transform component and choose Paste Component as New. This attaches a new
BoundsCheck (Script) component to the Enemy_1 prefab that comes with all the same
settings as those on the BoundsCheck component you copied from the Enemy_0
prefab.

Making bndCheck Protected Instead of Private
A somewhat subtle yet important point is that the field declaration of bndCheck in the
Enemy class is currently private.
Click here to view code image

private BoundsCheck bndCheck;

This means that it can be seen within the Enemy class but not in any other classes, including
Enemy_1, even though Enemy_1 is a subclass of Enemy. This means that the Awake() and
Move() methods on Enemy can see and interact with bndCheck, yet the override
Move() method on Enemy_1 doesn't know it exists. To test this:

1. Open the Enemy_1 script and uncomment the bolded at the end of the Move() method:
Click here to view code image

 public override void Move() {
 …

 base.Move();

 print(bndCheck.isOnScreen);
 }

Because bndCheck is a private variable of the Enemy class, it appears red here in

626

Enemy_1 and cannot be read. To fix this, you need to make bndCheck protected instead
of private. Like private variables, protected variables can't be seen by other classes, but
unlike private variables, protected variables can be seen by and inherited by subclasses:
Variable Type Visible to SubclassesVisible to Any Class
private No No
protected Yes No
public Yes Yes

2. Open the Enemy script, change bndCheck from private to protected, and
save.

Click here to view code image

protected BoundsCheck bndCheck;

Now, if you check the Enemy_1 script, bndCheck.isOnScreen will no longer be red,
and your code will compile properly.

3. Return to the Enemy_1 script and re-comment out the print() line.
Click here to view code image

// print(bndCheck.isOnScreen); // This line is now commented out again.

4. Click Play, and you should see the Enemy_1s now disappear after they exit the bottom
of the screen.

Tip
SPHERE COLLIDERS ONLY SCALE UNIFORMLY You might have
noticed that the collision with Enemy_1 actually occurs slightly before the
projectile (or _Hero) touches the wing. If you select Enemy_1 in the Project pane
and drag an instance into the scene, you will see that the green collider sphere
around Enemy_1 doesn't scale to match the flat ellipse of the wing. This isn't a
huge problem, but it is something to be aware of. A Sphere Collider will scale
with the largest single component of scale in the transform. (In this case, because
wing has a Scale.X of 6, the Sphere Collider scales up to that.)

If you want, you can try other types of colliders to see whether one of them will
scale to match the wing more accurately. A Box Collider will scale non-
uniformly. You can also approximate one direction being much longer than the
others with a Capsule Collider. A Mesh Collider will match the scaling most
exactly, but Mesh Colliders are much slower than other types. This shouldn't be a

627

problem on a modern high-performance PC, but Mesh Colliders are often much
too slow for mobile platforms like iOS or Android.

If you choose to give Enemy_1 a Mesh Collider, then when it rotates about the y
axis, it will move the edges of the wing out of the XY (i.e., z=0) plane. This is
why the ProjectileHero prefab has a Box Collider Size.z of 10 (to make sure that
it can hit the wingtips of Enemy_1 even if they are not in the XY plane).

Preparing for the Other Enemies
The remaining enemies make use of linear interpolation, an important development concept
that is described in Appendix B. You saw a very simple interpolation as part of the
FollowCam script in Mission Demolition, but these will be a bit more interesting. Take a
moment to read the Interpolation section of Appendix B, "Useful Concepts," before
tackling the remaining enemies.

Enemy_2
Enemy_2 moves via a linear interpolation that is heavily eased by a sine wave. It rushes in
from the side of the screen, slows, reverses direction for a bit, slows, and then flies off the
screen along its initial velocity. This interpolation uses only two points, but the u value will
be drastically curved by a sine wave. The easing function for the u value of Enemy_2 will
be along the lines of:

u = u + 0.6 * Sin(2π * u)

This is one of the easing functions explained in the Interpolation section of Appendix B.

1. Attach a BoundsCheck script to the Enemy_2 prefab in the _Prefabs folder of the
Project pane. The BoundsCheck component will be used extensively for Enemy_2.

2. In the Enemy_2 prefab BoundsCheck Inspector, set the radius = 3 and
keepOnScreen = false.

3. Open the Enemy_2 C# script and enter the following code. After you have the code
working, you should adjust the easing curve sinEccentricity value to see how it
affects the motion.

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

628

public class Enemy_2 : Enemy { // a
 [Header("Set in Inspector: Enemy_2")]
 // Determines how much the Sine wave will affect movement
 public float sinEccentricity = 0.6f;
 public float lifeTime = 10;

 [Header("Set Dynamically: Enemy_2")]
 // Enemy_2 uses a Sin wave to modify a 2-point linear interpolation
 public Vector3 p0;
 public Vector3 p1;
 public float birthTime;

 void Start () {
 // Pick any point on the left side of the screen
 p0 = Vector3.zero; //
b
 p0.x = -bndCheck.camWidth - bndCheck.radius;
 p0.y = Random.Range(-bndCheck.camHeight, bndCheck.camHeight);

 // Pick any point on the right side of the screen
 p1 = Vector3.zero;
 p1.x = bndCheck.camWidth + bndCheck.radius;
 p1.y = Random.Range(-bndCheck.camHeight, bndCheck.camHeight);

 // Possibly swap sides
 if (Random.value > 0.5f) {
 // Setting the .x of each point to its negative will move it to
 // the other side of the screen
 p0.x *= -1;
 p1.x *= -1;
 }

 // Set the birthTime to the current time
 birthTime = Time.time; // c
 }

 public override void Move() {
 // Bézier curves work based on a u value between 0 & 1
 float u = (Time.time - birthTime) / lifeTime;

 // If u>1, then it has been longer than lifeTime since birthTime
 if (u > 1) {
 // This Enemy_2 has finished its life
 Destroy(this.gameObject); //
d
 return;
 }

 // Adjust u by adding a U Curve based on a Sine wave
 u = u + sinEccentricity*(Mathf.Sin(u*Mathf.PI*2));

 // Interpolate the two linear interpolation points
 pos = (1-u)*p0 + u*p1;
 }

629

}

a. Enemy_2 also extends the Enemy superclass.
b. This section chooses a random point on the left side of the screen. It initially chooses

an x position that is just off the left side of the screen: -bndCheck.camWidth is
the left side of the screen, and -bndCheck.radius makes sure that the Enemy_2
is entirely off screen (by pushing the X position off screen an amount equal to the
radius of this Enemy_2).
Then, a random Y position is chosen that is between the bottom of the screen (-
bndCheck.camHeight) and the top of the screen (bndCheck.camHeight).

c. birthTime is used by the interpolation in the Move() function.
d. If it has been longer than lifeTime since the birthTime, then u will be greater

than 1, and this Enemy_2 will be destroyed.

4. Swap the Enemy_2 prefab into the Element 0 slot of prefabEnemies using the
_MainCamera Inspector and click Play.

As you can see, the easing function causes each Enemy_2 to have very smooth movement
that goes forth, back, and forth between the points it has selected on either side of the
screen.

Enemy_3
Enemy_3 uses a Bézier curve to swoop down from above, slow, and fly back up off the top
of the screen. For this example, you will use a simple version of the three-point Bézier
curve function. In the Recursive Functions section of Appendix B you can find a recursive
version of the Bézier curve function that can use any number of points (not just three).

1. Attach BoundsCheck to the Enemy_3 prefab in the _Prefabs folder of the Project pane.

2. In the Enemy_3 prefab BoundsCheck Inspector, set radius = 2.5 and
keepOnScreen = false.

3. Open the Enemy_3 script and enter the following code:
Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Enemy_3 : Enemy { // Enemy_3 extends Enemy
 // Enemy_3 will move following a Bezier curve, which is a linear
 // interpolation between more than two points.
 [Header("Set in Inspector: Enemy_3")]

630

 public float lifeTime = 5;

 [Header("Set Dynamically: Enemy_3")]
 public Vector3 [] points;
 public float birthTime;

 // Again, Start works well because it is not used by the Enemy superclass
 void Start () {
 points = new Vector3[3]; // Initialize points

 // The start position has already been set by Main.SpawnEnemy()
 points[0] = pos;

 // Set xMin and xMax the same way that Main.SpawnEnemy() does
 float xMin = -bndCheck.camWidth + bndCheck.radius;
 float xMax = bndCheck.camWidth - bndCheck.radius;

 Vector3 v;
 // Pick a random middle position in the bottom half of the screen
 v = Vector3.zero;
 v.x = Random.Range(xMin, xMax);
 v.y = -bndCheck.camHeight * Random.Range(2.75f, 2);
 points[1] = v;

 // Pick a random final position above the top of the screen
 v = Vector3.zero;
 v.y = pos.y;
 v.x = Random.Range(xMin, xMax);
 points[2] = v;

 // Set the birthTime to the current time
 birthTime = Time.time;
 }

 public override void Move() {
 // Bezier curves work based on a u value between 0 & 1
 float u = (Time.time - birthTime) / lifeTime;

 if (u > 1) {
 // This Enemy_3 has finished its life
 Destroy(this.gameObject);
 return;
 }

 // Interpolate the three Bezier curve points
 Vector3 p01, p12;
 p01 = (1-u)*points[0] + u*points[1];
 p12 = (1-u)*points[1] + u*points[2];
 pos = (1-u)*p01 + u*p12;
 }
}

4. Now try swapping Enemy_3 into Element 0of prefabEnemieson _MainCamera.

631

5. Click Play to see the movement of these new enemies. After playing for a bit, you'll
notice a couple of things about Bézier curves:
a. Even though the midpoint is at or below the bottom of the screen, no Enemy_3 ever

gets that far down. That is because a Bézier curve touches both the start and end
points but is only influenced by the midpoint.

b. Enemy_3 slows down a lot in the middle of the curve. This is also a feature of the
math that makes Bézier curves work.

6. To improve the motion along the Bézier curve and reduce the slowdown at the bottom
of the curve, add the following bold line to the Enemy_3 Move() method. This adds
easing1 to the Enemy_3 movement that will speed up the middle of the curve:

Click here to view code image

 public override void Move() {

 …
 // Interpolate the three Bezier curve points
 Vector3 p01, p12;
 u = u - 0.2f*Mathf.Sin(u * Mathf.PI * 2);
 p01 = (1-u)*points[0] + u*points[1];
 p12 = (1-u)*points[1] + u*points[2];
 pos = (1-u)*p01 + u*p12;
 }

Saving Enemy_4 for Later
Before implementing Enemy_4, you first need to make some changes to projectiles and how
they work. At this point, players can destroy any enemy with a single shot. In the next
section, you learn how to change that and add the ability to have different kinds of weapons
on the ship.

Shooting Revisited
The way that you learned to manage firing Projectiles in the previous chapter was fine for a
rough prototype, but you need to add additional capabilities to get this game to the next
level. In this section, you will learn to build two different kinds of weapons with the ability
to expand that in the future. To enable this, you'll create a WeaponDefinition class that
allows you to define the behavior of each type of weapon.

The WeaponType Enum
As described in Chapter 29, "Prototype 2: Mission Demolition," an enum—short for
enumeration—is a way to associate various options together into a new kind of variable. In
this game, players have the ability to switch and improve weapons by collecting power-ups

632

dropped by defeated enemies. This is also how players increase their shield power. To
provide a single variable type to store all the possible kinds of power-ups, you will create
an enum called WeaponType.

1. Right click on the __Scripts folder in the Project pane and choose Create > C# Script.
This creates a NewBehaviourScript in the __Scripts folder.

2. Rename NewBehaviourScript to Weapon.

3. Open the Weapon script in MonoDevelop and enter the following code. The public
enum WeaponType declaration should go between using UnityEngine; and
public class Weapon : MonoBehaviour {.

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

/// <summary>
/// This is an enum of the various possible weapon types.
/// It also includes a "shield" type to allow a shield power-up.
/// Items marked [NI] below are Not Implemented in the IGDPD book.
/// </summary>
public enum WeaponType {
 none, // The default / no weapon
 blaster, // A simple blaster
 spread, // Two shots simultaneously
 phaser, // [NI] Shots that move in waves
 missile, // [NI] Homing missiles
 laser, // [NI]Damage over time
 shield // Raise shieldLevel
}

public class Weapon : MonoBehaviour {
 … // The Weapon class will be filled in later in the chapter.
}

As a public enum outside of the Weapon class, WeaponType can be seen by and used by any
other script in the project. You'll make use of this extensively throughout the rest of this
chapter, and actually define the weapons via WeaponType in the Main C# script rather than
the Weapon script.

For more information on enums, look at the Appendix B, "Useful Concepts," subsection
titled "Enum" under C# and Unity Coding Concepts.

The Serializable WeaponDefinition Class
You now need to create a class to define the details of the various types of weapons. Unlike

633

most of the other classes that you've created in this book, this will not be a subclass of
MonoBehaviour, and you won't attach it individually to a GameObject. Instead, it is a
simple, separate, public class that you define within the Weapon C# script, just as the
public enum WeaponType was.

Another important aspect of this class is that it is serializable, allowing you to both see and
edit it within the Unity Inspector!

Open the Weapon script and enter the following bolded code between the public enum
WeaponType definition and the public class Weapon definition.
Click here to view code image

public enum WeaponType {
 …
}
/// <summary>
/// The WeaponDefinition class allows you to set the properties
/// of a specific weapon in the Inspector. The Main class has
/// an array of WeaponDefinitions that makes this possible.
/// </summary>
[System.Serializable] //
a
public class WeaponDefinition{ //
b
 public WeaponType type = WeaponType.none;
 public string letter; // Letter to show on the power-up
 public Color color = Color.white; // Color of Collar & power-up
 public GameObject projectilePrefab; // Prefab for projectiles
 public Color projectileColor = Color.white;
 public float damageOnHit = 0; // Amount of damage caused
 public float continuousDamage = 0; // Damage per second (Laser)
 public float delayBetweenShots = 0;
 public float velocity = 20; // Speed of projectiles
}
public class Weapon : MonoBehaviour {
 … // The Weapon class will be filled in later in the chapter.
}

a. The [System.Serializable] attribute causes the class defined immediately after it to be
serializable and editable within the Unity Inspector. Some classes are too complex to
be serializable, but WeaponDefinition is simple enough that it will work.

b. You can alter each of the fields of WeaponDefinition to change an aspect of the
bullets fired by your ship. You won't use all of these in this chapter, which leaves
some for you to use if you choose to extend this game further.

As described in the code comments, the enum WeaponType declares all the possible
weapon types and power-up types. WeaponDefinition is a class that combines a
WeaponType with several variables that are useful for defining each weapon.

634

Modifying Main to Use WeaponDefinition and WeaponType
Now you need to use the new WeaponType enum and WeaponDefinition class in Main. You
do this in the Main class because it is responsible for spawning enemies and eventually
power-ups.

1. Add the following weaponDefinitions array declaration to the Main class and
save.

Click here to view code image

public class Main : MonoBehaviour {
 …
 public float enemySpawnPerSecond = 0.5f; // # Enemies/second
 public float enemyDefaultPadding = 1.5f; // Padding for position
 public WeaponDefinition[] weaponDefinitions;

 private BoundsCheck bndCheck;

 void Awake() {…}
 …
}

2. Select _MainCamera in the Hierarchy. You should now see a
weaponDefinitions array in the Main (Script) component Inspector.

3. Click the disclosure triangle next to weaponDefinitions in the Inspector and set the Size
of the array to 3.

4. Enter settings for the three WeaponDefinitions as shown in Figure 31.1. You can see
that the WeaponType enum appears in the Inspector as a pop-up menu (though like other
things in the Inspector, the enum types have been capitalized). The colors you pick don't
have to be exactly right, but it is important to set the alpha value of each color to a fully
opaque value of 255, which appears as a white bar beneath the color swatch.

635

Figure 31.1 Settings for the WeaponDefinitions of blaster, spread, and shield on Main

Warning
COLORS SOMETIMES DEFAULT TO AN INVISIBLE ALPHA When
you create a serializable class like WeaponDefinition that includes color fields,
the alpha values of those colors can default to 0 (zero, or invisible). To fix this,
make sure that the white lines under each of your color definitions are actually

636

white (and not black). If you click on the color itself, you are presented with four
values to set (R, G, B, and A). Make sure that A is set to 255 (fully opaque) or
the color may be invisible.

If you are using macOS and have chosen to use the macOS color picker in Unity
instead of the default one, you set the A value using the Opacity slider at the
bottom of the color picker window (which should be set to 100% for these colors
to have full opacity).

A Generic Dictionary for WeaponDefinitions
To make accessing the WeaponDefinitions easier, you're going to copy them at runtime from
the weaponDefinitions array to a private Dictionary field named WEAP_DICT. A
Dictionary is a type of generic collection like List. However, where a List is an ordered
(linear) collection, Dictionaries have a key type and value type, with the key used to
retrieve the value. Dictionaries can be a good way to store a very large number of things
because accessing any one of those things is a constant time operation, meaning that it takes
the same small amount of time regardless of where that thing is in the data structure.
Contrast this with a List or array; if you were searching through the
weaponDefinitions array for the WeaponDefinition with the type blaster, you
would encounter it immediately, whereas searching for the WeaponDefinition with the type
shield would take three times as long. See Chapter 23, "Collections in C#" for more
information.

Here, the WEAP_DICT Dictionary has the enum WeaponType as the key and the class
WeaponDefinition as the value. Unfortunately, Dictionaries do not appear in the Unity
Inspector, or you would have just used one from the start. Instead, the WEAP_DICT
Dictionary is defined in the Awake() method of the Main class and then used by the static
function Main.GetWeaponDefinition().

1. Open the Main script in MonoDevelop and enter the following bold code.
Click here to view code image

public class Main : MonoBehaviour {
 static public Main S; // A singleton for Main
 static Dictionary<WeaponType, WeaponDefinition> WEAP_DICT; //
a
 …

 void Awake() {
 …
 Invoke("SpawnEnemy", 1f/enemySpawnPerSecond);

637

 // A generic Dictionary with WeaponType as the key
 WEAP_DICT = new Dictionary<WeaponType, WeaponDefinition>(); // a
 foreach(WeaponDefinition def in weaponDefinitions) { // b
 WEAP_DICT[def.type] = def;
 }
 }
}

a. Dictionaries are declared and defined with both a key type and value type. Making
WEAP_DICT static but protected means that any instance of Main can access it and
any static method of Main can access it, which you'll take advantage of later.

b. This loop iterates through each element of the weaponDefinitions array and
creates an entry in the WEAP_DICT dictionary that matches it.

Next, you need to create a static function to allow other classes to get access to the data in
WEAP_DICT. Because WEAP_DICT is static as well, any static method of the Main class
can access it (WEAP_DICT is not public, which means that only instances or static methods
of Main can access WEAP_DICT directly2). Making the new
GetWeaponDefinition() method public and static allows any other code within the
project to call it as Main.GetWeaponDefinition().

2. Add the following bolded code to the end of the Main C# script:
Click here to view code image

public class Main : MonoBehaviour {
 …
 public void Restart() {
 // Reload _Scene_0 to restart the game
 SceneManager.LoadScene("_Scene_0");
 }

 /// <summary>
 /// Static function that gets a WeaponDefinition from the WEAP_DICT static
 /// protected field of the Main class.
 /// </summary>
 /// <returns>The WeaponDefinition or, if there is no WeaponDefinition with
 /// the WeaponType passed in, returns a new WeaponDefinition with a
 /// WeaponType of none..</returns>
 /// <param name="wt">The WeaponType of the desired WeaponDefinition</param>
 static public WeaponDefinition GetWeaponDefinition(WeaponType wt)
{ // a
 // Check to make sure that the key exists in the Dictionary
 // Attempting to retrieve a key that didn't exist, would throw an
error,
 // so the following if statement is important.
 if (WEAP_DICT.ContainsKey(wt))
{ // b
 return(WEAP_DICT[wt]);
 }

638

 // This returns a new WeaponDefinition with a type of WeaponType.none,
 // which means it has failed to find the right WeaponDefinition
 return(new WeaponDefinition()
); // c
 }
}

a. The documentation in the code above this function now includes not only a summary
but also descriptions of what is returned and the parameter passed in.

b. This if statement checks to make sure that WEAP_DICT has an entry with the key
that was passed in as wt. If you try to retrieve an entry that isn't there (e.g., if you try
WEAP_DICT[WeaponType.phaser]), it will throw an error.
In the expected case that there is an element with the proper WeaponType, that
WeaponDefinition is returned.

c. If there is no entry in WEAP_DICT with the proper WeaponType key, a new
WeaponDefinition with a type of WeaponType.none is returned.

Modifying the Projectile Class to Use WeaponDefinitions
You must alter the Projectile class considerably to make it use your new
WeaponDefinitions.

1. Open the Projectile class in MonoDevelop.

2. Make your code for the Projectile class match the following code listing.
Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Projectile : MonoBehaviour {
 private BoundsCheck bndCheck;
 private Renderer rend;

 [Header("Set Dynamically")]
 public Rigidbody rigid;
 [SerializeField] // a
 privatee WeaponType _type; // b

 // This public property masks the field _type and takes action when it is
set
 public WeaponType type { //
c
 get {
 return(_type);
 }
 set {

639

 SetType(value); // c
 }
 }

 void Awake () {
 bndCheck = GetComponent<BoundsCheck>();
 rend = GetComponent<Renderer>(); //
d
 rigid = GetComponent<Rigidbody>();
 }

 void Update () {
 if (bndCheck.offUp) {
 Destroy(gameObject);
 }
 }

 /// <summary>
 /// Sets the _type private field and colors this projectile to match the
 /// WeaponDefinition.
 /// </summary>
 /// <param name="eType">The WeaponType to use.</param>
 public void SetType(WeaponType eType) { // e
 // Set the _type
 _type = eType;
 WeaponDefinition def = Main.GetWeaponDefinition(_type);
 rend.material.color = def.projectileColor;
 }
}

a. The [SerializeField] attribute above the _type declaration forces _type to
be visible and settable in the Unity Inspector even though it is private. However, you
should not set this field in the Inspector.

b. A common practice throughout this book is to name a private field accessed through a
property with an underscore and the property name (e.g., the private field _type is
accessed via the property type).

c. The get clause of the type property works like the other properties you've seen, but
the set clause calls the SetType() method, allowing you to do more than just set
_type.

d. You need to use the Renderer component attached to this GameObject in the
SetType() method, so it is cached here.

e. SetType() not only sets the _type private field but also colors the projectile to
match the color based on the weaponDefinitions in Main.

Using a Function Delegate to Fire
In this game prototype, the Hero class has a function delegate named fireDelegate
that is called to fire all weapons, and each Weapon attached to it adds its individual

640

Fire() target method to fireDelegate.

1. Before continuing, please read the Function Delegates section of Appendix B, "Useful
Concepts." Function delegates are like nicknames for one or more functions that can all
be called with a single call to the delegate.

2. Add the following bold code to the Hero class:
Click here to view code image

public class Hero : MonoBehaviour {
 …
 private GameObject lastTriggerGo = null;

 // Declare a new delegate type WeaponFireDelegate
 public delegate void WeaponFireDelegate(); //
a
 // Create a WeaponFireDelegate field named fireDelegate.
 public WeaponFireDelegate fireDelegate;

 void Awake() {
 if (S == null) {
 …
 }
 fireDelegate += TempFire; //
b
 }

 void Update () {
 …
 transform.rotation = Quaternion.Euler(yAxis*pitchMult,xAxis*rollMult,0);

 // Allow the ship to fire
// if (Input.GetKeyDown(KeyCode.Space)) { //
c
// TempFire(); //
c
// } //
c

 // Use the fireDelegate to fire Weapons
 // First, make sure the button is pressed: Axis("Jump")
 // Then ensure that fireDelegate isn't null to avoid an error
 if (Input.GetAxis("Jump") == 1 && fireDelegate != null) { //
d
 fireDelegate(); // e
 }
 }

 void TempFire() { //
f
 GameObject projGO = Instantiate<GameObject>(projectilePrefab);

641

 projGO.transform.position = transform.position;
 Rigidbody rigidB = projGO.GetComponent<Rigidbody>();
// rigidB.velocity = Vector3.up * projectileSpeed; //
g

 Projectile proj = projGO.GetComponent<Projectile>(); //
h
 proj.type = WeaponType.blaster;
 float tSpeed = Main.GetWeaponDefinition(proj.type).velocity;
 rigidB.velocity = Vector3.up * tSpeed;
 }

 void OnTriggerEnter(Collider other) { … }
 …
}

a. Though both are public, neither the WeaponFireDelegate() delegate type nor
the fireDelegate field will appear in the Unity Inspector.

b. Adding TempFire to the fireDelegate causes TempFire to be called any
time fireDelegate is called like a function (see // e).

Note that when you add TempFire to the fireDelegate, you don't follow the
method name TempFire with parentheses. This is because you are adding the
method itself rather than calling the method and adding the result it returns (which is
what would happen if you put parentheses after the name of the method).

c. Be sure that you comment out (or delete) the entire section that was inside the if (
Input.GetKeyDown(KeyCode.Space)) { … } statement.

d. Input.GetAxis("Jump") is equal to 1 when the space bar or jump button on a
controller is pressed.
If fireDelegate is called when it has no methods assigned to it, it will throw an
error. To avoid this, fireDelegate != null is tested to see whether it is null
before calling it.

e. fireDelegate is called here as if it were a function. This, in turn, calls all the
functions that have been added to the fireDelegate delegate (at this point, this
means that it will call TempFire()).

f. TempFire() is now used by the fireDelegate to fire a standard blaster shot.
You'll replace TempFire() later when you make the Weapon class.

g. You need to either comment out or delete this line.
h. This new section pulls information from the WeaponType of the Projectile class and

uses it to set the velocity of the projGO GameObject.

3. Click Play in Unity and try firing. You should fire a lot of blaster shots very rapidly. In
the next section, you'll add a Weapon class that can better manage firing and replace
TempFire() with the Fire() function on that Weapon class.

642

Creating a Weapon Object to Fire Projectiles
Let's start with the artwork for the new Weapon GameObject. The benefit of the Weapon is
that you can attach as many as you want to _Hero, and each one can add itself to the
fireDelegate on the Hero class and then be fired in concert when fireDelegate is
called like a function.

1. In the Hierarchy, create an empty GameObject, name it Weapon, and give it the
following structure and children:

Weapon (Empty) P:[0, 2, 0] R:[0, 0, 0
]

S:[1, 1, 1]

Barrel
(Cube)

P:[0, 0.5, 0
]

R:[0, 0, 0
]

S:[0.25, 1, 0.1]

Collar
(Cube)

P:[0, 1, 0] R:[0, 0, 0
]

S:[0.375, 0.5, 0.2
]

2. Remove the Collider component from both Barrel and Collar by selecting them
individually and then right-clicking on the name of the Box Collider component and
choosing Remove Component from the pop-up menu. You can also click the gear to the
right of the Box Collider name to get the same menu.

3. Create a new material named Mat_Collar inside of the _Materials folder in the Project
pane.

4. Drag this material on to Collar to assign it. In the Inspector, choose ProtoTools >
UnlitAlpha from the Shader pop-up menu (see Figure 31.2).

Figure 31.2 Weapon with the Collar selected and proper material and shader selected

5. Attach the Weapon C# script to the Weapon GameObject in the Hierarchy.

643

6. Drag the Weapon GameObject into the _Prefabs folder in the Project pane to make it a
prefab.

7. Make the Weapon instance in the Hierarchy a child of _Hero and check that its position
is [0, 2, 0]. This should place the Weapon on the nose of the _Hero ship, as is shown in
Figure 31.2.

8. Save your scene! Are you remembering to save constantly?

Adding Firing to the Weapon C# Script
To add firing to the weapon script, do the following:

1. Start by disabling the fireDelegate use of the TempFire() method in Hero.
Open the Hero C# script in MonoDevelop and comment out the following bolded line:

Click here to view code image

public class Hero : MonoBehaviour {
 …
 void Awake() {
 …
// fireDelegate += TempFire;

 }
 …
}

Commenting out this line makes fireDelegate no longer call TempFire(). You may
now delete the TempFire() method from the Hero class if you wish. If you click Play
now and press the fire button, the Hero ship will not fire.

2. Open the Weapon C# script in MonoDevelop add the following bold code:
Click here to view code image

public class Weapon : MonoBehaviour {
 static public Transform PROJECTILE_ANCHOR;

 [Header("Set Dynamically")] [SerializeField]
 private WeaponType _type = WeaponType.none;
 public WeaponDefinition def;
 public GameObject collar;
 public float lastShotTime; // Time last shot was fired

 private Renderer collarRend;

 void Start() {
 collar = transform.Find("Collar").gameObject;
 collarRend = collar.GetComponent<Renderer>();

644

 // Call SetType() for the default _type of WeaponType.none
 SetType(_type); //
a

 // Dynamically create an anchor for all Projectiles
 if (PROJECTILE_ANCHOR == null) { //
b
 GameObject go = new GameObject("_ProjectileAnchor");
 PROJECTILE_ANCHOR = go.transform;
 }
 // Find the fireDelegate of the root GameObject
 GameObject rootGO = transform.root.gameObject; //
c
 if (rootGO.GetComponent<Hero>() != null) { //
d
 rootGO.GetComponent<Hero>().fireDelegate += Fire;
 }
 }

 public WeaponType type {
 get { return(_type); }
 set { SetType(value); }
 }

 public void SetType(WeaponType wt) {
 _type = wt;
 if (type == WeaponType.none) { //
e
 this.gameObject.SetActive(false);
 return;
 } else {
 this.gameObject.SetActive(true);
 }
 def = Main.GetWeaponDefinition(_type); //
f
 collarRend.material.color = def.color;
 lastShotTime = 0; // You can fire immediately after _type is set. //
g
 }

 public void Fire() {
 // If this.gameObject is inactive, return
 if (!gameObject.activeInHierarchy) return; //
h
 // If it hasn't been enough time between shots, return
 if (Time.time - lastShotTime < def.delayBetweenShots) { //
i
 return;
 }
 Projectile p;
 Vector3 vel = Vector3.up * def.velocity; //
j
 if (transform.up.y < 0) {

645

 vel.y = -vel.y;
 }
 switch (type) { //
k
 case WeaponType.blaster:
 p = MakeProjectile();
 p.rigid.velocity = vel;
 break;

 case WeaponType.spread: //
l
 p = MakeProjectile(); // Make middle Projectile
 p.rigid.velocity = vel;
 p = MakeProjectile(); // Make right Projectile
 p.transform.rotation = Quaternion.AngleAxis(10, Vector3.back);
 p.rigid.velocity = p.transform.rotation * vel;
 p = MakeProjectile(); // Make left Projectile
 p.transform.rotation = Quaternion.AngleAxis(-10, Vector3.back);
 p.rigid.velocity = p.transform.rotation * vel;
 break;

 }
 }

 public Projectile MakeProjectile() { // m
 GameObject go = Instantiate<GameObject>(def.projectilePrefab);
 if (transform.parent.gameObject.tag == "Hero") { // n
 go.tag = "ProjectileHero";
 go.layer = LayerMask.NameToLayer("ProjectileHero");
 } else {
 go.tag = "ProjectileEnemy";
 go.layer = LayerMask.NameToLayer("ProjectileEnemy");
 }
 go.transform.position = collar.transform.position;
 go.transform.SetParent(PROJECTILE_ANCHOR, true); // o
 Projectile p = go.GetComponent<Projectile>();
 p.type = type;
 lastShotTime = Time.time; // p
 return(p);

 }
}

a. When the Weapon GameObject starts, it calls SetType() with whatever
WeaponType _type is set to. This ensures that either the Weapon disappears (if
_type is WeaponType.none) or shows the correct collar color (if _type is
WeaponType.blaster or WeaponType.spread).

b. PROJECTILE_ANCHOR is a static Transform created to act as a parent in the
Hierarchy to all the Projectiles created by Weapon scripts. If
PROJECTILE_ANCHOR is null (because it has not yet been created), this script
creates a new GameObject named _ProjectileAnchor and assigns its transform to

646

PROJECTILE_ANCHOR.
c. Weapons are always attached to other GameObjects (like _Hero). This finds the root

GameObject of which this Weapon is a child.
d. If this root GameObject has a Hero script attached to it, then the Fire() method of

this Weapon is added to the fireDelegate delegate of that Hero class instance. If
you wanted to add Weapons to Enemies, you could add a similar if statement here to
check for an attached Enemy script. Even if a subclass of Enemy (e.g., Enemy_1,
Enemy_2, etc.) were attached to rootGO, it would still return when rootGO was
asked for the Enemy script component because of class inheritance rules.

e. If type is WeaponType.none, this GameObject is disabled. When a GameObject
is not active, it doesn't receive any MonoBehaviour method calls (e.g., Update(),
LateUpdate(), FixedUpdate(), OnCollisionEnter(), and so on), it is
not part of the physics simulation, and it visually disappears from the scene. However,
calling functions and setting variables on the scripts attached to an inactive
GameObject is still possible, so if something calls SetType() or sets the type
property to WeaponType.blaster or WeaponType.spread, the
SetType() method will be called, and it will reactivate the GameObject to which
it is attached.

f. Not only does SetType() set whether or not the GameObject is active, it also pulls
the proper WeaponDefinition from Main, sets the color of the Collar, and resets
lastShotTime.

g. Resetting lastShotTime to 0 allows this Weapon to be fired immediately (see //
i).

h. gameObject.activeInHierarchy will be false if either this Weapon is
inactive or if the _Hero GameObject (the root parent of this Weapon) is inactive or
destroyed. In any case where gameObject.activeInHierarchy is false,
this function will return, and the Weapon will not fire.

i. If the difference between the current time and the last time this Weapon was fired is
less than the delayBetweenShots defined in the WeaponDefinition, this Weapon
will not fire.

j. An initial velocity in the up direction is set, but if transform.up.y is < 0
(which would be true for Enemy Weapons that are facing downward), the y
component of vel is set to face downward as well.

k. This switch statement has options for each of the two WeaponTypes implemented in
this chapter. The WeaponType.blaster generates a single Projectile by calling
MakeProjectile()(which returns a reference to the Projectile class
instance attached to the new projectile GameObject) and then assigns a velocity to its
Rigidbody in the direction of vel.

l. If the _type is WeaponType.spread, then three different Projectiles are created.

647

Two of them have their direction rotated 10 degrees around the Vector3.back
axis (i.e., the -z axis that extends out of the screen toward you). Then, their
Rigidbody.velocity is set to the multiplication of that rotation by vel. When a
Quaternion is multiplied by a Vector3, it rotates that Vector3, causing the resultant
velocity to point in the direction that the Projectile is angled.

m. The MakeProjectile() method instantiates a clone of the prefab stored in the
WeaponDefinition and returns a reference to the attached Projectile class instance.

n. Based on whether this was fired by the _Hero or an Enemy, the Projectile is given the
proper tag and physics layer.

o. The Projectile GameObject's parent is set to be PROJECTILE_ANCHOR. This
places it under _ProjectileAnchor in the Hierarchy pane, keeping the Hierarchy
relatively clean to look at and avoiding the issue of having several Projectile clones
cluttering the Hierarchy pane. The true argument passed in tells go to maintain its
current world position through the transition.

p. lastShotTime is set to the current time, preventing this Weapon from shooting for
def.delayBetweenShots seconds.

3. Click Play, and the Weapon attached to _Hero disappears. This is because its
WeaponType is WeaponType.none.

4. Select the Weapon attached to _Hero in the Hierarchy and set the type of its Weapon
(Script) component to Blaster. Click Play; you can now hold the space bar to fire
blaster shots every 0.2 seconds (as defined in the weaponDefinitions array of the
Main (Script) component of _MainCamera).

5. Select the Weapon attached to _Hero in the Hierarchy and set the type of its Weapon
(Script) component to Spread. Click Play; the Weapon Collar is now blue, and three
shots are fired in a spread pattern every 0.4 seconds when you hold the space bar.

648

Revising the Enemy OnCollisionEnter Method
Now that your Weapons are firing shots that have the potential to do different amounts of
damage (though they are currently set to do the same amount), you need to improve the
OnCollisionEnter() method of the Enemy class.

1. Open the Enemy C# script in MonoDevelop and delete the OnCollisionEnter()
method.

2. Replace the old OnCollisionEnter() method with this code.
Click here to view code image

public class Enemy : MonoBehaviour {
 …
 public virtual void Move() { … }

 void OnCollisionEnter(Collision coll) { //
a
 GameObject otherGO = coll.gameObject;
 switch (otherGO.tag) {
 case "ProjectileHero": //
b
 Projectile p = otherGO.GetComponent<Projectile>();
 // If this Enemy is off screen, don't damage it.
 if (!bndCheck.isOnScreen) { //
c
 Destroy(otherGO);
 break;
 }

 // Hurt this Enemy
 // Get the damage amount from the Main WEAP_DICT.
 health -= Main.GetWeaponDefinition(p.type).damageOnHit;
 if (health <= 0) { //
d
 // Destroy this Enemy
 Destroy(this.gameObject);
 }
 Destroy(otherGO); //
e
 break;

 default:
 print("Enemy hit by non-ProjectileHero: " + otherGO.name); //
f
 break;

 }
 }
}

649

a. Make sure you're replacing the old OnCollisionEnter() method entirely.
b. If the GameObject that hit this Enemy has the ProjectileHero tag, it should damage

this Enemy. If it has any other tag, it will be handled by the default case (// f).
c. If this Enemy is not on screen, the Projectile GameObject that hit it is destroyed, and
break; is called, which exits the switch statement without completing any of the
remaining code in the case "ProjectileHero".

d. If this Enemy's health is decreased to below 0, then this Enemy is destroyed. With a
default Enemy health of 10 and blaster damageOnHit of 1, this will take 10 shots.

e. The Projectile GameObject is destroyed.
f. If somehow a GameObject tagged something other than a ProjectileHero hits this

Enemy, a message about it posts to the Console pane.

3. Before clicking Play on the scene, you should switch from Enemy_3s being spawned
back to spawning regular Enemies. Select _MainCamera in the Hierarchy and set
Element 0 of the prefabEnemies array of the Main (Script) component to be the
Enemy_0 prefab.

Now when you play the scene, it is possible to destroy the enemies, but each enemy takes
10 shots to take down, and it's difficult to tell that they're being damaged.

Showing Enemy Damage
To show that an Enemy is being damaged, you will add code that makes the Enemy blink
red for a couple of frames every time it is hit. However, to do so, you need to have access
to all the materials of all the children of each enemy. This seems like something that might
be useful in several different games, so let's make this part of a new Utils C# class that you
will fill with reusable game code.

Creating the Reusable Utils Script
You will use the Utils class throughout the rest of this book. The Utils class is going to be
almost entirely composed of static functions so that the functions can easily be called from
anywhere in your code.

1. Create a new C# script named Utils and place it in the __Scripts folder. Open Utils in
MonoDevelop and enter the following code:

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

650

public class Utils : MonoBehaviour {

//============================ Materials Functions ===========================\\

 // Returns a list of all Materials on this GameObject and its children
 static public Material[] GetAllMaterials(GameObjectgo) { //
a
 Renderer[] rends = go.GetComponentsInChildren<Renderer>(); //
b

 List<Material> mats = new List<Material>();
 foreach (Renderer rend in rends) { //
c
 mats.Add(rend.material);
 }

 return(mats.ToArray()); //
d
 }
}

a. As a static public method, GetAllMaterials() can be called anywhere in this
project via Utils.GetAllMaterials().

b. GetComponentsInChildren<>() is a GameObject method that iterates over
the GameObject itself and all of its children, and returns an array of whatever
component type is passed into the generic <> parameter of the method (in this
example, the component type Renderer).

c. This foreach loop iterates over the Renderer components in the rends array and
extracts the material field from each. This Material is then added to the mats
List.

d. Finally, the mats List is converted into an array and returned.

Using GetAllMaterials to Make the Enemy Blink Red
Now, modify Enemy to make use of the GetAllMaterials() static method of Utils:

1. Add the following bold code to the Enemy class:
Click here to view code image

public class Enemy : MonoBehaviour {
 …
 public int score = 100; // Points earned for destroying this
 public float showDamageDuration = 0.1f; // # seconds to show damage //
a

 [Header("Set Dynamically: Enemy")]
 public Color[] originalColors;
 public Material[] materials;// All the Materials of this & its children

651

 public bool showingDamage = false;
 public float damageDoneTime; // Time to stop showing damage
 public bool notifiedOfDestruction = false; // Will be used later

 protected BoundsCheck bndCheck;

 void Awake() {
 bndCheck = GetComponent<BoundsCheck>();
 // Get materials and colors for this GameObject and its children
 materials = Utils.GetAllMaterials(gameObject); //
b
 originalColors = new Color[materials.Length];
 for (int i=0; i<materials.Length; i++) {
 originalColors[i] = materials[i].color;
 }
 }

 …

 void Update() {
 Move();

 if (showingDamage && Time.time > damageDoneTime) { //
c
 UnShowDamage();
 }

 if (bndCheck != null && bndCheck.offDown) {
 // We're off the bottom, so destroy this GameObject
 Destroy(gameObject);
 }
 }

 …

 void OnCollisionEnter(Collision coll) {
 GameObject otherGO = coll.gameObject;
 switch (otherGO.tag) {
 case "ProjectileHero":
 …
 // Hurt this Enemy
 ShowDamage(); //
d
 // Get the damage amount from the Main WEAP_DICT.
 …
 }
 }

 void ShowDamage() { //
e
 foreach (Material m in materials) {
 m.color = Color.red;
 }
 showingDamage = true;

652

 damageDoneTime = Time.time + showDamageDuration;
 }

 void UnShowDamage() { //
f
 for (int i=0; i<materials.Length; i++) {
 materials[i].color = originalColors[i];
 }
 showingDamage = false;
 }
}

a. Add all the new bolded fields at the top.
b. The materials array is filled using the new Utils.GetAllMaterials()

method. Then, code here iterates through all the materials and stores their original
color. Though all of the Enemy GameObjects are currently white, this method allows
you to set whatever color you want on them, colors each one red when the Enemy is
damaged, and then returns them to their original color.
Importantly, this call to Utils.GetAllMaterials() is made in the Awake()
method, and the result is cached in materials. This ensures that it only happens
once for each Enemy. Utils.GetAllMaterials() makes use of
GetComponentsInChildren<>(), which is a somewhat slow function that can
take processing time and decrease performance. As such, it is generally better to call
it once and cache the result rather than calling it every frame.

c. If the Enemy is currently showing damage (i.e., it's red) and the current time is later
than damageDoneTime, UnShowDamage() is called.

d. A call to ShowDamage() is added to the section of OnCollisionEnter() that
damages the Enemy.

e. ShowDamage() turns all materials in the materials array red, sets
showingDamage to true, and sets the time at which it should stop showing
damage.

f. UnShowDamage() turns all materials in the materials array back to their
original color and sets showingDamage to false.

Now, when an Enemy is struck by a projectile from the hero, it will turn entirely red for
damageDoneTime seconds by setting the color of all of its materials to red. After
damageDoneTime seconds have passed, the Enemy script reverts itself and its child
GameObjects to their original colors.

2. Click Play and test your game. It is now much easier to see that you're damaging the
ship, but it still takes many hits before the enemy is destroyed. Let's make some power-
ups to increase the power and number of the player's weapons.

3. Did you remember to save your project? Always save your project frequently.

653

Adding Power-Ups and Boosting Weapons
In this section, you will create three power-ups for the game:

 blaster [B]: If the player weapon type is not blaster, this switches to blaster and resets
the ship to have only a single gun. If the player weapon type is already blaster, it
increases the number of guns.
 spread [S]: If the player weapon type is not spread, this switches to spread and resets
the ship to have only a single gun. If the player weapon type is already spread, it
increases the number of guns.
 shield [O]: This increases the player's shieldLevel by 1.

Artwork for Power-Ups
The power-ups are constructed of a letter rendered as 3D text with a spinning cube behind
it. (You can see some of them in Figure 30.1 at the beginning of the previous chapter.) To
make the power-ups, complete these steps:

1. Create a new 3D text (GameObject > 3D Object > 3D Text from the menu bar). Name
it PowerUp and give it a Cube child and assign both the following settings:

PowerUp (3D Text) P:[10, 0, 0] R:[0, 0, 0] S:[1, 1, 1]
Cube P:[0, 0, 0] R:[0, 0, 0] S:[2, 2, 2]

2. Select the PowerUp.

3. Set the Text Mesh component properties of PowerUp to those shown in Figure 31.3.

654

Figure 31.3 Settings for PowerUp and its child Cube prior to attaching any scripts

4. Add a Rigidbody component to PowerUp (Component > Physics > Rigidbody) and set
it as shown in the Figure 31.3.

5. Set both the tag and the physics layer of PowerUp to PowerUp. Respond Yes, change
children to the question that appears.

6. Create a custom material for the PowerUp cube, as follows:
a. Create a new Material named Mat_PowerUp inside the _Materials folder.
b. Drag it onto the Cube that is a child of PowerUp.
c. Select the Cube that is a child of PowerUp.
d. Set the Shader of Mat PowerUp to ProtoTools > UnlitAlpha.
e. Click the Select button at the bottom right of the texture box for Mat_PowerUp and

choose the texture named PowerUp from the Assets tab. You will probably need to
open the disclosure triangle in the bottom-left corner of the Mat_PowerUp component
in the Inspector to see the texture for Mat_PowerUp.

f. Set the main color of Mat_PowerUp to cyan (a light blue that is RGBA: [0, 255, 255,
255]), and you can see how the PowerUp will look when colored.

g. Set the Box Collider of Cube to be a trigger (check the box next to Is Trigger).

655

Double-check that all the settings for PowerUp and its child Cube match those in Figure
31.3 and save your scene.

PowerUp Code
The power-up code is next:

1. Attach a BoundsCheck script to the PowerUp GameObject in the Hierarchy. Set
radius to 1 and keepOnScreen to false (unchecked).

2. Create a new C# script named PowerUp in the __Scripts folder.
3. Attach the PowerUp script to the PowerUp GameObject in the Hierarchy.
4. Open the PowerUp script in MonoDevelop and enter the following code:

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class PowerUp : MonoBehaviour {
 [Header("Set in Inspector")]
 // This is an unusual but handy use of Vector2s. x holds a min value
 // and y a max value for a Random.Range() that will be called later
 public Vector2 rotMinMax = new Vector2(15,90);
 public Vector2 driftMinMax = new Vector2(.25f,2);
 public float lifeTime = 6f; // Seconds the PowerUp exists
 public float fadeTime = 4f; // Seconds it will then fade

 [Header("Set Dynamically")]
 public WeaponType type; // The type of the PowerUp
 public GameObject cube; // Reference to the Cube child
 public TextMesh letter; // Reference to the TextMesh
 public Vector3 rotPerSecond; // Euler rotation speed
 public float birthTime;

 private Rigidbody rigid;
 private BoundsCheck bndCheck;
 private Renderer cubeRend;

 void Awake() {
 // Find the Cube reference
 cube = transform.Find("Cube").gameObject;
 // Find the TextMesh and other components
 letter = GetComponent<TextMesh>();
 rigid = GetComponent<Rigidbody>();
 bndCheck = GetComponent<BoundsCheck>();
 cubeRend = cube.GetComponent<Renderer>();

 // Set a random velocity
 Vector3 vel = Random.onUnitSphere; // Get Random XYZ velocity
 // Random.onUnitSphere gives you a vector point that is somewhere on

656

 // the surface of the sphere with a radius of 1m around the origin
 vel.z = 0; // Flatten the vel to the XY plane
 vel.Normalize(); // Normalizing a Vector3 makes it length 1m

 vel *= Random.Range(driftMinMax.x, driftMinMax.y); //
a
 rigid.velocity = vel;

 // Set the rotation of this GameObject to R:[0, 0, 0]
 transform.rotation = Quaternion.identity;
 // Quaternion.identity is equal to no rotation.

 // Set up the rotPerSecond for the Cube child using rotMinMax x & y
 rotPerSecond = new Vector3(Random.Range(rotMinMax.x,rotMinMax.y),
 Random.Range(rotMinMax.x,rotMinMax.y),
 Random.Range(rotMinMax.x,rotMinMax.y));

 birthTime = Time.time;
 }
 void Update () {
 cube.transform.rotation = Quaternion.Euler(rotPerSecond*Time.time);//
b

 // Fade out the PowerUp over time
 // Given the default values, a PowerUp will exist for 10 seconds
 // and then fade out over 4 seconds.
 float u = (Time.time - (birthTime+lifeTime)) / fadeTime;
 // For lifeTime seconds, u will be <= 0. Then it will transition to
 // 1 over the course of fadeTime seconds.

 // If u >= 1, destroy this PowerUp
 if (u >= 1) {
 Destroy(this.gameObject);
 return;
 }

 // Use u to determine the alpha value of the Cube & Letter
 if (u>0) {
 Color c = cubeRend.material.color;
 c.a = 1f-u;
 cubeRend.material.color = c;
 // Fade the Letter too, just not as much
 c = letter.color;
 c.a = 1f - (u*0.5f);
 letter.color = c;
 }

 if (!bndCheck.isOnScreen) {
 // If the PowerUp has drifted entirely off screen, destroy it
 Destroy(gameObject);
 }
 }

 public void SetType(WeaponType wt) {

657

 // Grab the WeaponDefinition from Main
 WeaponDefinition def = Main.GetWeaponDefinition(wt);
 // Set the color of the Cube child
 cubeRend.material.color = def.color;
 //letter.color = def.color; // We could colorize the letter too
 letter.text = def.letter; // Set the letter that is shown
 type = wt; // Finally actually set the type
 }

 public void AbsorbedBy(GameObject target) {
 // This function is called by the Hero class when a PowerUp is collected
 // We could tween into the target and shrink in size,
 // but for now, just destroy this.gameObject
 Destroy(this.gameObject);
 }
}

a. Sets the velocity length to something between the x and y values of driftMinMax.
b. Manually rotate the Cube child every Update(). Multiplying rotPerSecond by
Time.time causes the rotation to be time-based.

5. Click Play, you should see the power-up drifting and rotating. If you fly the hero into
the power-up, the console message "Triggered by non-Enemy: PowerUp" appears,
letting you know that the Trigger Collider on the PowerUp cube is working properly.

6. Drag the PowerUp GameObject from the Hierarchy into the _Prefabs folder in the
Project pane to make it into a prefab.

Enabling the Hero to Collect PowerUps
Next, you need to enable the Hero to collect PowerUps. First you'll just manage the
collection, then you'll modify Hero to upgrade and change weapons in response to
PowerUps.

1. Make the following changes to the Hero C# script to enable the hero to collide with and
collect power-ups:

Click here to view code image

public class Hero : MonoBehaviour {
 …
 void OnTriggerEnter(Collider other) {
 …

 if (go.tag == "Enemy") {
 // If the shield was triggered by an enemy
 // Decrease the level of the shield by 1
 shieldLevel--;
 // Destroy the enemy
 Destroy(go);

658

 } else if (go.tag == "PowerUp") {
 // If the shield was triggered by a PowerUp
 AbsorbPowerUp(go);
 } else {
 print("Triggered by non-Enemy: "+go.name);
 }
 }

 public void AbsorbPowerUp(GameObject go) {
 PowerUp pu = go.GetComponent<PowerUp>();
 switch (pu.type) {

 // Leave this switch block empty for now.

 }
 pu.AbsorbedBy(this.gameObject);
 }

 public float shieldLevel { … }
}

2. Now when you click Play, you can see that the Hero can run into the PowerUp and
absorb it.

Before you can make absorbing a PowerUp actually do something, you need to do a little
more Weapons set up.

3. Add the weapons array to the top of the Hero script as shown in bold code here.
Click here to view code image

public class Hero : MonoBehaviour {
 …
 public float projectileSpeed = 40;
 public Weapon[] weapons; // a

 [Header("Set Dynamically")]
 …
}

a. In the next section, you make five Weapon GameObjects as children of _Hero that
will act as the guns for the ship. This weapons array will store a reference to each
of them.

Expanding Weapon Options
Now that the code is set up, you need to make a couple of changes to _Hero in Unity.

1. Open the disclosure triangle next to the GameObject _Hero in the Hierarchy.

2. Select the Weapon child of _Hero. Press Command-D (or Ctrl+D on Windows) four

659

times to make four duplicates of Weapon.3 The duplicates should all still be children of
_Hero.

3. Rename the four weapons Weapon_0 through Weapon_4 and configure their transforms
as follows:

_Hero P:[0, 0, 0] R:[0, 0, 0] S:[1, 1, 1]
Weapon_0 P:[0, 2, 0] R:[0, 0, 0] S:[1, 1, 1]
Weapon_1 P:[-2, -1, 0] R:[0, 0, 0] S:[1, 1, 1]
Weapon_2 P:[2, -1, 0] R:[0, 0, 0] S:[1, 1, 1]
Weapon_3 P:[-1.25, -0.25, 0] R:[0, 0, 0] S:[1, 1, 1]
Weapon_4 P:[1.25, -0.25, 0] R:[0, 0, 0] S:[1, 1, 1]

4. Select _Hero and open the disclosure triangle for the weapons field in the Hero
(Script) component Inspector.

5. Set the Size of weapons to 5 and assign Weapon_0 through Weapon_4 to the five
Weapon slots in order (either by dragging them in from the Hierarchy or by clicking the
target to the right of the Weapon slot and selecting each Weapon_# from the Scene tab).
Figure 31.4 shows the resultant setup.

Figure 31.4 The _Hero ship showing five Weapons as children and assigned to the
weapons field

Let's make absorbing a PowerUp actually do something. To do so, we'll need to make some
changes to the Hero script.

660

6. Open the Hero script and add the following GetEmptyWeaponSlot() and
ClearWeapons() methods to the bottom of the Hero class.

Click here to view code image

public class Hero : MonoBehaviour {
 …
 public float shieldLevel {
 …
 }

 Weapon GetEmptyWeaponSlot() {
 for (int i=0; i<weapons.Length; i++) {
 if (weapons[i].type == WeaponType.none) {
 return(weapons[i]);
 }
 }
 return(null);
 }

 void ClearWeapons() {
 foreach (Weapon w in weapons) {
 w.SetType(WeaponType.none);
 }
 }
}

7. Fill the switch block of the AbsorbPowerUp() method (that you previously left
empty) with the following bold code.

Click here to view code image

public class Hero : MonoBehaviour {
 …
 public void AbsorbPowerUp(GameObject go) {
 PowerUp pu = go.GetComponent<PowerUp>();
 switch (pu.type) {
 case WeaponType.shield: //
a
 shieldLevel++;
 break;

 default: //
b
 if (pu.type == weapons[0].type) { // If it is the same type //
c
 Weapon w = GetEmptyWeaponSlot();
 if (w != null) {
 // Set it to pu.type
 w.SetType(pu.type);
 }
 } else { // If this is a different weapon type //
d
 ClearWeapons();
 weapons[0].SetType(pu.type);

661

 }
 break;
 }
 pu.AbsorbedBy(this.gameObject);
 }
 …
}

a. If the PowerUp has the WeaponType shield, it increases the shield level by 1.
b. Any other PowerUp WeaponType will be a weapon, so that is the default state.
c. If the PowerUp is the same WeaponType as the existing weapons, a search occurs for

an unused weapon slot and an attempt is made to set that empty slot to the same
weapon type. If all five slots are already in use, nothing happens.

d. If the PowerUp is a different WeaponType, then all weapon slots are cleared, and
Weapon_0 is set to the new WeaponType that was picked up.

8. To test this, select the PowerUp in the Hierarchy, and inside the PowerUp (Script)
component of the Inspector, set the type (under the heading "Set Dynamically") to
Spread. Normally, the type is set dynamically, but you can set it manually for testing.

9. Click Play, and you'll start with five blasters. When you run into the PowerUp, it will
swap those blasters for a single spread gun. The PowerUp doesn't show the correct
letter because you set the type manually. You can also try testing the PowerUp with a
type of shield, and you can see that the shield level increases when you run over the
PowerUp.

Managing Race Conditions
Now, we're going to break something to make a point. Bear with me; this is important, and
you'll probably run into something like it in the future.

1. Add the following bolded lines to the Awake() method of the Hero script:
Click here to view code image

public class Hero : MonoBehaviour {
 …
 void Awake() {
 S = this; // Set the Singleton
// fireDelegate += TempFire;

 // Reset the weapons to start _Hero with 1 blaster
 ClearWeapons();
 weapons[0].SetType(WeaponType.blaster);
 }
 …
}

662

2. Click Play, and you should see something like the following error message:

NullReferenceException: Object reference not set to an instance of an object
Weapon.SetType (WeaponType wt) (at Assets/__Scripts/Weapon.cs:82) Hero.Awake ()
(at Assets/__Scripts/Hero.cs:36)

This tells you that something you are trying to use is null and that it encountered this error
on the following line from the SetType() method of Weapon.cs (line 82 in my
implementation, but your line number is probably different).
Click here to view code image

collarRend.material.color = def.color;

The error message also tells you that this line of Weapon.cs was reached via a function call
on a specific line of the Awake() method of Hero.cs (line 36 for me, but yours might vary).
That line is:

weapons[0].SetType(WeaponType.blaster);

So, tracing this back, it looks like the Awake() method of Hero is calling the
SetType() method of the 0th Weapon in the weapons array. The SetType() method of
Weapon is trying to set the color of collarRend, but collarRend is null, so this is
throwing a null reference error.

Look at the Start() method in Weapon. That is where collarRend is set. However,
the Awake() method of Hero is always called before the Start() method on Weapon,
meaning that we are trying to read the value of collarRend before it has been set! Fixing
this is going to involve some additional steps.

3. In the Hero script, change the name of the Awake() method to Start().4

If you click Play, it might seem that this change has fixed everything, but that's not actually
the case. What you've done is possibly fix things, because it's possible that
Weapon.Start() will execute before Hero.Start(), but it's also still possible that
Hero.Start() will execute first. You need to be sure.

4. Open the Script Execution Order Inspector by choosing Edit > Project Settings >
Script Execution Order from the menu bar.
a. Click the + button that is circled in image 1 of Figure 31.5 and choose the Weapon

script from the pop-up menu. This creates a row in the table for Weapon with a value
of 100. The 100 number represents the execution order of Weapon versus the other
scripts, which all run at Default Time. If the number is higher (as it is now), all
Weapon scripts will execute after other scripts, meaning that the Weapon.Start()

663

method will execute after the Hero.Start() or any other script.

Figure 31.5 The Script Execution Order Inspector showing manipulation of the Weapon
script's execution order.

b. Click the Apply button (this locks in the execution order) and click Play.
c. You can see that you now definitely encounter a null reference exception. Instead of

Weapon happening last, you need it to happen first.
d. Open the Script Execution Order Inspector again, and use the two-bar thumb on the

left side of the Weapon row (that the cursor is touching in image 2 of Figure 31.5) to
drag the Weapon row above Default Time. This also changes the number on that row
from 100 to -100 (as shown in image 2 of Figure 31.5). Now Weapon.Start()
will execute before any other Start() methods.

e. Click Apply and click Play again. This time, you should not get any errors.

Race conditions and script execution order are subtle yet important things to keep in mind
when you're working on your own projects.

Making Enemies Drop Power-Ups
Getting back to the power-ups. Let's make enemies have the potential to drop a random
power-up when they are destroyed. This gives the player a lot more incentive to try to
destroy enemies rather than just avoid them, and it gives the player a path to improving her
ship.

When an Enemy is destroyed, it notifies the Main singleton, and then the Main singleton
instantiates a new PowerUp. This might seem like a somewhat roundabout way to do this,
but in general, it is best to limit the number of different classes that can instantiate new
GameObjects into your scene. If fewer scripts are responsible an activity (like
instantiation), then it'll be easier to debug if you see that something is going wrong with that
activity.

1. Start by making the Main class able to instantiate new PowerUps. Add the following

664

bolded code to the Main script.
Click here to view code image

public class Main : MonoBehaviour {
 …
 public WeaponDefinition[] weaponDefinitions;
 public GameObject prefabPowerUp; // a
 public WeaponType[] powerUpFrequency = new WeaponType[] { // b
 WeaponType.blaster, WeaponType.blaster,
 WeaponType.spread, WeaponType.shield };

 private BoundsCheck bndCheck;

 public void shipDestroyed(Enemy e) { //
c
 // Potentially generate a PowerUp
 if (Random.value <= e.powerUpDropChance) { //
d
 // Choose which PowerUp to pick
 // Pick one from the possibilities in powerUpFrequency
 int ndx = Random.Range(0,powerUpFrequency.Length); //
e
 WeaponType puType = powerUpFrequency[ndx];

 // Spawn a PowerUp
 GameObject go = Instantiate(prefabPowerUp) as GameObject;
 PowerUp pu = go.GetComponent<PowerUp>();
 // Set it to the proper WeaponType
 pu.SetType(puType); //
f

 // Set it to the position of the destroyed ship
 pu.transform.position = e.transform.position;
 }
 }

 void Awake() { … }
 …
}

a. This will hold the prefab for all PowerUps.
b. This powerUpFrequency array of WeaponTypes determines how often each type

of PowerUp will be created. By default, it has two blasters, one spread, and one
shield, so the blaster power-up will be twice as common as the others.

c. The ShipDestroyed() method will be called by an Enemy ship whenever it is
destroyed. It sometimes creates a power-up in place of the destroyed ship.

d. Each type of ship will have a powerUpDropChance, which is a number between
0 and 1. Random.value is a property that generates a random float between 0
(inclusive) and 1 (inclusive). (Because Random.value is inclusive of both 0 and
1, the number could potentially be either 0 or 1.) If that number is less than or equal to

665

the powerUpDropChance, a PowerUp is instantiated. The drop chance is part of
the Enemy class so that various enemies can have higher or lower chances of
dropping a PowerUp (e.g., Enemy_0 could rarely drop one, whereas Enemy_4 could
always drop one). It appears red in the code listing because we have not yet added it
to the Enemy class.

e. This line makes use of the powerUpFrequency array. When Random.Range()
is called with two integer values, it chooses a number between the first number
(inclusive) and the second number (exclusive); for example,
Random.Range(0,4) would generate an int with a value of 0, 1, 2, or 3. This is
very useful for choosing a random entry in an array, as you're doing on this line.

f. After a power-up type has been selected, the SetType() method is called on the
instantiated PowerUp, and the PowerUp then handles coloring itself, setting its
_type, and displaying the correct letter in its letter TextMesh.

2. Add the bolded code that follows to the Enemy script:
Click here to view code image

public class Enemy : MonoBehaviour {
 …
 public float showDamageDuration = 0.1f; // # seconds to show damage
 public float powerUpDropChance = 1f; // Chance to drop a power-
up // a

 [Header("These fields are set dynamically")]
 …
 void OnCollisionEnter(Collision coll) {
 GameObject otherGO = coll.gameObject;
 switch (otherGO.tag) {
 case "ProjectileHero":
 …
 // Hurt this Enemy
 …
 if (health <= 0) {
 // Tell the Main singleton that this ship was
destroyed // b
 if (!notifiedOfDestruction){
 Main.S.ShipDestroyed(this);
 }
 notifiedOfDestruction = true;
 // Destroy this Enemy
 Destroy(this.gameObject);
 }
 …
 break;
 …
 }
 }
}

666

a. powerUpDropChance determines how likely this Enemy is to drop a PowerUp
when it is destroyed. A value of 0 will never drop a PowerUp, and a 1 will always
drop one.

b. Immediately before this Enemy is destroyed, it notifies the Main singleton by calling
ShipDestroyed(). This only happens once for each ship, which is enforced by
the notifiedOfDestruction bool.

3. Before this code can work, you need to select _ MainCamera in the Hierarchy and
assign the PowerUp prefab from the _Prefabs folder in the Project pane to the
prefabPowerUp field of the Main (Script) component of _MainCamera.

4. Select the PowerUp instance in the Hierarchy and delete it (you don't need it because
you have a PowerUp prefab in the Project pane).

5. powerUpFrequency should already be set in the _MainCamera Main (Script)
Inspector, but just in case, Figure 31.6 shows the correct settings.

Figure 31.6 prefabPowerUp and powerUpFrequency on the Main (Script)
component of _MainCamera

6. Now play the scene and destroy some enemies. They should drop power-ups that
improve your ship!

You should notice over time that the blaster [B] power-up is more common than spread [S]
or shield [O]. This is because there are two occurrences of blaster in
powerUpFrequency and only one each of spread and shield. By adjusting the relative
numbers of occurrences of each of these in powerUpFrequency, you can determine the
chance that each will be chosen relative to the others. You can also use this same trick to
set the frequency of different types of enemies spawning by assigning some enemy types to
the prefabEnemies array more times than other enemy types.

Enemy_4—A More Complex Enemy
As somewhat of a boss type, Enemy_4 has more health than other enemy types and has
destructible parts (rather than all the parts being destroyed at the same time). It also stays
on screen, moving from one position to another, until the player destroys it completely.

667

Collider Modifications
Before getting into code issues, you need to make a few adjustments to the colliders of
Enemy_4.

1. Drag an instance of Enemy_4 into the Hierarchy and make sure that it's positioned away
from other GameObjects in the scene (it should default to the P:[20, 10, 0] that you set
earlier).

2. Open the disclosure triangle next to Enemy_4 in the Hierarchy and select the Fuselage
child.

3. Remove the Sphere Collider component from Fuselage by clicking the gear in the top-
right corner of the Sphere Collider component in the Inspector and selecting Remove
Component.

4. Add a Capsule Collider to the Fuselage by selecting Component > Physics > Capsule
Collider from the menu bar. Set the Capsule Collider as follows in the Fuselage
Inspector:

Center[0, 0, 0]Height 1
Radius 0.5 DirectionY-Axis

Feel free to play with the values somewhat to see how they affect things. As you can see,
the Capsule Collider is a much better approximation of Fuselage than the Sphere Collider
was.

5. Select the WingL child of Enemy_4 in the Hierarchy and replace its Sphere Collider
with a Capsule Collider as well. Set the Direction of this Capsule Collider to X-Axis.

Center[0, 0, 0]Height 1
Radius 0.5 DirectionX-Axis

The Direction setting of a Capsule Collider chooses which is the long axis of the capsule.
This is determined in local coordinates, so the height of 1 along the X-axis is multiplied by
the scale of 5 in the X dimension. The radius of 0.5 is multiplied by the maximum of either
the Y or Z scales, so the actual radius of the capsule is 0.5 due to the Y scale of 1. You can
see that the capsule does not perfectly match the wing, but again, it is a much better
approximation than a sphere.

6. Select WingR, replace its collider with a Capsule Collider, and give that collider the
same settings as used on WingL.

668

7. Select Enemy_4 in the Hierarchy and add a BoundsCheck (Script) component to
Enemy_4 by clicking the Add Component button in the Inspector and choosing Add
Component > Scripts > BoundsCheck.

8. In the BoundsCheck (Script) component, set radius = 3.5 and keepOnScreen =
false.

9. Click the Apply button to the right of the word Prefab at the top of the Inspector pane.
This applies the changes make to this instance of Enemy_4 back to the Enemy_4 prefab
in the Project pane.

10. To double-check that this worked successfully, drag a second instance of the Enemy_4
prefab into the Hierarchy pane and check to make sure that the colliders all look correct.
When you first drag it in, the new instance should align exactly with the one you've been
modifying.

11. Delete both instances of Enemy_4 from the Hierarchy pane.
12. Save your scene! Have you been remembering?

You could also apply this same Capsule Collider strategy to Enemy_3 if you want.

Movement of Enemy_4
Enemy_4 starts in the standard position off the top of the screen, picks a random point on
screen, and moves to it over time using a linear interpolation. After it reaches the chosen
point, it rests for a moment and then selects and moves to another point.

1. Open the Enemy_4 script and input this code:
Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

/// <summary>
/// Enemy_4 will start offscreen and then pick a random point on screen to
/// move to. Once it has arrived, it will pick another random point and
/// continue until the player has shot it down.
/// </summary>
public class Enemy_4 : Enemy {

 private Vector3 p0, p1; // The two points to interpolate
 private float timeStart; // Birth time for this Enemy_4
 private float duration = 4; // Duration of movement

 void Start () {
 // There is already an initial position chosen by Main.SpawnEnemy()
 // so add it to points as the initial p0 & p1

669

 p0 = p1 =
pos; // a

 InitMovement();
 }

 void InitMovement() {
 // b
 p0 = p1; // Set p0 to the old p1
 // Assign a new on-screen location to p1
 float widMinRad = bndCheck.camWidth - bndCheck.radius;
 float hgtMinRad = bndCheck.camHeight - bndCheck.radius;
 p1.x = Random.Range(-widMinRad, widMinRad);
 p1.y = Random.Range(-hgtMinRad, hgtMinRad);

 // Reset the time
 timeStart = Time.time;
 }

 public override void Move () {
 // c
 // This completely overrides Enemy.Move() with a linear interpolation
 float u = (Time.time-timeStart)/duration;

 if (u>=1) {
 InitMovement();
 u=0;
 }

 u = 1 - Mathf.Pow(1-u, 2); // Apply Ease Out easing to u //
d
 pos = (1-u)*p0 + u*p1; // Simple linear interpolation //
e
 }
}

a. Enemy_4 interpolates from p0 to p1 (i.e., moves smoothly from p0 to p1). The
Main.SpawnEnemy() script gives this instance a position just above the top of the
screen, which is assigned here to both p0 and p1. InitMovement() is then
called.

b. InitMovement() first stores the current p1 location in p0 (because Enemy_4
should be at location p1 any time InitMovement() is called). Next, a new p1
location is chosen that uses information from the BoundsCheck component to
guarantee it is on screen.

c. This Move() method completely overrides the inherited Enemy.Move() method.
It interpolates from p0 to p1 in duration seconds (4 seconds by default). The float
u increases from 0 to 1 with time as this interpolation happens, and when u is >= 1,
InitMovement() is called to set up a new interpolation.

d. This line applies easing to the u value, causing the ship to move in a non-linear

670

fashion. With this "Ease Out" easing, the ship begins its movement quickly and then
slows as it approaches p1.

e. This line performs a simple linear interpolation from p0 to p1.
To learn a lot more about both interpolation and easing, read the interpolation section
in Appendix B, "Useful Concepts."

2. Select _MainCamera in the Hierarchy. Assign the Enemy_4 prefab in the _Prefabs
folder of the Project pane to Element 0 of the prefabEnemies array in the Main
(Script) Inspector.

3. Click Play. You can see that the spawned Enemy_4s stay on screen until you destroy
them. However, they're currently just as simple to take down as any of the other
enemies.

Splitting Enemy_4 into Multiple Parts
Now you'll break the Enemy_4 ship into four different parts with the central Cockpit part
protected by the others.

1. Open the Enemy_4 C# script and add a new serializable class named Part to the top of
Enemy_4.cs. Also be sure to add a Part[] array to the Enemy_4 class named parts.
Add the bolded lines that follow to the Start() script of Enemy_4 to do so.

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

/// <summary>
/// Part is another serializable data storage class just like WeaponDefinition
/// </summary>
[System.Serializable]
public class Part {
 // These three fields need to be defined in the Inspector pane
 public string name; // The name of this part
 public float health; // The amount of health this part has
 public string[] protectedBy; // The other parts that protect this

 // These two fields are set automatically in Start().
 // Caching like this makes it faster and easier to find these later
 [HideInInspector] // Makes field on the next line not appear in the
Inspector
 public GameObject go; // The GameObject of this part
 [HideInInspector]
 public Material mat; // The Material to show damage
}

671

…

public class Enemy_4 : Enemy {
 [Header("Set in Inspector: Enemy_4")] //
a
 public Part[] parts; // The array of ship Parts

 private Vector3 p0, p1; // The two points to interpolate
 private float timeStart; // Birth time for this Enemy_4
 private float duration = 4; // Duration of movement

 void Start () {
 // There is already an initial position chosen by Main.SpawnEnemy()
 // so add it to points as the initial p0 & p1
 p0 = p1 = pos;

 InitMovement();

 // Cache GameObject & Material of each Part in parts
 Transform t;
 foreach (Part prt in parts) {
 t = transform.Find(prt.name);
 if (t != null) {
 prt.go = t.gameObject;
 prt.mat = prt.go.GetComponent<Renderer>().material;
 }
 }
 }
 …
}

a. In the Inspector, all the public fields from Enemy are listed above those from
Enemy_4. Adding the ": Enemy_4" to the end of the header here makes it more clear
in the Inspector which script is tied to which field (see Figure 31.7).

672

Figure 31.7 The settings for the parts array of Enemy_4

The serializable5 Part class stores individual information about the four parts of Enemy_4:
Cockpit, Fuselage, WingL, and WingR.

2. Switch back to Unity and do the following:
a. Select the Enemy_4 prefab in the Project pane.
b. Expand the disclosure triangle next to parts in the Enemy_4 (Script) Inspector.

673

c. Enter the settings shown in Figure 31.7. Be careful to spell all the names correctly.
As you can see in Figure 31.7, each Part has 10 health, and there is a hierarchical tree of

protection. Cockpit is protected by Fuselage, and Fuselage is protected by both WingL
and WingR. Be sure to save your scene!

3. Switch back to MonoDevelop and add the following methods to the end of the Enemy_4
class to make this protection work:

Click here to view code image

public class Enemy_4 : Enemy {
 …

 public override void Move () {
 …
 }

 // These two functions find a Part in parts based on name or GameObject
 Part FindPart(string n) { //
a
 foreach(Part prt in parts) {
 if (prt.name == n) {
 return(prt);
 }
 }
 return(null);
 }
 Part FindPart(GameObject go) { //
b
 foreach(Part prt in parts) {
 if (prt.go == go) {
 return(prt);
 }
 }
 return(null);
 }

 // These functions return true if the Part has been destroyed
 bool Destroyed(GameObject go) { //
c
 return(Destroyed(FindPart(go)));
 }
 bool Destroyed(string n) {
 return(Destroyed(FindPart(n)));
 }
 bool Destroyed(Part prt) {
 if (prt == null) { // If no real ph was passed in
 return(true); // Return true (meaning yes, it was destroyed)
 }
 // Returns the result of the comparison: prt.health <= 0
 // If prt.health is 0 or less, returns true (yes, it was destroyed)
 return (prt.health <= 0);

674

 }

 // This changes the color of just one Part to red instead of the whole ship.
 void ShowLocalizedDamage(Material m) { //
d
 m.color = Color.red;
 damageDoneTime = Time.time + showDamageDuration;
 showingDamage = true;
 }

 // This will override the OnCollisionEnter that is part of Enemy.cs.
 void OnCollisionEnter(Collision coll) { //
e
 GameObject other = coll.gameObject;
 switch (other.tag) {
 case "ProjectileHero":
 Projectile p = other.GetComponent<Projectile>();
 // If this Enemy is off screen, don't damage it.
 if (!bndCheck.isOnScreen) {
 Destroy(other);
 break;
 }

 // Hurt this Enemy
 GameObject goHit = coll.contacts[0].thisCollider.gameObject; //
f
 Part prtHit = FindPart(goHit);
 if (prtHit == null) { // If prtHit wasn't found… // g
 goHit = coll.contacts[0].otherCollider.gameObject;
 prtHit = FindPart(goHit);
 }
 // Check whether this part is still protected
 if (prtHit.protectedBy != null) { // h
 foreach(string s in prtHit.protectedBy) {
 // If one of the protecting parts hasn't been
destroyed...
 if (!Destroyed(s)) {
 // ...then don't damage this part yet
 Destroy(other); // Destroy the ProjectileHero
 return; // return before damaging Enemy_4
 }
 }
 }
 // It's not protected, so make it take damage
 // Get the damage amount from the Projectile.type and
Main.W_DEFS $$$$$$$$$$$$$$$$
 prtHit.health -= Main.GetWeaponDefinition(p.type).damageOnHit;
 // Show damage on the part
 ShowLocalizedDamage(prtHit.mat);
 if (prtHit.health <= 0) { //
i
 // Instead of destroying this enemy, disable the damaged
part
 prtHit.go.SetActive(false);

675

 }
 // Check to see if the whole ship is destroyed
 bool allDestroyed = true; // Assume it is destroyed
 foreach(Part prt in parts) {
 if (!Destroyed(prt)) { // If a part still exists...
 allDestroyed = false; // ...change allDestroyed to
false
 break; // & break out of the foreach
loop
 }
 }
 if (allDestroyed) { // If it IS completely destroyed... // j
 // ...tell the Main singleton that this ship was destroyed
 Main.S.ShipDestroyed(this);
 // Destroy this Enemy
 Destroy(this.gameObject);
 }
 Destroy(other); // Destroy the ProjectileHero
 break;
 }
 }
}

a. The FindPart() methods at // a and // b are overloads of each other,
meaning that they are two methods with the same name but different parameters (one
takes a string, and the other takes a GameObject). Based on what type of variable is
passed in, the correct overload of the FindPart() function is executed. In either
case, FindPart() searches through the parts array to find which part the string
or GameObject is associated with.

b. A GameObject overload of FindPart(). Another overloaded function that you've
used before is Random.range(), which has different behavior based on whether
floats or ints are passed into it.

c. Three overloads of the Destroyed() method that checks to see whether a certain
part has been destroyed or still has health.

d. ShowLocalizedDamage() is a more specialized version of the inherited
Enemy.ShowDamage() method. This only turns one part red, not the whole ship.

e. This OnCollisionEnter() method completely overrides the inherited
Enemy.OnCollisionEnter() method. Because of the way that MonoBehaviour
declares common Unity functions like OnCollisionEnter(), the override
keyword is not necessary.

f. This line finds the GameObject that was hit. The Collision coll includes a field
contacts[], which is an array of ContactPoints. Because there was a collision,
you're guaranteed that at least one ContactPoint (i.e., contacts[0]) exists, and
each ContactPoint has a field named thisCollider, which is the collider for the
part of the Enemy_4 that was hit.

676

g. If the prtHit you searched for wasn't found (and therefore prtHit == null),
then it's usually because—very rarely—thisCollider on contacts[0] will
refer to the ProjectileHero that hit the ship instead of the ship part that was hit. In that
case, just look at contacts[0].otherCollider instead.

h. If this part is still protected by another part that has not yet been destroyed, apply
damage to the protecting part instead.

i. If a single part's health reaches 0, then set it to inactive, which makes it disappear and
stop colliding with things.

j. If the whole ship has been destroyed, notify Main.S.ShipDestroyed() just like
the Enemy script would have (if you hadn't overridden OnCollisionEnter()).

4. Play the scene. You should eventually be overwhelmed by many Enemy_4s, each of
which has two wings that protect the fuselage and a fuselage that protects the cockpit. If
you want more of a chance against these, you can change the value of the
enemySpawnPerSecond field of Main (Script) on the _MainCamera to something
lower, which gives you more time between Enemy_4 spawns (though it will also delay
the initial spawn).

5. We're close to a playable game now! Next you'll set the prefabEnemies array on
the Main (Script) of _MainCamera to spawn various enemies with reasonable
frequency.
a. Select _MainCamera in the Hierarchy.
b. Set the Size of prefabEnemies on the Main (Script) Inspector to 10.
c. Set Elements 0, 1, and 2 to Enemy_0 (from the _Prefabs folder of the Project pane).
d. Set Elements 3 and 4 to Enemy_1.
e. Set Elements 5 and 6 to Enemy_2.
f. Set Elements 7 and 8 to Enemy_3.
g. Set Element 9 to Enemy_4.

Doing all this should give you Enemy_0s pretty frequently and Enemy_4s rather rarely.

6. Set the powerUpDropChance of each enemy type.
a. Select Enemy_0 in the _Prefabs folder of the Project pane and set
powerUpDropChance in the Enemy (Script) Inspector to 0.25 (meaning that an
Enemy_0 will drop a PowerUp 25% of the time).

b. Set the powerUpDropChance of Enemy_1 to 0.5.
c. Set the powerUpDropChance of Enemy_2 to 0.5.
d. Set the powerUpDropChance of Enemy_3 to 0.75.

677

e. Set the powerUpDropChance of Enemy_4 to 1.

7. Save your scene and click Play to try out your game!

Adding a Scrolling Starfield Background
After all of that coding, here's something you can do just for fun to make the game look a
little better: create a two-layer starfield background to make things look more like outer
space.

1. Create a quad in the Hierarchy (GameObject > 3D Object > Quad). Name it
StarfieldBG.

This places StarfieldBG (Quad)  P:[0, 0, 10]  R:[0, 0, 0]  S:[80, 80, 1]

This places StarfieldBG in the center of the camera's view and fills the view entirely.

2. Create a new material named Mat_Starfield and set its shader to ProtoTools >
UnlitAlpha. Set the texture of Mat_Starfield to the Space Texture2D that is in the
_Materials folder you imported at the beginning of this tutorial.

3. Drag Mat_Starfield onto StarfieldBG, and you should see a starfield behind your
_Hero ship.

4. Select Mat Starfield in the Project pane and duplicate it (Command-D on Mac or
Ctrl+D on PC). Name the new material Mat_Starfield_Transparent. Select
Space_Transparent (in the _Materials folder) as the texture for this new material.

5. Select StarfieldBG in the Hierarchy and duplicate it. Name the duplicate
StarfieldFG_0. Drag the Mat_Starfield_Transparent material onto StarfieldFG_0 and
set its transform to

StarfieldFG_0  P:[0, 0, 5]  R:[0, 0, 0]  S:[160, 160, 1]

If you drag StarfieldFG_0 around a bit, you'll see that it moves some stars in the foreground
past stars in the background, creating a nifty parallax effect.

6. Duplicate Starfield_FG_0 and name the duplicate Starfield_FG_1. You need two
copies of the foreground for the scrolling trick that you are about to employ.

7. Create a new C# script named Parallax and edit it in MonoDevelop.
Click here to view code image

using System.Collections;
using System.Collections.Generic;

678

using UnityEngine;

public class Parallax : MonoBehaviour {
 [Header("Set in Inspector")]
 public GameObject poi; // The player ship
 public GameObject[] panels; // The scrolling foregrounds
 public float scrollSpeed = -30f;
 // motionMult controls how much panels react to player movement
 public float motionMult = 0.25f;

 private float panelHt; // Height of each panel
 private float depth; // Depth of panels (that is, pos.z)

 void Start () {
 panelHt = panels[0].transform.localScale.y;
 depth = panels[0].transform.position.z;

 // Set initial positions of panels
 panels[0].transform.position = new Vector3(0,0,depth);
 panels[1].transform.position = new Vector3(0,panelHt,depth);
 }

 void Update () {
 float tY, tX=0;
 tY= Time.time * scrollSpeed % panelHt + (panelHt*0.5f);

 if (poi != null) {
 tX = -poi.transform.position.x * motionMult;
 }

 // Position panels[0]
 panels[0].transform.position = new Vector3(tX, tY, depth);
 // Then position panels[1] where needed to make a continuous starfield
 if (tY >= 0) {
 panels[1].transform.position = new Vector3(tX, tY-panelHt, depth);
 } else {
 panels[1].transform.position = new Vector3(tX, tY+panelHt, depth);
 }
 }
}

8. Save the script, return to Unity, and attach the Parallax script to StarfieldBG. Select
StarfieldBG in the Hierarchy and find the Parallax (Script) component in the Inspector.
There, drag _Hero from the Hierarchy into the poi field and add StarfieldFG_0 and
StarfieldFG_1 to the panels array.

9. Click Play, and you should see the starfield moving in response to the player.
10. Of course, remember to save your scene.

Summary

679

This was a long chapter, but it introduced a lot of important concepts that I hope will help
you with your own game projects in the future. Over the years, I have made extensive use of
linear interpolation and Bézier curves to make the motion in my games and other projects
smooth and refined. Just a simple easing function can make the movement of an object look
graceful, excited, or lethargic, which is powerful when you're trying to tune the feel of a
game.

The next chapter moves on to a very different kind of game: a solitaire card game (actually,
my favorite solitaire card game). It features reading information from an XML file to
construct an entire deck of cards out of just a few art assets and also using XML to lay out
the game itself. At the end, you'll have a fun digital card game to play.

Next Steps
From your experience in the previous tutorials, you already understand how to do many of
the things listed in this section. These are just some recommendations for what you can do
if you want to keep going with this prototype.

Tune Variables
As you have learned in both paper and digital games, tuning of numbers is critically
important and has a significant effect on experience. The following is a list of variables you
should consider tuning to change the feel of the game:

 _Hero: Change how movement feels
 Adjust the speed.
 Modify the gravity and sensitivity of the Horizontal and Vertical axes in the
InputManager.

 Weapons: Differentiate weapons more

 Spread: The spread gun could shoot five projectiles instead of just three but have a
much longer delayBetweenShots.

 Blaster: The blaster could fire more rapidly (smaller delayBetweenShots) but
do less damage with each shot (reduced damageOnHit).

Add Additional Elements
Although this prototype has demonstrated five kinds of enemies and two kinds of weapons,
infinite possibilities for either are open to you:

 Weapons: Add additional weapons

 Phaser: Shoots two projectiles that move in a sine wave pattern (similar to the

680

movement of Enemy_1).

 Laser: Instead of doing all of its damage at once, the laser does continuous damage
over time.

 Missiles: Missiles could have a lock-on mechanic and have a very slow fire-rate but
would track enemies and always hit. Perhaps missiles could be a different kind of
weapon with limited ammunition that were fired using a different button (i.e., not the
space bar).

 Swivel Gun: Like the blaster but always shoots toward the nearest enemy. However,
the damage would be very low.

 Enemies: Add additional enemies. You could create countless kinds of enemies for this
game.
 Add additional enemy abilities

 Allow some enemies to shoot.
 Some enemies could track and follow the player, possibly acting like missiles
homing in on the player.

 Add level progression
 Make specific, timed waves instead of the randomized infinite attack in the existing
prototype. You could accomplish this using a [System.Serializable] Wave
class as defined here:

Click here to view code image

[System.Serializable]
public class Wave {
 float delayBeforeWave=1; // secs to delay after the prev wave
 GameObject[] ships; // array of ships in this wave
 // Delay the next wave until this wave is completely killed?
 bool delayNextWaveUntilThisWaveIsDead=false;
}

 Add a Level class to contain the Wave[] array:
Click here to view code image

[System.Serializable]
public class Level {
 Wave[] waves; // Holder for waves
 float timeLimit=-1; // If -1, there is no time limit
 string name = ""; // The name of the level
}

However, this will cause issues because even if Level is serializable, the Wave[] array
won't appear properly because the Unity Inspector won't allow nested serializable classes.
This means that you should probably try something like an XML document to define levels

681

and waves which can then be read into Level and Wave classes. XML is covered in the
XML section of Appendix B, "Useful Concepts," and is used in the next prototype, Chapter
32, "Prototype 4: Prospector Solitaire."

 Add more game structure and GUI (graphical user interface) elements:
 Give the player a score and a specific number of lives (both of these were covered in
the Mission Demolition prototype).
 Add difficulty settings.
 Track high scores (as covered in the Apple Picker and Mission Demolition prototypes).
 Create a title screen scene that welcomes players to the game and allows them to choose
the difficulty setting. This could also show high scores.

1. Appendix B, “Useful Concepts” covers the easing of Bézier curves in detail.
2. To be more exact, because WEAP_DICT is neither public nor private, it is

automatically protected. Protected elements of a class can be seen by the class itself
and any of its subclasses (subclasses are not able to see private elements of a class). As
a result, instances and static methods of Main or any subclasses you made of Main
could directly access WEAP_DICT.

3. If the keyboard command doesn't work, you can choose Edit > Duplicate from the menu
bar or rightclick the original Weapon in the Hierarchy and choose Duplicate.

4. Remember that Awake() is called the moment that a GameObject is instantiated,
while Start() is called immediately before the first Update() on that
GameObject. Two objects that are both part of a scene are both instantiated
immediately when the game begins, so Awake() will be called on both before
Start() is called on either; but there is no guarantee as to which GameObject will
have its Start() method called first. Setting the Script Execution Order (as you do in
step 4) fixes this uncertainty.

5. Remember that making a class serializable allows its fields to be seen and set in the
Unity Inspector. Simple classes are more likely to be able to be seen in the Inspector. If
a class is too complex, the Unity Inspector will not be able to show it.

682

CHAPTER 32

PROTOTYPE 4: PROSPECTOR SOLITAIRE

In this chapter, you make your first card game, a digital version of the popular
Tri-Peaks Solitaire game. By the end of the chapter, you'll have not only a
working card game but also a great framework for future card games you want to
create.

This chapter includes several new techniques, including using XML configuration
files and designing for mobile devices, and it offers your first look at Unity's 2D
sprite tools.

Getting Started: Prototype 4
As with Prototype 3, this one starts with your being asked to download and import a Unity
package of assets for this game. The art assets you'll be using are constructed from parts of
the publicly available Vectorized Playing Cards 1.3 by Chris Aguilar.1

SET UP THE PROJECT FOR THIS CHAPTER

Following the standard project setup procedure, create a new project in Unity.
If you need a refresher on the standard project setup procedure, see Appendix
A, "Standard Project Setup Procedure." When you create the project, you are
asked whether you want to set up defaults for 2D or 3D. Choose 2D for this
project.

 Project name: Prospector Solitaire.

 Download and import package: Go to Chapter 32 at
http://book.prototools.net. Downloading this package should set up the scene
and several folders.

 Scene name: (The scene __Prospector_Scene_0 will import with the
starter package, so you don't need to create it.)

683

http://book.prototools.net

 Project folders: None (__Scripts, _Prefabs, _Sprites, and Resources
should be part of the imported unitypackage.)

 C# script names: (none yet)

 Rename: Change Main Camera to _MainCamera.

Open __Prospector_Scene_0 and double-check the settings for _MainCamera.
Click here to view code image

_MainCamera (Camera)  P:[0, 0, -40]  R:[0, 0, 0]  S:[1, 1, 1]
 Projection: Orthographic
 Size: 10

Note that this unitypackage includes a version of the Utils script that has additional
functions beyond what you wrote in the previous chapter.

Build Settings
This is the first project designed to be able to be compiled on mobile devices. As an
example, I'll be using settings for the Apple iPad, but if you prefer using Android or even a
WebGL or Standalone build instead, that is perfectly fine. The Standalone build option is
automatically installed with Unity, and you can use the Unity installer to add the capability
to compile to iOS, Android, or WebGL. This project is designed for the 4:3 aspect ratio
screen of an iPad in portrait mode, which is the same ratio as the Standalone (1024x768)
aspect ratio that is part of the aspect ratio pop-up menu in the Game pane. For now, set the
Aspect Ratio menu of the Game pane to 4:3.

Though this project is designed to be able to be compiled for a mobile device, the actual
build process for mobile devices is beyond the scope of this book (and would differ greatly
based on which device you own), but you can find a lot of information about building for
various platforms on Unity's website. Starter information for various platforms include:2

 Android—https://docs.unity3d.com/Manual/android-GettingStarted.html

 iOS—https://docs.unity3d.com/Manual/iphone-GettingStarted.html

 WebGL—https://docs.unity3d.com/Manual/webgl-gettingstarted.html

Now, let's get started with development. If you're going to try a non-Standalone platform:
1. Double-click the __Prospector_Scene_0 scene in the Project pane to open it.
2. From the menu bar choose File > Build Settings, which opens the window shown in

684

Figure 32.1.

Figure 32.1 The Build Settings window

3. Click Add Open Scenes to add __Prospector_Scene_0 to the list of scenes for this
build.

4. Select iOS (or whatever alternative platform you've chosen) from the list of platforms
and click Switch Platform. Unity reimports all of your images to match the default iOS
settings, and the Switch Platform button turns gray when the switch is complete. Once
your Build Settings look like the image in Figure 32.1, you can close this window.
(Don't click Build yet; that will happen after you actually finish coding the game.)

Importing Images as Sprites
Next, you need to properly import the images to use for the sprites. A sprite is a 2D image
that can be moved around screen, scaled, and rotated. They are very common in 2D games:

1. Open the _Sprites folder in your Project pane and select all the images therein. (Click

685

the top image and then Shift-click the bottom image in the _Sprites folder.) Looking at
the Preview area at the bottom of the Inspector pane, you can see that all of them are
currently imported with strange aspect ratios and no transparency. Let's change that and
make them usable sprites.

2. In the 21 Texture 2Ds Import Settings section of the Inspector pane, set the Texture
Type to Sprite (2D and UI). Click Apply, and Unity reimports all the images at their
proper aspect ratio. Figure 32.2 shows the final import settings.

Figure 32.2 Import settings for the Texture 2Ds that will become sprites

686

Looking at the Project pane, you can see that each of the images now has a disclosure
triangle next to it. If you open the disclosure triangle, you'll find a sprite with the same
name under each image.

3. Select just the Letters image in the Project pane. For most of the images that were
imported, a Sprite Mode of Single is appropriate because each image becomes a single
sprite. However, the Letters image is actually a sprite atlas (a series of sprites saved as
a single image), so it requires different settings.

4. In Letters Import Settings in the Inspector pane, change the Sprite Mode to Multiple
and click Apply. This adds a new Sprite Editor button under the Extrude Edges field.

5. Click the Sprite Editor button to open the Sprite Editor. You'll see the Letters image
there with a single blue box around it defining the bounds of the Letters sprite.

6. Click the small icon with either a rainbow or a letter A on it in the Sprite Editor
(circled in Figure 32.3) to switch between viewing the actual image and the alpha
channel of the image. Because Letters is an image of white letters over a transparent
background, it may be easier to see what's happening if you look at the alpha channel.

Figure 32.3 The Sprite Editor showing the correct settings for the grid slicing of Letters.
The button circled in the top right switches between viewing the color channels and the
alpha channel of Letters.

7. Click the Slice pop-up menu in the top-left corner of the Sprite Editor and:
a. Change the Type from Automatic to Grid by Cell Size (see Figure 32.3).
b. Set the Pixel size to X:32 Y:32.
c. Click the Slice button. This chops Letters horizontally into 16 sprites that are each

32x32 pixels in size.
d. Click Apply (in the top-right corner of the Sprite Editor) to generate these sprites in

the Project pane. Now instead of one Letters sprite under the Letters texture in the
Project pane, there are 16 sprites named Letters_0 to Letters_15. This game uses

687

Letters_1 to Letters_13 for each of the 13 ranks of cards (Ace through King). Now all
the sprites are set up and ready to be used.

8. Save your scene. You haven't actually altered the scene yet, but saving your scene all
the time is good practice. You should be in the habit of saving your scene any time you
change anything.

Constructing Cards from Sprites
One of the most important aspects of this project is that you're going to procedurally
construct an entire deck of cards from the 21 images that were imported. This makes the
final build size smaller and gives you a chance to see how XML works.

The image in Figure 32.4 shows an example of how you will do this. The 10 of Spades in
the image is constructed from the following sprites: Card_Front, 12 copies of Spade, and 2
copies of Letters_10.

688

Figure 32.4 The 10 of Spades showing autogenerated borders around each of the sprites
from which it is made. The visible part of this card is composed of 15 different sprites (12
Spades, 2 Letter_10s, and 1 Card_Front).

This is defined through the use of an XML file. Read the XML section of Appendix B,
"Useful Concepts," now to learn more about XML and how it can be read using the
PT_XMLReader script that was part of the imported unitypackage. The structure of the
DeckXML.xml file used in this project is also covered in that section of Appendix B.

Making Use of XML Through Code
1. For the first part of this project, create three C# files named Card, Deck, and

Prospector. Make sure that each one is inside the __Scripts folder.

 Card: The class for each individual card in the deck. The Card script also contains
the CardDefinition class (which holds information about where sprites are to be
positioned on each rank of card) and the Decorator class (which holds information

689

about the decorators and pips described in the XML document—Figure 32.4 shows
the differences between decorators and pips).

 Deck: The Deck class interprets the information in DeckXML.xml and uses that
information to create an entire deck of cards.

 Prospector: The Prospector class manages the overall game. Whereas Deck handles
the creation of cards, Prospector turns those cards into a game. Prospector collects
the cards into various piles (like the draw pile and discard pile) and manages game
logic.

2. Start by opening the Card C# script and entering the following code. These small
classes in Card.cs store the information created when Deck reads the XML file.

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Card : MonoBehaviour {
 // This will be defined later
}

[System.Serializable] // A Serializable class is able to be edited in the
Inspector
public class Decorator {
 // This class stores information about each decorator or pip from DeckXML
 public string type; // For card pips, type = "pip"
 public Vector3 loc; // The location of the Sprite on the Card
 public bool flip = false; // Whether to flip the Sprite vertically
 public float scale = 1f; // The scale of the Sprite
}

[System.Serializable]
public class CardDefinition {
 // This class stores information for each rank of card
 public string face; // Sprite to use for each face card
 public int rank; // The rank (1-13) of this card
 public List<Decorator> pips = new List<Decorator>(); // Pips used // a
}

a. pips are the Decorators used on non-face cards to show, for instance, the ten large
spades on the 10 of spades in Figure 32.4. The Decorators in the corners of each card
(e.g., the spades next to the number 10 in the corner of the Figure 32.4 card) don't
need to be stored in a CardDefinition because they are in the same position on every
card in the deck.

3. Open the Deck C# script in MonoDevelop and enter the following code:
Click here to view code image

690

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Deck : MonoBehaviour {

 [Header("Set Dynamically")]
 public PT_XMLReader xmlr;

 // InitDeck is called by Prospector when it is ready
 public void InitDeck(string deckXMLText) {
 ReadDeck(deckXMLText);
 }

 // ReadDeck parses the XML file passed to it into CardDefinitions
 public void ReadDeck(string deckXMLText) {
 xmlr = new PT_XMLReader(); // Create a new PT_XMLReader
 xmlr.Parse(deckXMLText);        // Use that PT_XMLReader to parse DeckXML

 // This prints a test line to show you how xmlr can be used.
 // For more information read about XML in the Useful Concepts Appendix
 string s = "xml[0] decorator[0] ";
 s += "type="+xmlr.xml["xml"][0]["decorator"][0].att("type");
 s += " x="+xmlr.xml["xml"][0]["decorator"][0].att("x");
 s += " y="+xmlr.xml["xml"][0]["decorator"][0].att("y");
 s += " scale="+xmlr.xml["xml"][0]["decorator"][0].att("scale");
 print(s);

 }
}

4. Now open the Prospector class and enter this code:
Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.SceneManagement; // This will be used later in the project
using UnityEngine.UI; // This will be used later in the project

public class Prospector : MonoBehaviour {
 static public Prospector S;

 [Header("Set in Inspector")]
 public TextAsset deckXML;

 [Header("Set Dynamically")]
 public Deck deck;

 void Awake() {
 S = this; // Set up a Singleton for Prospector
 }

691

 void Start () {
 deck = GetComponent<Deck>(); // Get the Deck
 deck.InitDeck(deckXML.text); // Pass DeckXML to it
 }
}

5. Make sure that you have saved all of these script files before returning to Unity. Choose
File > Save All from the MonoDevelop menu bar. If Save All is grayed out, then you
have already saved them.

6. Now that the code is ready, go back to Unity and attach both the Prospector and Deck
scripts to _MainCamera. (Drag each script from the Project pane onto _MainCamera in
the Hierarchy pane.) Select _MainCamera in the Hierarchy. You should see both scripts
attached as Script components.

7. Drag DeckXML from the Resources folder in the Project pane into the deckXML
TextAsset variable in the Inspector for the Prospector (Script) component.

8. Save your scene and click Play. You should see the following output in the console:
xml[0] decorator[0] type=letter x=-1.05 y=1.42 scale=1.25

This line comes from the test code in Deck:ReadDeck() and shows that ReadDeck()
is properly reading the type, x, y, and scale attributes from the 0th decorator of the
0th xml in the XML file, as shown in the following lines from DeckXML.xml. (You can see
the entire text of DeckXML.xml in the XML section of Appendix B or by opening the
DeckXML.xml file in MonoDevelop.)
Click here to view code image

<xml> <!-- decorators are on every card as the suit and rank in the corners.
--> <decorator type="letter" x="-1.05" y="1.42" z="0" flip="0"
scale="1.25"/> … </xml>

Parsing Information from Deck XML
Now, let's actually do something with this information.

1. Make the following changes to the Deck class:
Click here to view code image

public class Deck : MonoBehaviour {

 [Header("Set Dynamically")]
 public PT_XMLReader xmlr;
 public List<string> cardNames;
 public List<Card> cards;
 public List<Decorator> decorators;
 public List<CardDefinition> cardDefs;

692

 public Transform deckAnchor;
 public Dictionary<string,Sprite> dictSuits;

 // InitDeck is called by Prospector when it is ready
 public void InitDeck(string deckXMLText) {
 ReadDeck(deckXMLText);
 }

 // ReadDeck parses the XML file passed to it into CardDefinitions
 public void ReadDeck(string deckXMLText) {
 xmlr = new PT_XMLReader(); // Create a new PT_XMLReader
 xmlr.Parse(deckXMLText); // Use that PT_XMLReader to parse DeckXML

 // The following prints a test line to show you how xmlr can be used.
 // For more information read about XML in the Useful Concepts Appendix
 string s = "xml[0] decorator[0] ";
 s += "type="+xmlr.xml["xml"][0]["decorator"][0].att("type");
 s += " x="+xmlr.xml["xml"][0]["decorator"][0].att("x");
 s += " y="+xmlr.xml["xml"][0]["decorator"][0].att("y");
 s += " scale="+xmlr.xml["xml"][0]["decorator"][0].att("scale");
 //print(s); // Comment out this line, since we're done with the test

 // Read decorators for all Cards
 decorators = new List<Decorator>(); // Init the List of Decorators
 // Grab an PT_XMLHashList of all <decorator>s in the XML file
 PT_XMLHashList xDecos = xmlr.xml["xml"][0]["decorator"];
 Decorator deco;
 for (int i=0; i<xDecos.Count; i++) {
 // For each <decorator> in the XML
 deco = new Decorator(); // Make a new Decorator
 // Copy the attributes of the <decorator> to the Decorator
 deco.type = xDecos[i].att("type");
 // bool deco.flip is true if the text of the flip attribute is "1"
 deco.flip = (xDecos[i].att ("flip") == "1");             // a
 // floats need to be parsed from the attribute strings
 deco.scale = float.Parse(xDecos[i].att ("scale"));
 // Vector3 loc initializes to [0,0,0], so we just need to modify it
 deco.loc.x = float.Parse(xDecos[i].att ("x"));
 deco.loc.y = float.Parse(xDecos[i].att ("y"));
 deco.loc.z = float.Parse(xDecos[i].att ("z"));
 // Add the temporary deco to the List decorators
 decorators.Add (deco);
 }

 // Read pip locations for each card number
 cardDefs = new List<CardDefinition>(); // Init the List of Cards
 // Grab an PT_XMLHashList of all the <card>s in the XML file
 PT_XMLHashList xCardDefs = xmlr.xml["xml"][0]["card"];
 for (int i=0; i<xCardDefs.Count; i++) {
 // For each of the <card>s
 // Create a new CardDefinition
 CardDefinition cDef = new CardDefinition();
 // Parse the attribute values and add them to cDef
 cDef.rank = int.Parse(xCardDefs[i].att ("rank"));

693

 // Grab an PT_XMLHashList of all the <pip>s on this <card>
 PT_XMLHashList xPips = xCardDefs[i]["pip"];
 if (xPips != null) {
 for (int j=0; j<xPips.Count; j++) {
 // Iterate through all the <pip>s
 deco = new Decorator();
 // <pip>s on the <card> are handled via the Decorator Class
 deco.type = "pip";
 deco.flip = (xPips[j].att ("flip") == "1");
 deco.loc.x = float.Parse(xPips[j].att ("x"));
 deco.loc.y = float.Parse(xPips[j].att ("y"));
 deco.loc.z = float.Parse(xPips[j].att ("z"));
 if (xPips[j].HasAtt("scale")) {
 deco.scale = float.Parse(xPips[j].att ("scale"));
 }
 cDef.pips.Add(deco);
 }
 }
 // Face cards (Jack, Queen, & King) have a face attribute
 if (xCardDefs[i].HasAtt("face")) {
 cDef.face = xCardDefs[i].att ("face"); // b
 }
 cardDefs.Add(cDef);
 }
 }
}

a. This is an atypical but perfectly fine use of the == comparison operator. It will return
a true or false, which will be assigned to the bool deco.flip.

b. cDef.face is the base name of the face card Sprite. For example, FaceCard_11 is
the base name for the Jack face Sprites, the Jack of Clubs is FaceCard_11C, the Jack
of Hearts is FaceCard_11H, and so on.

Now, the ReadDeck() method will parse the XML and turn it into a list of Decorators
(the suit and rank in the corners of the card) and CardDefinitions (a class containing
information about each of the ranks of card (Ace through King).

2. Switch back to Unity and click Play. Select the _MainCamera and look at the Inspector
for the Deck (Script) component. Because both Decorator and CardDefinition were set
to [System.Serializable], the decorators and cardDefs Lists appear properly in
the Inspector for the Deck (Script) component of _MainCamera, as shown in Figure
32.5.

694

Figure 32.5 The Inspector for the Deck (Script) component of _MainCamera showing
Decorators and CardDefs that have been read from the DeckXML.xml file

3. Stop playback and save your scene.

Assigning the Sprites That Become Cards
Now that the XML has been properly read and parsed into usable Lists, it's time to make
some cards. The first step in doing so is to get references to all of those sprites that you
made earlier in the chapter:

1. Add the following fields to the top of the Deck class to hold these sprites:
Click here to view code image

public class Deck : MonoBehaviour {
 [Header("Set in Inspector")]
 // Suits
 public Sprite suitClub;
 public Sprite suitDiamond;
 public Sprite suitHeart;
 public Sprite suitSpade;

 public Sprite[] faceSprites;
 public Sprite[] rankSprites;

 public Sprite cardBack;

695

 public Sprite cardBackGold;
 public Sprite cardFront;
 public Sprite cardFrontGold;

 // Prefabs
 public GameObject prefabCard;
 public GameObject prefabSprite;

 [Header("Set Dynamically")]
 …
}

When you save and switch back to Unity, you can now see many new public variables that
you need to define in the Deck (Sprite) Inspector on _MainCamera.

2. Drag the Club, Diamond, Heart, and Spade textures from the _Sprites folder in the
Project pane into their respective variables under Deck (suitClub, suitDiamond,
suitHeart, and suitSpade). Unity automatically assigns the sprite to the variable
(as opposed to attempting to assign the Texture2D to a sprite variable).

3. The next bit is a touch trickier. Lock the Inspector on _MainCamera by selecting
_MainCamera in the Hierarchy pane and then clicking the tiny lock icon at the top of the
Inspector pane (surrounded by a red rectangle in Figure 32.6). Locking the Inspector
pane ensures that it won't change which object is displayed when you select something
new.

696

Figure 32.6 The Inspector for the Deck (Script) Component of _MainCamera showing the
correct sprites assigned to each public sprite variable

4. Assign each of the sprites starting with FaceCard_ to an element of the array
faceSprites in the Inspector for Deck (Script):
a. Select FaceCard_11C in the _Sprites folder of the Project pane and then Shift-click

FaceCard_13S. This should select all 12 FaceCard_ sprites.
b. Drag this group from the Project pane over the name of the array faceSprites

under Deck (Script) in the Inspector. You should see a plus icon and the word
<multiple> appear next to your mouse cursor when hovering over the variable name
faceSprites (on PC, you might only see the + icon).

c. Release the mouse button, and if you did the steps correctly, this should expand the
size of the faceSprites array to 12 and fill it with one copy of each of the
FaceCard_ sprites. If this doesn't work, you can also add them individually. The
order doesn't matter as long as there is exactly one of each when you're done (see
Figure 32.6).

5. Open the disclosure triangle next to the Letters Texture2D in the _Sprites folder of in
the Project pane. Use the same process as in the previous step to select Letters_0
through Letters_15. You should now have all 16 sprites under Letters selected. Drag
this group of sprites onto the rankSprites variable in Deck (Script). If you did the
steps correctly, the rankSprites list should now be full of 16 Letters_ sprites
named Letters_0 through Letters_15. Double-check to make sure that they're in the
correct order with Letters_0 in Element 0 and Letters_15 in Element 15; if not, you

697

might have to add them one at a time.
6. Drag the sprites Card_Back, Card_Back_Gold, Card_Front, and Card_Front_Gold

from the Project pane to their respective variable slots in the Deck (Script) Inspector.

Your Inspector for Deck (Script) should now look like what is shown in Figure 32.6.
7. Unlock the Inspector pane by clicking the tiny lock icon again (highlighted in red in

Figure 32.6). Save your scene! You don't want to have to do all that work again.

Creating Prefab GameObjects for Sprites and Cards
Just like anything else on screen, sprites need to be enclosed in GameObjects. For this
project, you need two prefabs: a generic PrefabSprite that you will use for all decorators
and pips (which you imported as part of the starter asset package), and a PrefabCard that
will form the basis of all the cards in the deck.

To create the PrefabCard GameObject, do the following:

1. From the menu bar, choose GameObject > 2D Object > Sprite. Name this GameObject
PrefabCard.

2. Drag Card_Front from the Project pane into the Sprite variable of the Sprite Renderer
in the PrefabCard Inspector. Now you should see the Card_Front sprite in the Scene
pane.

3. Drag the Card script from the Project pane onto PrefabCard in the Hierarchy. This
assigns the Card script to PrefabCard (and the Card (Script) component will now
appear in the Inspector for PrefabCard).

4. In the Inspector for PrefabCard, click the Add Component button. Choose Physics >
Box Collider from the menu that appears. (This is the same as choosing Component >
Physics > Box Collider from the menu bar.) The Size of the Box Collider should
automatically set itself to [2.56, 3.56, 0.2], but if not, set the Size to those values.

5. Drag PrefabCard from the Hierarchy into the _Prefabs folder to make a prefab from it.
6. Delete the remaining instance of PrefabCard from the Hierarchy, and save your scene.

Now, you need to assign the PrefabCard and PrefabSprite prefabs to their respective public
variables in the Inspector for the Deck (Script) component on _MainCamera.

7. Select _MainCamera in the hierarchy, and drag PrefabCard and PrefabSprite from the
Project pane into their respective variables in the Deck (Script) Inspector.

8. Save your scene.

Building the Cards in Code

698

Before actually adding the method to the Deck class to make the cards, you need to add
variables to the Card class, as follows (this is a lot of code, but it's going to be awesome!):

1. Replace the comment // This will be defined later in the Card class
with the following code.

Click here to view code image

public class Card : MonoBehaviour {
 [Header("Set Dynamically")]
 public string suit; // Suit of the Card (C,D,H, or S)
 public int rank; // Rank of the Card (1-14)
 public Color color = Color.black; // Color to tint pips
 public string colS = "Black"; // or "Red". Name of the Color

 // This List holds all of the Decorator GameObjects
 public List<GameObject> decoGOs = new List<GameObject>();
 // This List holds all of the Pip GameObjects
 public List<GameObject> pipGOs = new List<GameObject>();

 public GameObject back; // The GameObject of the back of the card

 public CardDefinition def; // Parsed from DeckXML.xml
}

2. Now, add this code to Deck:
Click here to view code image

public class Deck : MonoBehaviour {
 …
 // InitDeck is called by Prospector when it is ready
 public void InitDeck(string deckXMLText) {
 // This creates an anchor for all the Card GameObjects in the Hierarchy
 if (GameObject.Find("_Deck") == null) {
 GameObject anchorGO = new GameObject("_Deck");
 deckAnchor = anchorGO.transform;
 }

 // Initialize the Dictionary of SuitSprites with necessary Sprites
 dictSuits = new Dictionary<string, Sprite>() {
 { "C", suitClub },
 { "D", suitDiamond },
 { "H", suitHeart },
 { "S", suitSpade }
 };

 ReadDeck(deckXMLText); // This is the preexisting line from earlier

 MakeCards();
 }

699

 // ReadDeck parses the XML file passed to it into CardDefinitions
 public void ReadDeck(string deckXMLText) { … }

 // Get the proper CardDefinition based on Rank (1 to 14 is Ace to King)
 public CardDefinition GetCardDefinitionByRank(int rnk) {
 // Search through all of the CardDefinitions
 foreach (CardDefinition cd in cardDefs) {
 // If the rank is correct, return this definition
 if (cd.rank == rnk) {
 return(cd);
 }
 }
 return(null);
 }

 // Make the Card GameObjects
 public void MakeCards() {
 // cardNames will be the names of cards to build
 // Each suit goes from 1 to 14 (e.g., C1 to C14 for Clubs)
 cardNames = new List<string>();
 string[] letters = new string[] {"C","D","H","S"};
 foreach (string s in letters) {
 for (int i=0; i<13; i++) {
 cardNames.Add(s+(i+1));
 }
 }

 // Make a List to hold all the cards
 cards = new List<Card>();

 // Iterate through all of the card names that were just made
 for (int i=0; i<cardNames.Count; i++) {
 // Make the card and add it to the cards Deck
 cards.Add (MakeCard(i));
 }
 }

 private Card MakeCard(int cNum) { // a
 // Create a new Card GameObject
 GameObject cgo = Instantiate(prefabCard) as GameObject;
 // Set the transform.parent of the new card to the anchor.
 cgo.transform.parent = deckAnchor;
 Card card = cgo.GetComponent<Card>(); // Get the Card Component

 // This line stacks the cards so that they're all in nice rows
 cgo.transform.localPosition = new Vector3((cNum%13)*3, cNum/13*4, 0);

 // Assign basic values to the Card
 card.name = cardNames[cNum];
 card.suit = card.name[0].ToString();
 card.rank = int.Parse(card.name.Substring(1));
 if (card.suit == "D" || card.suit == "H") {
 card.colS = "Red";
 card.color = Color.red;

700

 }
 // Pull the CardDefinition for this card
 card.def = GetCardDefinitionByRank(card.rank);

 AddDecorators(card);

 return card;
 }

 // These private variables will be reused several times in helper methods
 private Sprite _tSp = null;
 private GameObject _tGO = null;
 private SpriteRenderer _tSR = null;

 private void AddDecorators(Card card) { // a
 // Add Decorators
 foreach(Decorator deco in decorators) {
 if (deco.type == "suit") {
    // Instantiate a Sprite GameObject
      _tGO = Instantiate(prefabSprite) as GameObject;
     // Get the SpriteRenderer Component
      _tSR = _tGO.GetComponent<SpriteRenderer>();
     // Set the Sprite to the proper suit
      _tSR.sprite = dictSuits[card.suit];
 } else {
      _tGO = Instantiate(prefabSprite) as GameObject;
      _tSR = _tGO.GetComponent<SpriteRenderer>();
     // Get the proper Sprite to show this rank
      _tSp = rankSprites[card.rank];
     // Assign this rank Sprite to the SpriteRenderer
      _tSR.sprite = _tSp;
     // Set the color of the rank to match the suit
      _tSR.color = card.color;
 }
  // Make the deco Sprites render above the Card
   _tSR.sortingOrder = 1;
  // Make the decorator Sprite a child of the Card
    _tGO.transform.SetParent(card.transform);
  // Set the localPosition based on the location from DeckXML
   _tGO.transform.localPosition = deco.loc;
  // Flip the decorator if needed
 if (deco.flip) {
     // An Euler rotation of 180° around the Z-axis will flip it
      _tGO.transform.rotation = Quaternion.Euler(0,0,180);
 }
  // Set the scale to keep decos from being too big
 if (deco.scale != 1) {
      _tGO.transform.localScale = Vector3.one * deco.scale;
 }
  // Name this GameObject so it's easy to see
   _tGO.name = deco.type;
  // Add this deco GameObject to the List card.decoGOs
  card.decoGOs.Add(_tGO);

701

 }
 }
}

a. MakeCard() and AddDecorator() are private helper methods for
MakeCards(). This allows you to write a shorter MakeCards() method and, if
you're working with multiple programmers, a different person could have written each
of these three methods, as long as each does what is required of it. I've personally
been moving toward shorter functions like these, as you'll see in Chapter 35,
"Dungeon Delver."

3. Save all scripts, return to Unity, and click Play. You should see 52 cards lined up. They
don't yet have pips, but they do appear, and the correct decorators and coloring are on
them.

4. Now add the code for pips and faces via three more helper methods in the Deck class:
Click here to view code image

public class Deck : MonoBehaviour {
 …
 private Card MakeCard(int cNum) {
 …
 card.def = GetCardDefinitionByRank(card.rank);

 AddDecorators(card);
 AddPips(card);
 AddFace(card);

 return card;
 }

 private void AddDecorators(Card card) { … }

 private void AddPips(Card card) {
 // For each of the pips in the definition...
 foreach(Decorator pip in card.def.pips) {
 // ...Instantiate a Sprite GameObject
 _tGO = Instantiate(prefabSprite) as GameObject;
 // Set the parent to be the card GameObject
 _tGO.transform.SetParent(card.transform);
 // Set the position to that specified in the XML
 _tGO.transform.localPosition = pip.loc;
 // Flip it if necessary
 if (pip.flip) {
 _tGO.transform.rotation = Quaternion.Euler(0,0,180);
 }
 // Scale it if necessary (only for the Ace)
 if (pip.scale != 1) {
 _tGO.transform.localScale = Vector3.one * pip.scale;
 }
 // Give this GameObject a name

702

 _tGO.name = "pip";
 // Get the SpriteRenderer Component
 _tSR = _tGO.GetComponent<SpriteRenderer>();
 // Set the Sprite to the proper suit
 _tSR.sprite = dictSuits[card.suit];
 // Set sortingOrder so the pip is rendered above the Card_Front
 _tSR.sortingOrder = 1;
 // Add this to the Card's list of pips
 card.pipGOs.Add(_tGO);
 }
 }

 private void AddFace(Card card) {
 if (card.def.face == "") {
 return; // No need to run if this isn't a face card
 }

 _tGO = Instantiate(prefabSprite) as GameObject;
 _tSR = _tGO.GetComponent<SpriteRenderer>();
 // Generate the right name and pass it to GetFace()
 _tSp = GetFace(card.def.face+card.suit);
 _tSR.sprite = _tSp; // Assign this Sprite to _tSR
 _tSR.sortingOrder = 1; // Set the sortingOrder
 _tGO.transform.SetParent(card.transform);
 _tGO.transform.localPosition = Vector3.zero;
 _tGO.name = "face";
 }

 // Find the proper face card Sprite
 private Sprite GetFace(string faceS) {
 foreach (Sprite _tSP in faceSprites) {
 // If this Sprite has the right name...
 if (_tSP.name == faceS) {
 // ...then return the Sprite
 return(_tSP);
 }
 }
 // If nothing can be found, return null
 return(null);
 }

}

5. Click Play, you should see all 52 cards laid out properly with pips and faces for face
cards.

The next thing to do is add a back to the cards. The card won't actually flip over; instead the
back will be a Sprite with a higher sortingOrder than anything else on the card, and it will
be visible when the card is face down and invisible when the card is face up.

6. To accomplish this visibility toggle, add the following faceUp property to the end of

703

the Card class. As a property, faceUp is actually two functions (a get and a set)
masquerading as a single field:

Click here to view code image

public class Card : MonoBehaviour {
 …
 public GameObject back; // The GameObject of the back of the card

 public CardDefinition def; // Parsed from DeckXML.xml

 public bool faceUp {
 get {
 return(!back.activeSelf);
 }
 set {
 back.SetActive(!value);
 }
 }
}

7. Now you can add a back to the cards in the Deck class. Add the following field and
helper method to the Deck class:

Click here to view code image

public class Deck : MonoBehaviour {
 [Header("Set in Inspector")]
 public bool startFaceUp = false;
 // Suits
 public Sprite suitClub;
 …

 private Card MakeCard(int cNum) {
 …
 AddPips(card);
 AddFace(card);
 AddBack(card);

 return card;
 }
 …

 // Find the proper face card Sprite
 private Sprite GetFace(string faceS) { … }

 private void AddBack(Card card) {
 // Add Card Back
 // The Card_Back will be able to cover everything else on the Card
 _tGO = Instantiate(prefabSprite) as GameObject;
 _tSR = _tGO.GetComponent<SpriteRenderer>();
 _tSR.sprite = cardBack;
 _tGO.transform.SetParent(card.transform);

704

 _tGO.transform.localPosition = Vector3.zero;
 // This is a higher sortingOrder than anything else
 _tSR.sortingOrder = 2;
 _tGO.name = "back";
 card.back = _tGO;

 // Default to face-up
 card.faceUp = startFaceUp; // Use the property faceUp of Card
 }

}

8. Save all of your scripts in MonoDevelop, return to Unity, and click Play. All the cards
now initially appear to be flipped face down.

9. Stop playback, change the startFaceUp field of the Deck (Script) Inspector on
_MainCamera to true, and play again. Now all the cards will start face up.

10. Save your scene. Always save your scene.

Shuffling the Cards
Now that cards can be built and displayed on screen, the last thing that you need from the
Deck class is the capability to shuffle cards.

1. Add the following public static Shuffle() method to the end of the Deck class:
Click here to view code image

public class Deck : MonoBehaviour {
 …
 private void AddBack(Card card) { … }

 // Shuffle the Cards in Deck.cards
 static public void Shuffle(ref List<Card> oCards) { // a
 // Create a temporary List to hold the new shuffle order
 List<Card> tCards = new List<Card>();

 int ndx; // This will hold the index of the card to be moved
 tCards = new List<Card>(); // Initialize the temporary List
 // Repeat as long as there are cards in the original List
 while (oCards.Count > 0) {
 // Pick the index of a random card
 ndx = Random.Range(0,oCards.Count);
 // Add that card to the temporary List
 tCards.Add (oCards[ndx]);
 // And remove that card from the original List
 oCards.RemoveAt(ndx);
 }
 // Replace the original List with the temporary List
 oCards = tCards;

705

 // Because oCards is a reference (ref) parameter, the original argument
 // that was passed in is changed as well.
 }

 }

a. The ref keyword is used to make sure that the List<Card> that is passed to
List<Card> oCards is passed as a reference rather than copied into oCards.
This means that anything that happens to oCards is actually happening to the
variable that is passed in. In other words, if the cards of a Deck are passed in via
reference, those cards will be shuffled without requiring a return variable.

2. Add the following lines to the Prospector.Start() method to see this work:
Click here to view code image

public class Prospector : MonoBehaviour {
 …

 void Start () {
 deck = GetComponent<Deck>(); // Get the Deck
 deck.InitDeck(deckXML.text); // Pass DeckXML to it
  Deck.Shuffle(ref deck.cards); // This shuffles the deck by reference // a

 Card c;
 for (int cNum=0; cNum<deck.cards.Count; cNum++) { // b
 c = deck.cards[cNum];
 c.transform.localPosition = new Vector3((cNum%13)*3, cNum/13*4, 0);
 }
 }
}

a. You must also use the ref keyword when calling the function.
b. This for loop repositions the cards on screen in their new shuffled order.

3. If you save these scripts and play the scene now, you can select _MainCamera in the
scene hierarchy and look at the Deck.cards variable to see a shuffled array of cards.

Now that the Deck class can shuffle any list of cards, you have the basic tools to create any
card game. The game you will make in this prototype is called Prospector.

The Prospector Game
The code up till now has given you the basic tools to make any card game. Now let's talk
about the specific game you're going to make.3

Prospector is based on the classic solitaire card game Tri-Peaks. The rules of both are the
same, except for two things:

706

 The premise of Prospector is that the player is digging down for gold, whereas the
premise of Tri-Peaks is that the player is trying to climb three mountains.
 The objective of Tri-Peaks is just to clear all the cards. The objective of Prospector is
to earn points by having long chains of cards, and each gold card in the chain doubles the
value of the whole chain.

Prospector Rules
To try this out, grab a normal deck of playing cards (like a physical, real deck, not the
virtual one you just made). Remove the Jokers and shuffle the remaining 52 cards:

1. Lay out 28 of the cards as shown in Figure 32.7. Make the bottom three rows of cards
face-down, and the top row face-up. The card edges don't need to be touching, but the
lower cards do need to be covered by the upper cards. This sets up the initial tableau of
cards for the "mine" that your prospector will be excavating.

Figure 32.7 The initial tableau layout for the mine in Prospector

2. The rest of the deck forms a draw pile. Place it above the top row of cards face-down.
3. Draw the top card from the draw deck and place it face-up centered above the top row

of cards. This is the target card. See Figure 32.8 for the full layout.

707

Figure 32.8 An example initial layout for Prospector

4. You may move any card that is either exactly one rank above or one rank below the
target card from the tableau onto the target card, making it the new target card. Aces and
Kings wrap around, so an Ace can be played on a King and vice versa.

5. If a face-down card is no longer covered by a card from a higher row, you can turn it
face-up.

6. If none of the face-up cards can be played on the target card, draw a new target card
from the draw pile.

7. If the tableau is emptied before the draw pile, you win! (I will save the discussion of
scoring and gold cards for the digital version of the game.)

Example of Play
The image in Figure 32.8 shows an example starting layout for Prospector. In the situation
shown, the player can initially play either the 9C (9 of Clubs) or the 7S (7 of Spades) onto
the 8H.

The amber and green numbers show two possible sequences of play. In the amber sequence,
the 9C is played, becoming the new target card. This allows the play of 8S, 8D, or 8C. The
player chooses 8S because it will then reveal the card that was hidden by 9C and 8S. Then
the amber sequence continues with 7S and finally 8C. This results in the layout shown in
Figure 32.9.

708

Figure 32.9 The Prospector example game after the first run

Now, because there are no more valid face-up cards to play from the tableau, the player
must draw a card from the draw pile to become the next target card.

Again, I recommend that you try grabbing a real deck of cards and playing the game a few
times to get a feel for it. Alternatively, you can play it on this book's website:

http://book.prototools.net — Look under Chapter 32

Implementing Prospector in Code
As you have seen from playing, Prospector is a pretty simple game, but it's also pretty fun.
You can add to that fun later with some nice visuals and scoring tweaks, but for now, let's
just get the basic game working.

Laying Out the Mine Tableau
You need to implement the same tableau layout for the mine cards in the digital version of
Prospector as you did with the paper prototype you just played. To do this, you'll generate
some XML code from the layout diagram in Figure 32.7.

1. In Unity, open the LayoutXML.xml file in the Resources folder to see this layout
information. Note that comments in XML are bounded by <!-- and --> (just like code
bounded by /* and */ or following // in C#).

Click here to view code image

<xml>
 <!-- This file holds info for laying out the Prospector card game. -->

709

 <!-- The multiplier is multiplied by the x and y attributes below. -->
 <!-- This determines how loose or tight the layout is. -->
 <multiplier x="1.25" y="1.5" />

 <!-- In the XML below, id is the number of the card -->
 <!-- x and y set position -->
 <!-- faceup is 1 if the card is face-up -->
 <!-- layer sets the depth layer so cards overlap properly -->
 <!-- hiddenby is the ids of cards that keep a card face-down -->

 <!-- Layer0, the deepest cards. -->
 <slot id="0" x="-6" y="-5" faceup="0" layer="0" hiddenby="3,4" />
 <slot id="1" x="0" y="-5" faceup="0" layer="0" hiddenby="5,6" />
 <slot id="2" x="6" y="-5" faceup="0" layer="0" hiddenby="7,8" />

 <!-- Layer1, the next level. -->
 <slot id="3" x="-7" y="-4" faceup="0" layer="1" hiddenby="9,10" />
 <slot id="4" x="-5" y="-4" faceup="0" layer="1" hiddenby="10,11" />
 <slot id="5" x="-1" y="-4" faceup="0" layer="1" hiddenby="12,13" />
 <slot id="6" x="1" y="-4" faceup="0" layer="1" hiddenby="13,14" />
 <slot id="7" x="5" y="-4" faceup="0" layer="1" hiddenby="15,16" />
 <slot id="8" x="7" y="-4" faceup="0" layer="1" hiddenby="16,17" />

 <!-- Layer2, the next level. -->
 <slot id="9" x="-8" y="-3" faceup="0" layer="2" hiddenby="18,19" />
 <slot id="10" x="-6" y="-3" faceup="0" layer="2" hiddenby="19,20" />
 <slot id="11" x="-4" y="-3" faceup="0" layer="2" hiddenby="20,21" />
 <slot id="12" x="-2" y="-3" faceup="0" layer="2" hiddenby="21,22" />
 <slot id="13" x="0" y="-3" faceup="0" layer="2" hiddenby="22,23" />
 <slot id="14" x="2" y="-3" faceup="0" layer="2" hiddenby="23,24" />
 <slot id="15" x="4" y="-3" faceup="0" layer="2" hiddenby="24,25" />
 <slot id="16" x="6" y="-3" faceup="0" layer="2" hiddenby="25,26" />
 <slot id="17" x="8" y="-3" faceup="0" layer="2" hiddenby="26,27" />

 <!-- Layer3, the top level. -->
 <slot id="18" x="-9" y="-2" faceup="1" layer="3" />
 <slot id="19" x="-7" y="-2" faceup="1" layer="3" />
 <slot id="20" x="-5" y="-2" faceup="1" layer="3" />
 <slot id="21" x="-3" y="-2" faceup="1" layer="3" />
 <slot id="22" x="-1" y="-2" faceup="1" layer="3" />
 <slot id="23" x="1" y="-2" faceup="1" layer="3" />
 <slot id="24" x="3" y="-2" faceup="1" layer="3" />
 <slot id="25" x="5" y="-2" faceup="1" layer="3" />
 <slot id="26" x="7" y="-2" faceup="1" layer="3" />
 <slot id="27" x="9" y="-2" faceup="1" layer="3" />

 <!-- This positions the draw pile and staggers it -->
 <slot type="drawpile" x="6" y="4" xstagger="0.15" layer="4"/>

 <!-- This positions the discard pile and target card -->
 <slot type="discardpile" x="0" y="1" layer="5"/>

710

</xml>

As you can see, this has layout information for each of the cards in the tableau (which is
formed of <slot>s without a type attribute) as well as two special slots (that do have
type attributes), the drawpile and discardpile types.

2. Let's write some code to parse this LayoutXML into useful information. Create a new
script named Layout in the __Scripts folder and enter the following code:

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

// The SlotDef class is not a subclass of MonoBehaviour, so it doesn't need
// a separate C# file.
[System.Serializable] // This makes SlotDefs visible in the Unity Inspector pane
public class SlotDef {
 public float x;
 public float y;
 public bool faceUp = false;
 public string layerName = "Default";
 public int layerID = 0;
 public int id;
 public List<int> hiddenBy = new List<int>();
 public string type = "slot";
 public Vector2 stagger;
}

public class Layout : MonoBehaviour {
 public PT_XMLReader xmlr; // Just like Deck, this has a PT_XMLReader
 public PT_XMLHashtable xml; // This variable is for faster xml access
 public Vector2 multiplier; // The offset of the tableau's center
 // SlotDef references
 public List<SlotDef> slotDefs; // All the SlotDefs for Row0-Row3
 public SlotDef drawPile;
 public SlotDef discardPile;
 // This holds all of the possible names for the layers set by layerID
 public string[] sortingLayerNames = new string[] { "Row0", "Row1",
 "Row2", "Row3", "Discard", "Draw" };

 // This function is called to read in the LayoutXML.xml file
 public void ReadLayout(string xmlText) {
 xmlr = new PT_XMLReader();
 xmlr.Parse(xmlText); // The XML is parsed
 xml = xmlr.xml["xml"][0]; // And xml is set as a shortcut to the XML

 // Read in the multiplier, which sets card spacing
 multiplier.x = float.Parse(xml["multiplier"][0].att("x"));
 multiplier.y = float.Parse(xml["multiplier"][0].att("y"));

711

 // Read in the slots
 SlotDef tSD;
 // slotsX is used as a shortcut to all the <slot>s
 PT_XMLHashList slotsX = xml["slot"];

 for (int i=0; i<slotsX.Count; i++) {
 tSD = new SlotDef(); // Create a new SlotDef instance
 if (slotsX[i].HasAtt("type")) {
     // If this <slot> has a type attribute parse it
     tSD.type = slotsX[i].att("type");
 } else {
   // If not, set its type to "slot"; it's a card in the rows
 tSD.type = "slot";
 }
  // Various attributes are parsed into numerical values
 tSD.x = float.Parse(slotsX[i].att("x"));
 tSD.y = float.Parse(slotsX[i].att("y"));
 tSD.layerID = int.Parse(slotsX[i].att("layer"));
   // This converts the number of the layerID into a text layerName
 tSD.layerName = sortingLayerNames[tSD.layerID]; // a

 switch (tSD.type) {
 // pull additional attributes based on the type of this <slot>
 case "slot":
 tSD.faceUp = (slotsX[i].att("faceup") == "1");
 tSD.id = int.Parse(slotsX[i].att("id"));
 if (slotsX[i].HasAtt("hiddenby")) {
 string[] hiding = slotsX[i].att("hiddenby").Split(',');
 foreach(string s in hiding) {
 tSD.hiddenBy.Add (int.Parse(s));
 }
 }
 slotDefs.Add(tSD);
 break;

 case "drawpile":
 tSD.stagger.x = float.Parse(slotsX[i].att("xstagger"));
 drawPile = tSD;
 break;
 case "discardpile":
 discardPile = tSD;
 break;
 }
 }
 }
}

a. The layerName field of SlotDef is used to make sure that the correct cards are on
top of the others. In Unity 2D, all of your assets are effectively at the same Z depth, so
the layer is used to differentiate between them and determine which appears on top.

712

At this point, most of the preceding syntax should look familiar to you. The SlotDef class is
created to store information read in from the XML <slot>s in a more accessible way.
Then, the Layout class is defined, and the ReadLayout() method is created, which will
take an XML-formatted string as input and turn it into a series of SlotDefs.

3. Open the Prospector class and add the following bolded lines:
Click here to view code image

public class Prospector : MonoBehaviour {
 static public Prospector S;

 [Header("Set in Inspector")]
 public TextAsset deckXML;
 public TextAsset layoutXML;

 [Header("Set Dynamically")]
 public Deck deck;
 public Layout layout;

 void Awake() {
 S = this; // Set up a Singleton for Prospector
 }

 void Start () {
 deck = GetComponent<Deck>(); // Get the Deck
 deck.InitDeck(deckXML.text); // Pass DeckXML to it
 Deck.Shuffle(ref deck.cards); // This shuffles the deck

// This section can be commented out; we're working on real layout now
// Card c;
// for (int cNum=0; cNum<deck.cards.Count; cNum++) {
// c = deck.cards[cNum];
// c.transform.localPosition = new Vector3((cNum%13)*3,cNum/13*4,0);
// }

 layout = GetComponent<Layout>(); // Get the Layout component
 layout.ReadLayout(layoutXML.text); // Pass LayoutXML to it
 }
}

4. Save all of your scripts in MonoDevelop and return to Unity.
5. In Unity, select _MainCamera in the Hierarchy. From the menu bar, choose Component

> Scripts > Layout to attach a Layout script to _MainCamera (this is just another
different way to attach a script to a GameObject). You should now be able to scroll
down in the Inspector pane and see the Layout (Script) component at the bottom.

6. Find the Prospector (Script) component of _MainCamera. You'll see that the public
fields layout and layoutXML have appeared there. Click the target next to
layoutXML and choose LayoutXML from the Assets tab. (You might need to click the
Assets tab at the top of the Select TextAsset window that appears.)

713

7. Save your scene.
8. Click Play. If you select _MainCamera in the Hierarchy and scroll down to the Layout

(Script) component, you should be able to open the disclosure triangle next to
slotDefs and see that all the <slot>s have been parsed from the XML.

Working with CardProspector—A Subclass of Card
Before you can position the cards in the tableau, you must add some features to the Card
class that are specific to the Prospector game. Because Card and Deck are designed to be
reused on other card games, you will create a CardProspector class as a subclass of Card
rather than modifying Card directly.

1. Create a new C# script in the __Scripts folder named CardProspector and enter this
code:

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

// An enum defines a variable type with a few prenamed values // a
public enum eCardState {
 drawpile,
 tableau,
 target,
 discard
}

public class CardProspector : Card { // Make sure CardProspector extends Card
 [Header("Set Dynamically: CardProspector")]
 // This is how you use the enum eCardState
 public eCardState state = eCardState.drawpile;
 // The hiddenBy list stores which other cards will keep this one face down
 public List<CardProspector> hiddenBy = new List<CardProspector>();
 // The layoutID matches this card to the tableau XML if it's a tableau card
 public int layoutID;
 // The SlotDef class stores information pulled in from the LayoutXML <slot>
 public SlotDef slotDef;
}

a. This is an enum, which defines a type of variable that only has a few possible named
values. The eCardState variable type has one of four values: drawpile,
tableau, target, and discard, which help CardProspector instances track
where they should be in the game. I like naming enums with a lowercase e at the
beginning.

714

The extensions to Card in the new CardProspector class handle things like the four types of
locations that the card can occupy in the game (drawpile, tableau [one of the initial 28
cards in the mine], discard, or target [the active card on top of the discard pile]), the
storage of layout information (slotDef), and the information that determines when a card
should be face-up or face-down (hiddenBy and layoutID).

Now that this subclass is available, you need to convert the cards in the deck from Cards to
CardProspectors.

2. To do this, add the following code to the Prospector class:
Click here to view code image

public class Prospector : MonoBehaviour {
 …
 [Header("Set Dynamically")]
 public Deck deck;
 public Layout layout;
 public List<CardProspector> drawPile;

 void Awake() { … }

 void Start () {
 …
 layout = GetComponent<Layout>(); // Get the Layout component
 layout.ReadLayout(layoutXML.text); // Pass LayoutXML to it

 drawPile = ConvertListCardsToListCardProspectors(deck.cards);
 }

 List<CardProspector> ConvertListCardsToListCardProspectors(List<Card> lCD) {
 List<CardProspector> lCP = new List<CardProspector>();
 CardProspector tCP;
 foreach(Card tCD in lCD) {
 tCP = tCD as CardProspector; // a
 lCP.Add(tCP);
 }
 return(lCP);
 }

}

a. This as keyword will attempt to convert a Card to a CardProspector.
3. Save all your scripts in MonoDevelop and return to Unity.
4. Try playing the game and then look at the drawPile field of the (Prospector Script)

component of _MainCamera in the Inspector pane.

You'll notice that all the cards in the drawPile are null. (You can also look at this happen
by placing a break point on the line marked // a in the preceding code and running the

715

debugger.) When you try to treat the Card tCD as a CardProspector, the as returns null
instead of a converted Card. This is a result of how object-oriented coding works in C#
(see the "On Superclasses and Subclasses" sidebar).

ON SUPERCLASSES AND SUBCLASSES

You're familiar, of course, with superclasses and subclasses from Chapter 26,
"Classes." However, you might wonder why attempting to cast a superclass to a
subclass doesn't work.

In Prospector, Card is the superclass, and the subclass is CardProspector. You
could just as easily think of this as a superclass Animal and a subclass
Scorpion. All Scorpions are Animals, but not all Animals are Scorpions. You
can always refer to a Scorpion as "that Animal," but you can't refer to any
Animal as "that Scorpion." Along the same lines, a Scorpion might have a
Sting() function, but a Cow would not. This is why it's not possible to treat
any Animal as a Scorpion, because trying to call Sting() on any other
Animal might cause an error.

In Prospector, you want to use a bunch of Cards that are created by the Deck
script as if they were CardProspectors. This is akin to having a bunch of
Animals that you want to treat like Scorpions (but we've already decided this is
impossible). However, referring to a Scorpion as an Animal is always
possible. So the solution is this: If you just create

Scorpions from the beginning, and then treat them as Animals through several
functions (which they can do because Scorpion is a subclass of Animal), when
you choose to call Scorpion s = Animal as Scorpion; later, it will
work perfectly because the Animal was always secretly a Scorpion.

To do the same in Prospector, instead of attaching a Card (Script) component to
PrefabCard, you can attach a CardProspector (Script) component in its place.
Then the CardProspector instance will be referred to as a Card by all the Deck
functions, but will able to be referred to as a CardProspector when required.

As discussed in the sidebar, the solution in this case is to make sure that the
CardProspector was always a CardProspector and was just masquerading as a
Card for all the code in the Deck class.

5. To do this, select PrefabCard in the Project pane; it appears in the Inspector with a

716

Card (Script) component.
6. Click the Add Component button and choose Add Component > Scripts >

CardProspector. This adds a CardProspector (Script) component to the PrefabCard
GameObject.

7. To delete the old Card (Script) component, click the gear icon in the top-right corner of
the Card (Script) Inspector and choose Remove Component from the pop-up menu.

8. Select _MainCamera from the Hierarchy and play the scene now; you can see that all
the entries in the Prospector drawPile are now full of CardProspectors instead of
null.

When the Deck script instantiates PrefabCard and gets the Card component of it, this still
works perfectly fine because a CardProspector can always be referred to as a Card. Then,
when the ConvertListCardsToListCardProspectors() function attempts to
call tCP = tCD as CardProspector;, it works just fine.

9. Save your scene. You know the drill.

717

Positioning Cards in the Tableau
Now that everything is ready, it's time to add some code to the Prospector class to actually
lay out the game:

Click here to view code image

public class Prospector : MonoBehaviour {
 static public Prospector S;

 [Header("Set in Inspector")]
 public TextAsset deckXML;
 public TextAsset layoutXML;
 public float xOffset = 3;
 public float yOffset = -2.5f;
 public Vector3 layoutCenter;

 [Header("Set Dynamically")]
 public Deck deck;
 public Layout layout;
 public List<CardProspector> drawPile;
 public Transform layoutAnchor;
 public CardProspector target;
 public List<CardProspector> tableau;
 public List<CardProspector> discardPile;

 void Awake() { … }

 void Start () {
 …
 drawPile = ConvertListCardsToListCardProspectors(deck.cards);
 LayoutGame();
 }
 List<CardProspector> ConvertListCardsToListCardProspectors(List<Card> lCD) {
 …
 }

 // The Draw function will pull a single card from the drawPile and return it
 CardProspector Draw() {
 CardProspector cd = drawPile[0]; // Pull the 0th CardProspector
 drawPile.RemoveAt(0); // Then remove it from List<> drawPile
 return(cd); // And return it
 }

 // LayoutGame() positions the initial tableau of cards, a.k.a. the "mine"
 void LayoutGame() {
 // Create an empty GameObject to serve as an anchor for the tableau // a
 if (layoutAnchor == null) {
 GameObject tGO = new GameObject("_LayoutAnchor");

718

 // ^ Create an empty GameObject named _LayoutAnchor in the Hierarchy
 layoutAnchor = tGO.transform; // Grab its Transform
 layoutAnchor.transform.position = layoutCenter; // Position it
 }

 CardProspector cp;
 // Follow the layout
 foreach (SlotDef tSD in layout.slotDefs) {
 // ^ Iterate through all the SlotDefs in the layout.slotDefs as tSD
 cp = Draw(); // Pull a card from the top (beginning) of the draw Pile
 cp.faceUp = tSD.faceUp; // Set its faceUp to the value in SlotDef
 cp.transform.parent = layoutAnchor; // Make its parent layoutAnchor
 // This replaces the previous parent: deck.deckAnchor, which
 // appears as _Deck in the Hierarchy when the scene is playing.
 cp.transform.localPosition = new Vector3(
 layout.multiplier.x * tSD.x,
 layout.multiplier.y * tSD.y,
 -tSD.layerID);
 // ^ Set the localPosition of the card based on slotDef
 cp.layoutID = tSD.id;
 cp.slotDef = tSD;
 // CardProspectors in the tableau have the state CardState.tableau
 cp.state = eCardState.tableau;

 tableau.Add(cp); // Add this CardProspector to the List<> tableau
 }
 }
 }

Save your script and return to Unity. When you play this, you will see that the cards are
indeed laid out in the mine tableau layout described in LayoutXML.xml—and the right ones
are face-up and face-down—but there are some serious issues with layering (see Figure
32.10).

719

Figure 32.10 Cards are laid out, but there are several layering issues (and remaining cards
from the initial grid layout that existed previously)

Hold the Option/Alt key down and use the left mouse button in the Scene window to look
around. You can see that when you use Unity's 2D tools, the distance of the 2D object to the
camera has nothing to do with the depth sorting of the objects (i.e., which objects are
rendered on top of each other). Earlier, you actually got a little lucky with the construction
of the cards because you built them from back to front so that all the pips and decorators
showed up on top of the card face. However, here you have to be more careful about it for
the layout of the game to avoid the problems shown in Figure 32.10.

Unity 2D has two methods of dealing with depth sorting:
 Sorting Layers: Sorting layers are used to group 2D objects. Everything in a lower
sorting layer is rendered behind everything in a higher sorting layer. Each SpriteRenderer
component has a sortingLayerName string variable that can be set to the name of a
sorting layer.
 Sorting order: Each SpriteRenderer component also has a sortingOrder variable.
This is used to position elements within each sorting layer relative to each other.

In the absence of sorting layers and sortingOrder, sprites are often rendered from back to
front in the order that they were created, but this is not at all reliable. Stop playback before
continuing.

Setting Up Sorting Layers
To set up sorting layer, follow these steps:

720

1. From the menu bar, choose Edit > Project Settings > Tags and Layers. You've used
tags and layers for physics layers and tags before, but you haven't yet touched sorting
layers.

2. Open the disclosure triangle next to Sorting Layers, and enter the layers as shown in
Figure 32.11. You need to click the + button at the bottom-right of the list to add each of
the new sorting layers. In this Inspector, the bottom row (Draw) is in front of all the
other layers.

Figure 32.11 The sorting layers required for Prospector

Because SpriteRenderers and depth sorting are something that will be necessary for any
card game built using this code base, you should add the code to deal with depth sorting to
the Card class (as opposed to the CardProspector subclass, which is only used in this
game).

3. Open the Card script and add the following code:
Click here to view code image

public class Card : MonoBehaviour {
 …
 public CardDefinition def; // Parsed from DeckXML.xml

 // List of the SpriteRenderer Components of this GameObject and its children
 public SpriteRenderer[] spriteRenderers;

 void Start() {
 SetSortOrder(0); // Ensures that the card starts properly depth sorted

721

 }

 // If spriteRenderers is not yet defined, this function defines it
 public void PopulateSpriteRenderers() {
 // If spriteRenderers is null or empty
 if (spriteRenderers == null || spriteRenderers.Length == 0) {
 // Get SpriteRenderer Components of this GameObject and its children
 spriteRenderers = GetComponentsInChildren<SpriteRenderer>();
 }
 }

 // Sets the sortingLayerName on all SpriteRenderer Components
 public void SetSortingLayerName(string tSLN) {
 PopulateSpriteRenderers();

 foreach (SpriteRenderer tSR in spriteRenderers) {
 tSR.sortingLayerName = tSLN;
 }
 }

 // Sets the sortingOrder of all SpriteRenderer Components
 public void SetSortOrder(int sOrd) { // a
 PopulateSpriteRenderers();

 // Iterate through all the spriteRenderers as tSR
 foreach (SpriteRenderer tSR in spriteRenderers) {
 if (tSR.gameObject == this.gameObject) {
 // If the gameObject is this.gameObject, it's the background
 tSR.sortingOrder = sOrd; // Set it's order to sOrd
 continue; // And continue to the next iteration of the loop

 }
 // Each of the children of this GameObject are named
 // switch based on the names
 switch (tSR.gameObject.name) {
 case "back" : // if the name is "back"
 // Set it to the highest layer to cover the other sprites
 tSR.sortingOrder = sOrd+2;
 break;

 case "face": // if the name is "face"
 default: // or if it's anything else
 // Set it to the middle layer to be above the background
 tSR.sortingOrder = sOrd+1;
 break;
 }
 }
 }

 public bool faceUp { … }

 }

722

a. The white background of the card is on bottom (sOrd).
On top of that are all the pips, decorators, face, and so on (sOrd+1).
The back is on top so that, when it is visible, it covers the rest (sOrd+2).
4. Prospector needs one line added near the end of the LayoutGame() method to make

sure that the cards in the initial mine layout are placed in the proper sorting layer:
Click here to view code image

public class Prospector : MonoBehaviour {
 …
 // LayoutGame() positions the initial tableau of cards, a.k.a. the "mine"
 void LayoutGame() {
 …
 foreach (SlotDef tSD in layout.slotDefs) {
 …
 cp.state = eCardState.tableau;
 // CardProspectors in the tableau have the state CardState.tableau
 cp.SetSortingLayerName(tSD.layerName); // Set the sorting layers

 tableau.Add(cp); // Add this CardProspector to the List<> tableau
 }
 }
 }

5. Save all the scripts in MonoDevelop, return to Unity, and run the scene.

Now the cards stack properly on top of each other in the mine. You still have not yet
collected the remaining cards into a draw pile, but that will come soon.

Implementing Game Logic
Before you move cards into place for the draw pile, let's start by delineating the possible
actions that can happen in the game:

A. If the target card is replaced by any other card, the replaced target card then moves to
the discard pile.

B. A card can move from the drawPile to become the target card.
C. A card that is one higher or one lower than the target card can move to become the

target card.
D. If a face-down card has no more cards hiding it, it becomes face-up.
E. The game is over when either the mine is empty (win) or the draw pile is empty and

there are no more possible plays (loss).

Letters B and C in the list are possible move actions, where a card is moved by the player,

723

while letters A, D, and E are passive actions that happen as a result of either action B or C.

Making Cards Clickable
Because all of these actions are instigated by a click on one of the cards, the first task is to
make the cards clickable.

1. Every card game needs cards to be clickable, so add the following method near the end
of the Card class:

Click here to view code image

public class Card : MonoBehaviour {
 …

 public bool faceUp {
 get { … }
 set { … }
 }

 // Virtual methods can be overridden by subclass methods with the same name
 virtual public void OnMouseUpAsButton() {
 print (name); // When clicked, this outputs the card name
 }

}

Now, when you click Play, you can click any card in the scene, and it will output its name.

2. However, in Prospector, card clicks need to do more than that, so add the following
method to the end of the CardProspector class:

Click here to view code image

public class CardProspector : Card { // Make sure CardProspector extends Card
 …
 // The SlotDef class stores information pulled in from the LayoutXML <slot>
 public SlotDef slotDef;

 // This allows the card to react to being clicked
 override public void OnMouseUpAsButton() {
 // Call the CardClicked method on the Prospector singleton
 Prospector.S.CardClicked(this);
 // Also call the base class (Card.cs) version of this method
 base.OnMouseUpAsButton(); // a
 }
}

a. Because this line calls the base class (Card) version of OnMouseUpAsButton(),

724

CardProspectors will still print their name to the Console pane when clicked (in
addition to calling the new Prospector.S.CardClicked() method (see the
next step).

3. You must still write the CardClicked method in the Prospector script (which is why
it's currently red in the code you just typed), but first, you need a few helper functions.
Add the MoveToDiscard(), MoveToTarget(), and UpdateDrawPile()
methods to the end of the Prospector class.

Click here to view code image

public class Prospector : MonoBehaviour {
 …
 void LayoutGame() { … }

 // Moves the current target to the discardPile
 void MoveToDiscard(CardProspector cd) {
 // Set the state of the card to discard
 cd.state = eCardState.discard;
 discardPile.Add(cd); // Add it to the discardPile List<>
 cd.transform.parent = layoutAnchor; // Update its transform parent

 // Position this card on the discardPile
 cd.transform.localPosition = new Vector3(
 layout.multiplier.x * layout.discardPile.x,
 layout.multiplier.y * layout.discardPile.y,
 -layout.discardPile.layerID+0.5f);
 cd.faceUp = true;
 // Place it on top of the pile for depth sorting
 cd.SetSortingLayerName(layout.discardPile.layerName);
 cd.SetSortOrder(-100+discardPile.Count);
 }

 // Make cd the new target card
 void MoveToTarget(CardProspector cd) {
 // If there is currently a target card, move it to discardPile
 if (target != null) MoveToDiscard(target);
 target = cd; // cd is the new target
 cd.state = eCardState.target;
 cd.transform.parent = layoutAnchor;
 // Move to the target position
 cd.transform.localPosition = new Vector3(
 layout.multiplier.x * layout.discardPile.x,
 layout.multiplier.y * layout.discardPile.y,
 -layout.discardPile.layerID);

 cd.faceUp = true; // Make it face-up
 // Set the depth sorting
 cd.SetSortingLayerName(layout.discardPile.layerName);
 cd.SetSortOrder(0);
 }

725

 // Arranges all the cards of the drawPile to show how many are left
 void UpdateDrawPile() {
 CardProspector cd;
 // Go through all the cards of the drawPile
 for (int i=0; i<drawPile.Count; i++) {
 cd = drawPile[i];
 cd.transform.parent = layoutAnchor;

 // Position it correctly with the layout.drawPile.stagger
 Vector2 dpStagger = layout.drawPile.stagger;
 cd.transform.localPosition = new Vector3(
 layout.multiplier.x * (layout.drawPile.x + i*dpStagger.x),
 layout.multiplier.y * (layout.drawPile.y + i*dpStagger.y),
 -layout.drawPile.layerID+0.1f*i);

 cd.faceUp = false; // Make them all face-down
 cd.state = eCardState.drawpile;
 // Set depth sorting
 cd.SetSortingLayerName(layout.drawPile.layerName);
 cd.SetSortOrder(-10*i);
 }
 }
 }

4. Add the following code to the end of Prospector.LayoutGame() to draw the
initial target card and arrange the drawPile. This code also adds an initial version of the
CardClicked() method—to handle all clicks on CardProspectors—near the end of
the Prospector class. For now, CardClicked()only handles moving a card from the
drawPile to the target (letter B from the earlier list), but you'll expand this method more
soon.

Click here to view code image

public class Prospector : MonoBehaviour {
 …
 // LayoutGame() positions the initial tableau of cards, a.k.a. the "mine"
 void LayoutGame() {
 …
 foreach (SlotDef tSD in layout.slotDefs) {
 …
 tableau.Add(cpp); // Add this CardProspector to the List<> tableau
 }

 // Set up the initial target card
 MoveToTarget(Draw ());

 // Set up the Draw pile
 UpdateDrawPile();

 }

 // Moves the current target to the discardPile

726

 void MoveToDiscard(CardProspector cd) { … }

 void MoveToTarget(CardProspector cd) { … }
 …
 void UpdateDrawPile() { … }

 // CardClicked is called any time a card in the game is clicked
 public void CardClicked(CardProspector cd) {
 // The reaction is determined by the state of the clicked card
 switch (cd.state) {
 case eCardState.target:
 // Clicking the target card does nothing
 break;

 case eCardState.drawpile:
 // Clicking any card in the drawPile will draw the next card
 MoveToDiscard(target); // Moves the target to the discardPile
 MoveToTarget(Draw()); // Moves the next drawn card to the target
 UpdateDrawPile(); // Restacks the drawPile
 break;

 case eCardState.tableau:
 // Clicking a card in the tableau will check if it's a valid play
 break;
 }
 }

 }

5. Save all scripts in MonoDevelop, return to Unity, and play the scene.

You can now click on the drawPile (in the top-right corner of the screen) to draw a new
target card. You're getting close to having a game now!

Matching Cards from the Mine
To make the card in the mine work, you need to have a little code that checks to make sure
that the clicked card is either one higher or one lower than the target card (and, of course,
also handles Ace-to-King wraparound).

1. Add these bolded lines to the CardClicked() method of the Prospector script:
Click here to view code image

public class Prospector : MonoBehaviour {
 …

 // CardClicked is called any time a card in the game is clicked
 public void CardClicked(CardProspector cd) {
 // The reaction is determined by the state of the clicked card

727

 switch (cd.state) {
 …
 case eCardState.tableau:
 // Clicking a card in the tableau will check if it's a valid play
 bool validMatch = true;
 if (!cd.faceUp) {
 // If the card is face-down, it's not valid
 validMatch = false;
 }
 if (!AdjacentRank(cd, target)) {
 // If it's not an adjacent rank, it's not valid
 validMatch = false;
 }
 if (!validMatch) return; // return if not valid

 // If we got here, then: Yay! It's a valid card.
 tableau.Remove(cd); // Remove it from the tableau List
 MoveToTarget(cd); // Make it the target card
 break;
 }
 }

 // Return true if the two cards are adjacent in rank (A & K wrap around)
 public bool AdjacentRank(CardProspector c0, CardProspector c1) {
 // If either card is face-down, it's not adjacent.
 if (!c0.faceUp || !c1.faceUp) return(false);

 // If they are 1 apart, they are adjacent
 if (Mathf.Abs(c0.rank - c1.rank) == 1) {
 return(true);
 }
 // If one is Ace and the other King, they are adjacent
 if (c0.rank == 1 && c1.rank == 13) return(true);
 if (c0.rank == 13 && c1.rank == 1) return(true);

 // Otherwise, return false
 return(false);
 }
 }

2. Save your script in MonoDevelop and return to Unity.

Now you can play the game and actually play the top row correctly! However, as you play
more, you'll notice that the face-down cards are never flipping to face-up. This is what the
List<CardProspector> CardProspector.hiddenBy field is for. The
information about which cards hide others is in List<int> SlotDef.hiddenBy, but
you need to be able to convert from the integer IDs in SlotDef.hiddenBy to the actual
CardProspectors that have that ID.

3. Add this code to Prospector to do so:
Click here to view code image

728

public class Prospector : MonoBehaviour {
 …
 // LayoutGame() positions the initial tableau of cards, a.k.a. the "mine"
 void LayoutGame() {
 …
 CardProspector cp;
 // Follow the layout
 foreach (SlotDef tSD in layout.slotDefs) {
 …
 Tableau.Add(cpp); // Add this CardProspector to the List<> tableau
 }

 // Set which cards are hiding others
 foreach (CardProspector tCP in tableau) {
 foreach(int hid in tCP.slotDef.hiddenBy) {
 cp = FindCardByLayoutID(hid);
 tCP.hiddenBy.Add(cp);
 }
 }

 // Set up the initial target card
 MoveToTarget(Draw ());

 // Set up the Draw pile
 UpdateDrawPile();

 }

 // Convert from the layoutID int to the CardProspector with that ID
 CardProspector FindCardByLayoutID(int layoutID) {
 foreach (CardProspector tCP in tableau) {
 // Search through all cards in the tableau List<>
 if (tCP.layoutID == layoutID) {
 // If the card has the same ID, return it
 return(tCP);
 }
 }
 // If it's not found, return null
 return(null);
 }

 // This turns cards in the Mine face-up or face-down
 void SetTableauFaces() {
 foreach(CardProspector cd in tableau) {
 bool faceUp = true; // Assume the card will be face-up
 foreach(CardProspector cover in cd.hiddenBy) {
 // If either of the covering cards are in the tableau
 if (cover.state == eCardState.tableau) {
 faceUp = false; // then this card is face-down
 }
 }
 cd.faceUp = faceUp; // Set the value on the card
 }

729

 }

 // Moves the current target to the discardPile
 void MoveToDiscard(CardProspector cd) { … }

 // Make cd the new target card
 void MoveToTarget(CardProspector cd) { … }

 // Arranges all the cards of the drawPile to show how many are left
 void UpdateDrawPile() { … }

 // CardClicked is called any time a card in the game is clicked
 public void CardClicked(CardProspector cd) {
 // The reaction is determined by the state of the clicked card
 switch (cd.state) {
 …
 case eCardState.tableau:
 …
 // If we got here, then: Yay! It's a valid card.
 tableau.Remove(cd); // Remove it from the tableau List
 MoveToTarget(cd); // Make it the target card
 SetTableauFaces(); // Update tableau card face-ups
 break;
 }
 }

 // Return true if the two cards are adjacent in rank (A & K wrap around)
 public bool AdjacentRank(CardProspector c0, CardProspector c1) { … }

 }

Now, after you save your scripts and return to Unity, an entire round of the game is
playable!

4. Next up is making the game know when it's status only needs to be checked once after
each time the player has clicked a card, so the check will be called from the end of
Prospector.CardClicked(). Add the following to the Prospector class:

Click here to view code image

public class Prospector : MonoBehaviour {
 …

 // CardClicked is called any time a card in the game is clicked
 public void CardClicked(CardProspector cd) {
 // The reaction is determined by the state of the clicked card
 switch (cd.state) {
 …
 SetTableauFaces(); // Update tableau card face-ups
 break;
 }
 // Check to see whether the game is over or not
 CheckForGameOver();
 }

730

 // Test whether the game is over
 void CheckForGameOver() {
 // If the tableau is empty, the game is over
 if (tableau.Count==0) {
 // Call GameOver() with a win
 GameOver(true);
 return;
 }

 // If there are still cards in the draw pile, the game's not over
 if (drawPile.Count>0) {
 return;
 }

 // Check for remaining valid plays
 foreach (CardProspector cd in tableau) {
 if (AdjacentRank(cd, target)) {
 // If there is a valid play, the game's not over
 return;
 }
 }

 // Since there are no valid plays, the game is over
 // Call GameOver with a loss
 GameOver (false);
 }

 // Called when the game is over. Simple for now, but expandable
 void GameOver(bool won) {
 if (won) {
 print ("Game Over. You won! :)");
 } else {
 print ("Game Over. You Lost. :(");
 }
 // Reload the scene, resetting the game
 SceneManager.LoadScene("__Prospector_Scene_0");
 }

 // Return true if the two cards are adjacent in rank (A & K wrap around)
 public bool AdjacentRank(CardProspector c0, CardProspector c1) { … }

 }

5. Save All scripts in MonoDevelop and return to Unity to test the game.

Now the game is playable and repeatable, and it knows when it has won or lost. To test
losing the game, you can run the game and click on the draw pile until it's depleted; the
scene should reload, and a new round will start. Testing whether winning the game works
or not might take a few tries. ;-)

Next up, it's time to add some scoring.

731

Adding Scoring to Prospector
The original card game of Prospector (or Tri-Peaks, on which it was based) had no
scoring mechanism beyond the player winning or losing. But as a digital game, keeping
score and having a high score so that players have an impetus to keep playing (to beat their
high score) is really helpful.

Ways to Earn Points in the Game
You will implement several ways to earn points in Prospector:

A. Moving a card from the mine to the target card earns 1 point.
B. Every subsequent card removed from the mine without drawing from the draw pile

increases the points awarded per card by 1, so a run of five cards removed without a
draw would be worth 1, 2, 3, 4, and 5 points each, for a total of 15 points for the run (1
+ 2 + 3 + 4 + 5 = 15).

C. If the player wins the round, she carries her score on to the next round. Whenever a
round is lost, her score for all rounds is totaled and checked against the high score list.

D. The number of points earned for a run will double for each special gold card in the run.
If two of the cards in the example run from letter B were gold, then the run would be
worth 60 points (15 x 2 x 2 = 60).

The Prospector class will handle the scoring because it is aware of all the conditions that
could contribute to the score. You will also create a script named Scoreboard to handle all
the visual elements of showing the score to the player.

You will implement letters A through C in this chapter, and I'll leave letter D for you to
implement on your own later.

Making the Chain Scoring Work
To track the score in this game, you'll create a ScoreManager script to add to
_MainCamera. Because you're enabling runs and the doubling of the value for the run, it
makes sense to store the score for the run separately and then apply that to the total score
for the round when the run has been ended (by drawing a card from the drawPile).

1. Create a new C# script in the __Scripts folder named ScoreManager.
2. Attach the ScoreManager script to _MainCamera.
3. Open ScoreManager in MonoDevelop and enter the following code:

732

Click here to view code image

 using System.Collections;
 using System.Collections.Generic;
 using UnityEngine;

 // An enum to handle all the possible scoring events
 public enum eScoreEvent {
 draw,
 mine,
 mineGold,
 gameWin,
 gameLoss
 }

 // ScoreManager handles all of the scoring
 public class ScoreManager : MonoBehaviour { // a
 static private ScoreManager S; // b

 static public int SCORE_FROM_PREV_ROUND = 0;
 static public int HIGH_SCORE = 0;

 [Header("Set Dynamically")]
 // Fields to track score info
 public int chain = 0;
 public int scoreRun = 0;
 public int score = 0;

 void Awake() {
 if (S == null) { // c
 S = this; // Set the private singleton
 } else {
 Debug.LogError("ERROR: ScoreManager.Awake(): S is already set!");
 }

 // Check for a high score in PlayerPrefs
 if (PlayerPrefs.HasKey ("ProspectorHighScore")) {
 HIGH_SCORE = PlayerPrefs.GetInt("ProspectorHighScore");
 }
 // Add the score from last round, which will be >0 if it was a win
 score += SCORE_FROM_PREV_ROUND;
 // And reset the SCORE_FROM_PREV_ROUND
 SCORE_FROM_PREV_ROUND = 0;
 }

 static public void EVENT(eScoreEvent evt) { // d
 try { // try-catch stops an error from breaking your program
 S.Event(evt);
 } catch (System .NullReferenceException nre) {
 Debug.LogError "ScoreManager:EVENT() called while S=null.\n"+nre);
 }
 }
 void Event(eScoreEvent evt) {

733

 switch (evt) {
 // Same things need to happen whether it's a draw, a win, or a loss
 case eScoreEvent.draw: // Drawing a card
 case eScoreEvent.gameWin: // Won the round
 case eScoreEvent.gameLoss: // Lost the round
 chain = 0; // resets the score chain
 score += scoreRun; // add scoreRun to total score
 scoreRun = 0; // reset scoreRun
 break;

 case eScoreEvent.mine: // Remove a mine card
 chain++; // increase the score chain
 scoreRun += chain; // add score for this card to run
 break;
 }

 // This second switch statement handles round wins and losses
 switch (evt) {
 case eScoreEvent.gameWin:
 // If it's a win, add the score to the next round
 // static fields are NOT reset by SceneManager.LoadScene()
 SCORE_FROM_PREV_ROUND = score;
 print ("You won this round! Round score: "+score);
 break;

 case eScoreEvent.gameLoss:
 // If it's a loss, check against the high score
 if (HIGH_SCORE <= score) {
 print("You got the high score! High score: "+score);
 HIGH_SCORE = score;
 PlayerPrefs.SetInt("ProspectorHighScore", score);
 } else {
 print ("Your final score for the game was: "+score);
 }
 break;

 default:
 print ("score: "+score+" scoreRun:"+scoreRun+" chain:"+chain);
 break;
 }
 }

 static public int CHAIN { get { return S.chain; } } // e
 static public int SCORE { get { return S.score; } }
 static public int SCORE_RUN { get { return S.scoreRun; } }
 }

a. In the first edition of the book, ScoreManager was a method of Prospector rather than
a separate class, but since then, I've come to believe strongly in the component
pattern of software design. In the component pattern, developers try to make small,
reusable classes that are self-contained. By making ScoreManager a separate class,
I've created something that I could use again in the future, and I've kept my code

734

simpler. You can read more about component pattern design in Appendix B, "Useful
Concepts," and you will use it extensively in Chapter 35, "Dungeon Delver."

b. The static private ScoreManager S; is a private version of the
singleton pattern. While most of the singletons in this book have been public, this one
is private to grant it more protection so that only the ScoreManager class can access
it.

c. This more complex singleton assignment ensures that an error is thrown if two
different ScoreManager instances try to assert themselves as the singleton S.

d. This static public version of the EVENT() method enables other classes (like
Prospector) to send eScoreEvents to the ScoreManager class. When they do so,
EVENT() calls the public, non-static Event() method on the ScoreManager
private singleton S. The try-catch clause here will alert you if EVENT() is
called while S is still null.

e. These static properties allow read-only access to the public fields of the private
ScoreManager singleton S.

4. Add the following four bolded lines of code to the CardClicked() and
GameOver() methods of Prospector to make use of the ScoreManager:

Click here to view code image

public class Prospector : MonoBehaviour {
 …
 // CardClicked is called any time a card in the game is clicked
 public void CardClicked(CardProspector cd) {
 // The reaction is determined by the state of the clicked card
 switch (cd.state) {
 …
 case eCardState.drawpile:
 // Clicking any card in the drawPile will draw the next card
 MoveToDiscard(target); // Moves the target to the discardPile
 MoveToTarget(Draw()); // Moves the next drawn card to the target
 UpdateDrawPile(); // Restacks the drawPile
 ScoreManager.EVENT(eScoreEvent.draw);
 break;

 case eCardState.tableau:
 …
 // If we got here, then: Yay! It's a valid card.
 tableau.Remove(cd); // Remove it from the tableau List
 MoveToTarget(cd); // Make it the target card
 SetTableauFaces(); // Update tableau card face-ups
 ScoreManager.EVENT(eScoreEvent.mine);
 break;
 }

 // Check to see whether the game is over or not
 CheckForGameOver();

735

 }

 // Test whether the game is over
 void CheckForGameOver() { … }

 // Called when the game is over. Simple for now, but expandable
 void GameOver(bool won) {
 if (won) {
 // print ("Game Over. You won! :)"); // Comment out this line
 ScoreManager.EVENT(eScoreEvent.gameWin);
 } else {
 // print ("Game Over. You Lost. :("); // Comment out this line
 ScoreManager.EVENT(eScoreEvent.gameLoss);
 }
 // Reload the scene, resetting the game
 SceneManager.LoadScene("__Prospector_Scene_0");
 }
 …
 }

5. Save the scripts in MonoDevelop, return to Unity, and click Play.

Now, as you play the game, you'll see little notes in the Console pane that tell you your
score. Additionally, if you select _MainCamera in the Hierarchy and look at the
ScoreManager (Script) Inspector, you will see that if you win a round, you keep your score
when you move to the next round. This is great for us as developers, but now let's make
things look a little better for our players.

Showing the Score to the Players
For this game, you'll also make a couple of reusable components that can show the score.
One will be a Scoreboard class to handle manage all the score display. The other,
FloatingScore, will be an on-screen number that can move itself around the screen. You'll
also make use of Unity's SendMessage() feature, which can call a method by name with
one parameter on any GameObject:

1. Create a new C# script in the __Scripts folder named FloatingScore and enter this
code:

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;

Click here to view code image

736

// An enum to track the possible states of a FloatingScore
public enum eFSState {
 idle,
 pre,
 active,
 post
 }

 // FloatingScore can move itself on screen following a Bézier curve
 public class FloatingScore : MonoBehaviour {
 [Header("Set Dynamically")]
 public eFSState state = eFSState.idle;

 [SerializeField]
 protected int _score = 0;
 public string scoreString;

 // The score property sets both _score and scoreString
 public int score {
 get {
 return(_score);
 }
 set {
 _score = value;
 scoreString = _score.ToString("N0");// "N0" adds commas to the num
 // Search "C# Standard Numeric Format Strings" for ToString formats
 GetComponent<Text>().text = scoreString;
 }
 }

 public List<Vector2> bezierPts; // Bézier points for movement
 public List<float> fontSizes; // Bézier points for font scaling
 public float timeStart = -1f;
 public float timeDuration = 1f;
 public string easingCurve = Easing.InOut; // Uses Easing in Utils.cs

 // The GameObject that will receive the SendMessage when this is done moving
 public GameObject reportFinishTo = null;

 private RectTransform rectTrans;
 private Text txt;

 // Set up the FloatingScore and movement
 // Note the use of parameter defaults for eTimeS & eTimeD
 public void Init(List<Vector2> ePts, float eTimeS = 0, float eTimeD = 1) {
 rectTrans = GetComponent<RectTransform>();
 rectTrans.anchoredPosition = Vector2.zero;

 txt = GetComponent<Text>();

 bezierPts = new List<Vector2>(ePts);

 if (ePts.Count == 1) { // If there's only one point

737

 // ...then just go there.
 transform.position = ePts[0];
 return;
 }

 // If eTimeS is the default, just start at the current time
 if (eTimeS == 0) eTimeS = Time.time;
 timeStart = eTimeS;
 timeDuration = eTimeD;

 state = eFSState.pre; // Set it to the pre state, ready to start moving
 }

 public void FSCallback(FloatingScore fs) {
 // When this callback is called by SendMessage,
 // add the score from the calling FloatingScore
 score += fs.score;
 }

 // Update is called once per frame
 void Update () {
 // If this is not moving, just return
 if (state == eFSState.idle) return;

 // Get u from the current time and duration
 // u ranges from 0 to 1 (usually)
 float u = (Time.time - timeStart)/timeDuration;
 // Use Easing class from Utils to curve the u value
 float uC = Easing.Ease (u, easingCurve);
 if (u<0) { // If u<0, then we shouldn't move yet.
 state = eFSState.pre;
 txt.enabled= false; // Hide the score initially
 } else {
 if (u>=1) { // If u>=1, we're done moving
 uC = 1; // Set uC=1 so we don't overshoot
 state = eFSState.post;
 if (reportFinishTo != null) { //If there's a callback GameObject
 // Use SendMessage to call the FSCallback method
 // with this as the parameter.
 reportFinishTo.SendMessage("FSCallback", this);
 // Now that the message has been sent,
 // Destroy this gameObject
 Destroy (gameObject);
 } else { // If there is nothing to callback
 // ...then don't destroy this. Just let it stay still.
 state = eFSState.idle;
 }
 } else {
 // 0<=u<1, which means that this is active and moving
 state = eFSState.active;
 txt.enabled = true; // Show the score once more
 }
 // Use Bézier curve to move this to the right point

738

 Vector2 pos = Utils.Bezier(uC, bezierPts);
 // RectTransform anchors can be used to position UI objects relative
 // to total size of the screen
 rectTrans.anchorMin = rectTrans.anchorMax = pos;
 if (fontSizes != null && fontSizes.Count>0) {
 // If fontSizes has values in it
 // ...then adjust the fontSize of this GUIText
 int size = Mathf.RoundToInt(Utils.Bezier(uC, fontSizes));
 GetComponent<Text>().fontSize = size;
 }
 }
 }
 }

2. Create a new C# script in the __Scripts folder named Scoreboard and enter this code
into it:

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;

// The Scoreboard class manages showing the score to the player
public class Scoreboard : MonoBehaviour {
 public static Scoreboard S; // The singleton for Scoreboard

 [Header("Set in Inspector")]
 public GameObject prefabFloatingScore;

 [Header("Set Dynamically")]
 [SerializeField] private int _score = 0;
 [SerializeField] private string _scoreString;

 private Transform canvasTrans;

 // The score property also sets the scoreString
 public int score {
 get {
 return(_score);
 }
 set {
 _score = value;
 scoreString = _score.ToString("N0");
 }
 }

 // The scoreString property also sets the Text.text
 public string scoreString {
 get {
 return(_scoreString);
 }

739

 set {
 _scoreString = value;
 GetComponent<Text>().text = _scoreString;
 }
 }

 void Awake() {
 if (S == null) {
 S = this; // Set the private singleton
 } else {
 Debug.LogError("ERROR: Scoreboard.Awake(): S is already set!");
 }
 canvasTrans = transform.parent;
 }

 // When called by SendMessage, this adds the fs.score to this.score
 public void FSCallback(FloatingScore fs) {
 score += fs.score;
 }

 // This will Instantiate a new FloatingScore GameObject and initialize it.
 // It also returns a pointer to the FloatingScore created so that the
 // calling function can do more with it (like set fontSizes, and so on)
 public FloatingScore CreateFloatingScore(int amt, List<Vector2> pts) {
 GameObject go = Instantiate <GameObject> (prefabFloatingScore);
 go.transform.SetParent(canvasTrans);
 FloatingScore fs = go.GetComponent<FloatingScore>();
 fs.score = amt;
 fs.reportFinishTo = this.gameObject; // Set fs to call back to this
 fs.Init(pts);
 return(fs);
 }

 }

3. Save all scripts in MonoDevelop and return to Unity.

Now, you need to make the GameObjects for both the Scoreboard and the FloatingScore.

Making the FloatingScore GameObject Prefab
To create the FloatingScore GameObject:

1. From Unity's menu bar, choose GameObject > UI > Text. Rename the Text GameObject
to PrefabFloatingScore.

2. Before changing any of the settings on PrefabFloatingScore, make sure that the aspect
ratio of your Game pane is set to either Standalone (1024x768) or iPad Wide
(1024x768). This ensures that your settings and mine agree.

740

3. Give PrefabFloatingScore the settings shown in Figure 32.12. Afterward, you should
see a white zero floating in the middle of your Game pane.

Figure 32.12 The settings for PrefabFloatingScore

4. Attach the script FloatingScore to the GameObject PrefabFloatingScore (by dragging
the script onto PrefabFloatingScore in the Hierarchy).

5. Convert PrefabFloatingScore to a prefab by dragging it from the Hierarchy into the
_Prefabs folder in the Project pane.

741

6. Delete the instance of PrefabFloatingScore that remains in the Hierarchy pane.

Making the Scoreboard GameObject
To make the Scoreboard GameObject:

1. Create another Text GameObject in the scene (GameObject > UI > Text).
2. Rename this Text GameObject to Scoreboard.
3. Attach the Scoreboard C# script to the Scoreboard GameObject and give the

Scoreboard GameObject the settings shown in Figure 32.13. This includes dragging the
prefab PrefabFloatingScore from the _Prefabs folder into the public
prefabFloatingScore field of the Scoreboard (Script) component.

742

Figure 32.13 The settings for Scoreboard

4. Save your scene.
5. Now all you need to do is make a few changes to the Prospector class to incorporate

the new code and GameObjects. Add the following bolded code to the Prospector class:
Click here to view code image

public class Prospector : MonoBehaviour {
 …

743

 [Header("Set in Inspector")]
 …
 public Vector3 layoutCenter;
 public Vector2 fsPosMid = new Vector2(0.5f, 0.90f);
 public Vector2 fsPosRun = new Vector2(0.5f, 0.75f);
 public Vector2 fsPosMid2 = new Vector2(0.4f, 1.0f);
 public Vector2 fsPosEnd = new Vector2(0.5f, 0.95f);

 [Header("Set Dynamically")]
 …
 public List<CardProspector> tableau;
 public List<CardProspector> discardPile;
 public FloatingScore fsRun;

 void Awake() { … }

 void Start () {
 Scoreboard.S.score = ScoreManager.SCORE;

 deck = GetComponent<Deck>(); // Get the Deck
 …
 }

 …

 // CardClicked is called any time a card in the game is clicked
 public void CardClicked(CardProspector cd) {
 // The reaction is determined by the state of the clicked card
 switch (cd.state) {
 …
 case eCardState.drawpile:
 …
 ScoreManager.EVENT(eScoreEvent.draw);
 FloatingScoreHandler(eScoreEvent.draw);
 break;

 case eCardState.tableau:
 …
 ScoreManager.EVENT(eScoreEvent.mine);
 FloatingScoreHandler(eScoreEvent.mine);
 break;
 }
 …
 }

 // Test whether the game is over
 void CheckForGameOver() { … }

 // Called when the game is over. Simple for now, but expandable
 void GameOver(bool won) {
 if (won) {
 // print ("Game Over. You won! :)"); // Comment out this line
 ScoreManager.EVENT(eScoreEvent.gameWin);
 FloatingScoreHandler(eScoreEvent.gameWin);
 } else {

744

 // print ("Game Over. You Lost. :("); // Comment out this line
 ScoreManager.EVENT(eScoreEvent.gameLoss);
 FloatingScoreHandler(eScoreEvent.gameLoss);
 }
 // Reload the scene, resetting the game
 SceneManager.LoadScene("__Prospector_Scene_0");
 }

 …

 // Return true if the two cards are adjacent in rank (A & K wrap around)
 public bool AdjacentRank(CardProspector c0, CardProspector c1) { … }

 // Handle FloatingScore movement
 void FloatingScoreHandler(eScoreEvent evt) {
 List<Vector2> fsPts;
 switch (evt) {
 // Same things need to happen whether it's a draw, a win, or a loss
 case eScoreEvent.draw: // Drawing a card
 case eScoreEvent.gameWin: // Won the round
 case eScoreEvent.gameLoss: // Lost the round
 // Add fsRun to the Scoreboard score
 if (fsRun != null) {
 // Create points for the Bézier curve1
 fsPts = new List<Vector2>();
 fsPts.Add(fsPosRun);
 fsPts.Add(fsPosMid2);
 fsPts.Add(fsPosEnd);
 fsRun.reportFinishTo = Scoreboard.S.gameObject;
 fsRun.Init(fsPts, 0, 1);
 // Also adjust the fontSize
 fsRun.fontSizes = new List<float>(new float[] {28,36,4});
 fsRun = null; // Clear fsRun so it's created again
 }
 break;

 case eScoreEvent.mine: // Remove a mine card
 // Create a FloatingScore for this score
 FloatingScore fs;
 // Move it from the mousePosition to fsPosRun
 Vector2 p0 = Input.mousePosition;
 p0.x /= Screen.width;
 p0.y /= Screen.height;
 fsPts = new List<Vector2>();
 fsPts.Add(p0);
 fsPts.Add(fsPosMid);
 fsPts.Add(fsPosRun);
 fs = Scoreboard.S.CreateFloatingScore(ScoreManager.CHAIN, fsPts);
 fs.fontSizes = new List<float>(new float[] {4,50,28});
 if (fsRun == null) {
 fsRun = fs;
 fsRun.reportFinishTo = null;
 } else {
 fs.reportFinishTo = fsRun.gameObject;

745

 }
 break;
 }
 }

 }

6. Save your scripts in MonoDevelop, and try playing the game in Unity.

Now when you play the game, you should see the score flying around. This is actually
pretty important because it helps your players understand where the score is coming from
and helps reveal the mechanics of the game to them through play (rather than requiring them
to read instructions).

Adding Some Art to the Game
Let's add some theming to the game by giving it a background. In the Materials folder that
you imported at the beginning of the project are a PNG named ProspectorBackground and
a material named ProspectorBackground Mat. These are already set up for you, because
you learned how to do so in previous chapters.

1. In Unity, add a quad to the scene (GameObject > 3D Object > Quad).
2. Drag the ProspectorBackground Mat from the Materials folder onto the quad.
3. Rename the quad ProspectorBackground and set its transform as follows:

ProspectorBackground (Quad)  P:[0, 0, 0]  R:[0, 0, 0]  S:[26.667, 20, 1]
Because _MainCamera's orthographic size is 10, that means that it is 10 units between the
center of the screen and the nearest edge (which in this case is the top and bottom), for a
total height of 20 units visible on screen. The ProspectorBackground quad is 20 units high
(Scale Y) because of this. Also, because the screen is at a 4:3 aspect ratio, 20 / 3 * 4 =
26.667 is the width (Scale X) that you need to set the background to.
4. Save your scene.

When you play the game now, it should look something like Figure 32.14.4

746

Figure 32.14 The Prospector game with a background

Announcing the Beginning and End of Rounds
I'm sure you've noticed that the rounds of the game end rather abruptly. Let's do something
about that. First let's delay the actual reloading of the level using an Invoke() function.
Add the following bolded code to Prospector:

Click here to view code image

public class Prospector : MonoBehaviour {
 …
 [Header("Set in Inspector")]
 …
 public Vector2 fsPosEnd = new Vector2(0.5f, 0.95f);
 public float reloadDelay = 2f;// 2 sec delay between rounds

 [Header("Set Dynamically")]

 …

 // Called when the game is over. Simple for now, but expandable
 void GameOver(bool won) {
 if (won) {
 …
 } else {

747

 …
 }
 // Reload the scene, resetting the game
 // SceneManager.LoadScene("__Prospector_Scene_0"); // Now commented out!

 // Reload the scene in reloadDelay seconds
 // This will give the score a moment to travel
 Invoke ("ReloadLevel", reloadDelay); // a
 }
 void ReloadLevel() {
 // Reload the scene, resetting the game
 SceneManager.LoadScene("__Prospector_Scene_0");
 }

 // Return true if the two cards are adjacent in rank (A & K wrap around)
 public bool AdjacentRank(CardProspector c0, CardProspector c1) { … }
 …
 }

a. The Invoke() command works by calling a function named "ReloadLevel" in
reloadDelay seconds. This is similar to how SendMessage() works, but it
does so with a delay. Now when you play the game, it waits for two seconds before
the game reloads.

Giving the Player Feedback on Her Score
You also want to tell the player how she did at the end of each round.

1. Add a new UI Text to the scene: Select Canvas in the Hierarchy and from the menu bar
choose GameObject > UI > Text.

2. Rename the Text to GameOver and give it the settings shown on the left side of Figure
32.15.

748

Figure 32.15 The settings for the GameOver and RoundResult UI Texts

3. Add another UI Text to the scene: Right-click on GameOver in the Hierarchy and
choose Duplicate from the pop-up menu.

4. Rename this GameOver (1) Text to RoundResult and give it the settings shown on the
right side of Figure 32.15.

5. Add the third UI Text as a child of Canvas and name it HighScore.
6. Give HighScore the settings shown in Figure 32.16.

749

Figure 32.16 The settings for the HighScore UI Text

The numbers in these settings were determined by trial and error, and you should feel free
to adjust them as you see fit. These settings should nestle the high score right above the sign

on the right.
7. Save your scene.
8. To make these UI Texts functional, add the following bolded code to the Prospector

class:
Click here to view code image

public class Prospector : MonoBehaviour {
 …
 [Header("Set in Inspector")]
 …
 public float reloadDelay = 1f; // The delay between rounds

750

 public Text gameOverText, roundResultText, highScoreText;

 [Header("Set Dynamically")]
 …

 void Awake() {
 S = this;
 SetUpUITexts();
 }

 void SetUpUITexts() {
 // Set up the HighScore UI Text
 GameObject go = GameObject.Find("HighScore");
 if (go != null) {
 highScoreText = go.GetComponent<Text>();
 }
 int highScore = ScoreManager.HIGH_SCORE;
 string hScore = "High Score: "+Utils.AddCommasToNumber(highScore);
 go.GetComponent<Text>().text = hScore;

 // Set up the UI Texts that show at the end of the round
 go = GameObject.Find ("GameOver");
 if (go != null) {
 gameOverText = go.GetComponent<Text>();
 }

 go = GameObject.Find ("RoundResult");
 if (go != null) {
 roundResultText = go.GetComponent<Text>();
 }

 // Make the end of round texts invisible
 ShowResultsUI(false);
 }

 void ShowResultsUI(bool show) {
 gameOverText.gameObject.SetActive(show);
 roundResultText.gameObject.SetActive(show);
 }

 …

 // Called when the game is over. Simple for now, but expandable
 void GameOver(bool won) {
 int score = ScoreManager.SCORE;
 if (fsRun != null) score += fsRun.score;
 if (won) {
 gameOverText.text = "Round Over";
 roundResultText.text ="You won this round!\nRound Score: "+score;
 ShowResultsUI(true);
 // print ("Game Over. You won! :)"); // Comment out this line
 ScoreManager.EVENT(eScoreEvent.gameWin);
 FloatingScoreHandler(eScoreEvent.gameWin);

751

 } else {
 gameOverText.text = "Game Over";
 if (ScoreManager.HIGH_SCORE <= score) {
 string str = "You got the high score!\nHigh score: "+score;
 roundResultText.text = str;
 } else {
 roundResultText.text = "Your final score was: "+score;
 }
 ShowResultsUI(true);
 // print ("Game Over. You Lost. :("); // Comment out this line
 ScoreManager.EVENT(eScoreEvent.gameLoss);
 FloatingScoreHandler(eScoreEvent.gameLoss);
 }
 // Reload the scene in reloadDelay seconds
 // This will give the score a moment to travel
 Invoke ("ReloadLevel", reloadDelay); // a
 // SceneManager.LoadScene("__Prospector_Scene_0"); // Now commented out!
 }

 …

 }

9. Save your scripts in MonoDevelop and try playing the game again in Unity.

Now, when you finish a round or game, you should see messages like those in Figure 32.17.

Figure 32.17 Example game over messages

Summary
In this chapter, you created a complete card game that constructs itself from XML files and
that contains scoring, background images, and theming. One of the purposes of the tutorials

in this book is to give you a framework on which to build additional games. The next
chapter does just that. I'll guide you through building the Bartok game from the first chapter

of the book based on the code that you created for this chapter.

752

Next Steps
The following are some possible directions in which you can take this game yourself.

Gold Cards
I mentioned gold cards as letter D in the list of ways to add scoring to the game, but you did
not implement them in the chapter. Graphics are in the package you imported for gold cards
(both Card_Back_Gold and Card_Front_Gold). The purpose of the gold cards is to double
the value of any run that they are part of. Gold cards can only start in the mine, and any card
in the mine has a 10% chance of being a gold card. Try implementing the gold cards on your

own.

Compile This Game on a Mobile Device
Though the build settings in this game were designed for an iPad, instructing you on actual

compilation for a mobile device is not within the scope of this book. Unity has several
pages that document this process, however, and I recommend that you look at the proper
one for the device that you own. To keep the information here as current as possible, my

best recommendation for you is to do a web search for Unity getting started and the name
of the mobile platform on which you want to develop (e.g., Unity getting started iOS).

Right now, that could be iOS or Android for mobile platforms or WebGL for embedding in a
website. The Unity documentation includes "getting started" pages for all of these

platforms.

In my personal experience, I have found compilation on Android devices to be the easiest.
Including the time to install and configure the additional software to do so, compiling this

game for iOS took about two hours (most of which was spent setting up my Apple iOS
developer account and provisioning profile), and compiling this game for Android took

about 20 minutes.

I also highly recommend looking into some of the tools out there that can help you with
mobile development. The Test Flight service that Apple acquired a few years ago helps

you to distribute test builds of your game to iOS devices easily over the Internet
(https://developer.apple.com/testflight/), and nearly everyone doing iOS development uses
it. If you want a cross-platform approach that can distribute to Android as well (but is less

convenient for iOS), check out TestFairy (http://testfairy.com).

I also highly recommend looking into Unity Cloud Build, which used to be the independent
company, Tsugi (that was mentioned in the first edition of the book). Unity Cloud Build

753

https://developer.apple.com/testflight/
http://testfairy.com

watches your Unity Collaborate (or other) code repository for changes in your code and
automatically compiles new versions if it senses that anything has changed. If you're doing
cross-platform mobile or WebGL development, Unity Cloud Build can save you a ton of

time by offloading the heavy compiling tasks to a server instead of your personal machine.

1. The card images in this book and in the digital card games presented in the book are
based on Vectorized Playing Cards 1.3, Copyright 2011, Chris Aguilar. Licensed under
LGPL 3—http://www.gnu.org/copyleft/lesser.html,
http://code.google.com/p/vectorized-playing-cards/.

2. All three of these links were last accessed January 31, 2017.
3. Prospector was designed by Jeremy Gibson Bond, Ethan Burrow, and Mike Wabschall

in 2001 for our company, Digital Mercenaries, Inc.
4. This original art—including the character, background, and card backs—was created in

2001 for my company at the time, Digital Mercenaries, by the artist Jimmy Tovar (
http://jimmytovar.com).

754

http://www.gnu.org/copyleft/lesser.html
http://code.google.com/p/vectorized-playing-cards/
http://jimmytovar.com

CHAPTER 33

PROTOTYPE 5:BARTOK

This chapter differs somewhat from the other tutorials because instead of creating an
entirely new project, this one shows you how you can build a different game on top of
the kinds of tutorials that you've developed while reading this book.

Before starting this project, you should have first completed Prototype 4: Prospector
Solitaire so that you understand the inner workings of the card game framework
developed in that chapter.

Bartokis the game you first encountered in Chapter 1,"Thinking Like a Designer."
Now you'll build it yourself.

Getting Started: Prototype 5
This time, instead of downloading a unitypackage as you did before, just make a duplicate
of your entire project folder for the Prospector game from the previous chapter (or you can
download it from http://book.prototools.net under Chapter 33). Again, the art assets you'll
be using are constructed from parts of the Vectorized Playing Cards 1.3 by Chris Aguilar.1

Understanding Bartok
For a description of Bartok and how to play, see Chapter 1, where I use it extensively as an
example. In short, Bartok is very similar to the commercial game Uno, except that it is
played with a standard deck of cards, and in the traditional Bartok card game, the winner of
each round is able to add a rule to the game. In the Chapter 1 example, I also included three
variations of the rules, but you won't create those in this chapter; I'll leave that to you to
accomplish later.

To play an online version of the Bartok game, you can visit http://book.prototools.net and
look under Chapter 1.

Making a New Scene
As with much of this project, the scene is based on the scene you made for Prospector.

755

http://book.prototools.net
http://book.prototools.net

1. Select __Prospector_Scene_0 in the Project pane and then choose Edit > Duplicate
from the menu bar. This makes a new Scene named __Prospector_Scene_1.

2. Rename this new scene to __Bartok_Scene_0 and double-click it to open it. You can
tell that it has opened because the title bar of the Unity window changes to reflect the
new scene name and __Bartok_Scene_0 appears at the top of the Hierarchy pane.

Let's get rid of some of the things you don't need for Bartok.

3. Select _Scoreboard and HighScore under the Canvas in the Hierarchy pane and delete
them (Edit > Delete from the menu bar). This game won't be scored, so you don't need
either of those.

4. Similarly, you should delete both the GameOver and RoundResult children of Canvas
from this scene. You'll make use of them later but you can always grab copies from
__Prospector_Scene_0 when you need them.

5. Select _MainCamera and remove the Prospector (Script), ScoreManager (Script), and
Layout (Script) components (right-click the name of each [or click the gear to the right
of the name of each] and choose Remove Component). You should be left with a
_MainCamera that has all the proper settings for Transform and Camera and also still
has a Deck (Script) component.

6. Change the background. Select the ProspectorBackground GameObject in the
Hierarchy pane (not the Texture2D in the Project Pane) and rename it
BartokBackground.

7. Create a new Material in the Materials folder (Assets > Create > Material from the
menu bar) and name it BartokBackground Mat. Drag this new material onto
BartokBackground in the Hierarchy. Notice in the Game pane that this made things very
dark. (This is because the new material has the Unity Standard shader whereas the
previous material used the Unlit shader.)

8. To remedy this, add a directional light to the scene (GameObject > Light > Directional
Light). The transform for the BartokBackground and directional light should be as
follows:
BartokBackground (Quad) P:[0, 0, 1] R:[0, 0, 0] S:[26.667, 20,

1]
Directional Light P:[-100, -100, 0] R:[50, -30, 0] S:[1, 1, 1]

This should set the scene properly. Note that the position of the Directional Light doesn't
matter at all to the scene (only rotation matters for directional lights), but it does get the
light out of the way of what you need to do in the Scene pane. Save your scene.

The Importance of Adding Card Animation

756

This will be a game for a single human player, but the game of Bartok works best with four
players, so three of the players will be AIs (artificial intelligences). Because Bartok is
such a simple game, the AIs won't have to be good; they just need to act. When working
with multiplayer turn-based games—particularly those that have AI opponents—you have
to make it clear to the player whose turn it is and what the other players are doing. For this
to work, you'll make the cards animate from place to place in this game. This wasn't
necessary in Prospector because the player was taking all the actions herself, and it was
obvious to her what the result should be. Because the player of Bartok is presented with
three other hands that will be face-down to her, the animation can be used as an important
way to communicate what actions the AI players are taking.

Much of the challenge in designing this tutorial was in creating good animations and making
sure that the game waited properly for each animation to end before moving on to the next
thing. Because of that, you will see use of SendMessage() and Invoke() in this
project as well as the use of more specific callback objects than SendMessage()
allows. Instead, you'll pass a C# class instance to an object and then call a callback
function on the instance when the object is done moving, which is less flexible than
SendMessage() but faster and more specific and can also be used for C# classes that
don't extend the MonoBehaviour class.

Build Settings
Whereas the last project was designed as a mobile app, this is designed either as an online
WebGL game or a standalone application for Mac or PC, so the build settings need to
change.

1. From the menu bar, choose File > Build Settings, which opens the window shown in
Figure 33.1.

757

Figure 33.1 The Build Settings window

Under Scenes In Build on your machine, you will see that __Prospector_Scene_0 is
currently in the list of Scenes In Build, but __Bartok_Scene_0 is not.

2. Click the Add Open Scenes button to add __Bartok_Scene_0 to the list of scenes for
this build.

3. Uncheck the box next to __Prospector_Scene_0 to remove it from the list of scenes.
Now your Scenes In Build section should match that in Figure 33.1.

4. If you have used the Unity installer to install the WebGL tools, select WebGL from the
list of platforms; otherwise choose PC, Mac & Linux Standalone. Then click Switch
Platform.

The Switch Platform button turns gray when the switch is complete. This might take a
second or two, but it should be pretty fast. All the other settings should be fine as they are.

When your all of your build settings look like the image in Figure 33.1, you can close this
window. (Don't click Build yet; you do that after actually making the game.)

758

5. Look at the pop-up menu under the title of the Game pane. From that list of aspect
ratios, change it to Standalone (1024x768). This ensures that your game aspect ratio
looks the same as the examples that you'll see throughout this tutorial.

Coding Bartok
Just as you had a Prospector class to manage the game and a CardProspector:Card class to
extend Card and add game-specific capabilities, this game will require both a Bartok and
CardBartok:Card class.

1. Create both a Bartok and a CardBartok C# script in the __Scripts folder of the Project
pane (Assets > Create > C# Script).

2. Double-click the CardBartok script to open it in MonoDevelop and enter the following
code. (If you want, you can copy some of this from the CardProspector script.)

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

// CBState includes both states for the game and to… states for movement // a
public enum CBState {
 toDrawpile,
 drawpile,
 toHand,
 hand,
 toTarget,
 target,
 discard,
 to,
 idle
}

public class CardBartok : Card { // b
 // Static variables are shared by all instances of CardBartok
 static public float MOVE_DURATION = 0.5f;
 static public string MOVE_EASING = Easing.InOut;
 static public float CARD_HEIGHT = 3.5f;
 static public float CARD_WIDTH = 2f;

 [Header("Set Dynamically: CardBartok")]
 public CBState state = CBState.drawpile;

 // Fields to store info the card will use to move and rotate
 public List<Vector3> bezierPts;
 public List<Quaternion> bezierRots;
 public float timeStart, timeDuration;

 // When the card is done moving, it will call reportFinishTo.SendMessage()

759

 public GameObject reportFinishTo = null;

 // MoveTo tells the card to interpolate to a new position and rotation
 public void MoveTo(Vector3 ePos, Quaternion eRot) {
 // Make new interpolation lists for the card.
 // Position and Rotation will each have only two points.
 bezierPts = new List<Vector3>();
 bezierPts.Add (transform.localPosition); // Current position
 bezierPts.Add (ePos); // Current rotation

 bezierRots = new List<Quaternion>();
 bezierRots.Add (transform.rotation); // New position
 bezierRots.Add (eRot); // New rotation

 if (timeStart == 0) { // c
 timeStart = Time.time;
 }
 // timeDuration always starts the same but can be overwritten later
 timeDuration = MOVE_DURATION;

 state = CBState.to; // d
 }

 public void MoveTo(Vector3 ePos) { // e
 MoveTo(ePos, Quaternion.identity);
 }

 void Update() {
 switch (state) { // f
 case CBState.toHand:
 case CBState.toTarget:
 case CBState.toDrawpile:
 case CBState.to:
 float u = (Time.time - timeStart)/timeDuration; // g
 float uC = Easing.Ease (u, MOVE_EASING);

 if (u<0) { // h
 transform.localPosition = bezierPts[0];
 transform.rotation = bezierRots[0];
 return;
 } else if (u>=1) { // i
 uC = 1;
 // Move from the to... state to the proper next state

 if (state == CBState.toHand) state = CBState.hand;
 if (state == CBState.toTarget) state = CBState.target;
 if (state == CBState.toDrawpile) state = CBState.drawpile;
 if (state == CBState.to) state = CBState.idle;

 // Move to the final position
 transform.localPosition = bezierPts[bezierPts.Count-1];
 transform.rotation = bezierRots[bezierPts.Count-1];

 // Reset timeStart to 0 so it gets overwritten next time

760

 timeStart = 0;

 if (reportFinishTo != null) { // j
 reportFinishTo.SendMessage("CBCallback", this);
 reportFinishTo = null;
 } else { // If there is nothing to callback
 // Just let it stay still.
 }
 } else { // Normal interpolation behavior (0 <= u < 1) // k
 Vector3 pos = Utils.Bezier(uC, bezierPts);
 transform.localPosition = pos;
 Quaternion rotQ = Utils.Bezier(uC, bezierRots);
 transform.rotation = rotQ;
 }
 break;
 }

 }
}

a. The enum CBState includes both the possible states that a CardBartok can have in
this game and various to… states that represent a CardBartok as it animates toward
one of those states.

b. CardBartok extends Card, just as CardProspector did.
c. If timeStart is 0, then it's set to the current time (causing movement to start

immediately); otherwise, movement will begin at timeStart. This way, if
timeStart has previously been set to something other than 0, it won't be
overwritten. This will allow us to stagger the timing of various card animations.

d. Initially, state is set to just CBState.to. The calling method will later specify
whether state should be CBState.toHand or CBState.toTarget.

e. This is an overload of MoveTo() that doesn't require a rotation to be passed in.
f. Because switch statements allow cases to "fall through" as long as there isn't any code

between them, all the to… CBStates (i.e., toHand, toTarget, and so on)—where
the card is interpolating from one place to another—can be handled together.

g. The float u interpolates from 0 to 1 across the course of this CardBartok's movement.
u is derived from the current time since timeStart divided by the desired duration
of the movement (e.g., if timeStart = 5, timeDuration = 10, and
Time.time = 11, then u = (11-5) / 10 = 0.6). This u is then passed into the
Easing.Ease() method of Utils.cs to curve the u value, resulting in a uC value
that will make the card animation appear more natural. See Easing for Linear
Interpolations in Appendix B for more info.

h. u usually ranges from 0 to 1. This handles the situation when u < 0, in which case
you shouldn't move yet and should stay at the initial position. The u < 0 case can
happen when you set timeStart to some future time to delay the beginning of

761

movement.
i. In the case where u >= 1, you want to clamp u to 1 so that the card doesn't overshoot

its movement target. This is also the time to stop movement by switching to another
CBState.

j. If there's a callback GameObject, then use SendMessage() to call the
CBCallback method with this as the parameter. After calling
SendMessage(), reportFinishTo must be set to null so that it this
CardBartok doesn't continue to report to the same GameObject every subsequent time
it moves.

k. When 0 <= u < 1, just interpolate from the previous location to the next one. Use a
Bézier curve function to move this to the right point. Position and rotation are handled
separately by different overloads of the Utils.Bezier() method. See Bézier
Curves in Appendix B for more information.

A lot of this is an adaptation and expansion of the code that you saw in the preceding
chapter for the FloatingScore class. The CardBartok version of interpolation also
interpolates Quaternions (a class that handles rotations), which will be important because
you want the cards in Bartok to fan as if they were being held by a player.

3. Open the Bartok class and enter this code. The first thing you want to do in the Bartok
class is to make sure that the Deck class is working properly to create all 52 cards:

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.SceneManagement;

public class Bartok : MonoBehaviour {
 static public Bartok S;

 [Header("Set in Inspector")]
 public TextAsset deckXML;
 public TextAsset layoutXML;
 public Vector3 layoutCenter = Vector3.zero;

 [Header("Set Dynamically")]
 public Deck deck;
 public List<CardBartok> drawPile;
 public List<CardBartok> discardPile;

 void Awake() {
 S = this;

 }

762

 void Start () {
 deck = GetComponent<Deck>(); // Get the Deck
 deck.InitDeck(deckXML.text); // Pass DeckXML to it
 Deck.Shuffle(ref deck.cards); // This shuffles the deck //
a

 }

}

a. The ref keyword passes a reference to deck.cards, which allows
deck.cards to be modified directly by Deck.Shuffle().

As you can see, most of this is the same as what you saw in Prospector, except that you're
now dealing with the CardBartok class for cards rather than the CardProspector class.

Setting Up PrefabCard in the Inspector
At this time, you should also adjust other aspects of PrefabCard in the Inspector.

1. Select PrefabCard in _Prefabs folder of the Project pane.
2. Set the Box Collider component's Is Trigger field to true.
3. Set the Size.z of the Box Collider component to 0.1.
4. Add a Rigidbody component to PrefabCard (Component > Physics > Rigidbody).
5. Set the Rigidbody's Use Gravity field to false.
6. Set the Rigidbody's Is Kinematic field to true.

The Box Collider and Rigidbody components on PrefabCard should now look like Figure
33.2.

763

Figure 33.2 Box Collider and Rigidbody settings for PrefabCard

7. You need to swap a new CardBartok (Script) component for the existing
CardProspector (Script) component.
a. Click the gear icon to the right of the name of the CardProspector (Script) component

and choose Remove Component.
b. Attach a CardBartok script to PrefabCard.

Setting Up _MainCamera in the Inspector
Follow these steps to set up _MainCamera in the Inspector:

1. Attach the Bartok script to _MainCamera in the Hierarchy (assign it however you like;
you should know what you're doing by now).

2. In the Hierarchy pane, select _MainCamera. The attached Bartok (Script) component
is at the bottom of the Inspector. (If you want to move it up, you can click the gear next
to its name and choose Move Up.)

3. Set the DeckXML field of Bartok (Script) to the DeckXML file that is in the Resources
folder of the Project pane. (Because the deck remains unchanged [still 13 cards of 4
suits], this is the same file that was used by Prospector.)

764

4. Set the startFaceUp field of the Deck (Script) component to true (checked). This
shows all the cards face-up when you click Play.

Now when you click Play, you should see a grid of cards just as you saw in the early stages
of Prospector. In only a few pages, you're pretty far along.

The Game Layout
The layout for Bartok differs significantly from Prospector. Bartok has a draw pile and
discard pile in the middle of the screen as well as four hands of cards distributed to the top,
left, bottom, and right sides of the screen. The hands should be fanned as if they were being
held by players (see Figure 33.3).

Figure 33.3 The eventual layout of Bartok

This requires a somewhat different layout XML document than you used for Prospector.

1. Select LayoutXML in the Resources folder of the Project pane and duplicate it (Edit >
Duplicate).

2. Name the duplicate BartokLayoutXML and enter the following text. Bold text differs
from the original LayoutXML text. Be sure to remove any text that you don't see here.

Click here to view code image

765

<xml>
 <!-- This file includes info for laying out the Bartok card game. -->

 <!-- The multiplier is multiplied by the x and y attributes below. -->
 <!-- This determines how loose or tight the layout is. -->
 <multiplier x="1" y="1" />

 <!-- This positions the draw pile and staggers it -->
 <slot type="drawpile" x="1.5" y="0" xstagger="0.05" layer="1"/>

 <!-- This positions the discard pile -->
 <slot type="discardpile" x="-1.5" y="0" layer="2"/>

 <!-- This positions the target card -->
 <slot type="target" x="-1.5" y="0" layer="4"/>

 <!-- These slots are for the four hands held by the four players -->
 <slot type="hand" x="0" y="-8" rot="0" player="1" layer="3"/>
 <slot type="hand" x="-10" y="0" rot="270" player="2" layer="3"/>
 <slot type="hand" x="0" y="8" rot="180" player="3" layer="3"/>
 <slot type="hand" x="10" y="0" rot="90" player="4" layer="3"/>

</xml>

The BartokLayout C# Script
Now you must also rewrite the class that does the layout to both fan the cards properly and
to take advantage of the new ability to interpolate cards.

1. Create a new C# script named BartokLayout in the Scripts folder and enter this code:
Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

[System.Serializable] // a
public class SlotDef { // b
 public float x;
 public float y;
 public bool faceUp = false;
 public string layerName = "Default";
 public int layerID = 0;
 public int id;
 public List<int> hiddenBy = new List<int>(); // Unused in Bartok
 public float rot; // rotation of hands
 public string type = "slot";
 public Vector2 stagger;
 public int player; // player number of a hand
 public Vector3 pos; // pos derived from x, y, & multiplier
}

766

public class BartokLayout : MonoBehaviour {
 // Leave this empty for now
}

a. [System.Serializable] makes SlotDef able to be seen in the Unity Inspector.
b. The SlotDef class is not based on MonoBehaviour, so it doesn't need its own file.

2. Save this code and return to Unity.

You'll notice that your change causes an error in the console:

error CS0101: The namespace 'global::' already contains a definition for 'SlotDef'.

This is because the public class SlotDef in the Layout script (from Prospector) conflicts
with the public class SlotDef in the new BartokLayout script.

3. Either delete the Layout script entirely or open the Layout script in MonoDevelop and
comment out the section defining SlotDef.
a. To comment out a large chunk of code, just place a /* before the code and a */ after

the code you want to comment. You can also comment out a large section by selecting
the lines of code in MonoDevelop and choosing Edit > Format > Toggle Line
Comment(s) from the menu bar to place a single line comment (//) before each line
you have selected.

b. Regardless of which method you use to comment out SlotDef from the Layout script,
make sure that you also comment out the [System.Serializable] line
preceding the SlotDef definition there.

c. After you have eliminated the SlotDef class from the Layout script, save the Layout
script.

4. Return to the BartokLayout script and continue editing it by adding the bolded lines in
the following code listing:

Click here to view code image

public class BartokLayout : MonoBehaviour {
 [Header("Set Dynamically")]
 public PT_XMLReader xmlr; // Just like Deck, this has a PT_XMLReader
 public PT_XMLHashtable xml; // This variable is for faster xml access
 public Vector2 multiplier; // Sets the spacing of the tableau
 // SlotDef references
 public List<SlotDef> slotDefs; // The SlotDefs hands
 public SlotDef drawPile;
 public SlotDef discardPile;
 public SlotDef target;

 // Bartok calls this method to read in the BartokLayoutXML.xml file
 public void ReadLayout(string xmlText) {

767

 xmlr = new PT_XMLReader();
 xmlr.Parse(xmlText); // The XML is parsed
 xml = xmlr.xml["xml"][0]; // And xml is set as a shortcut to the XML

 // Read in the multiplier, which sets card spacing
 multiplier.x = float.Parse(xml["multiplier"][0].att("x"));
 multiplier.y = float.Parse(xml["multiplier"][0].att("y"));

 // Read in the slots
 SlotDef tSD;
 // slotsX is used as a shortcut to all the <slot>s
 PT_XMLHashList slotsX = xml["slot"];

 for (int i=0; i<slotsX.Count; i++) {
 tSD = new SlotDef(); // Create a new SlotDef instance
 if (slotsX[i].HasAtt("type")) {
 // If this <slot> has a type attribute parse it
 tSD.type = slotsX[i].att("type");
 } else {
 // If not, set its type to "slot"; it's a card in the rows
 tSD.type = "slot";
 }

 // Various attributes are parsed into numerical values
 tSD.x = float.Parse(slotsX[i].att("x"));
 tSD.y = float.Parse(slotsX[i].att("y"));
 tSD.pos = new Vector3(tSD.x*multiplier.x, tSD.y*multiplier.y, 0);

 // Sorting Layers
 tSD.layerID = int.Parse(slotsX[i].att("layer")); //
a
 tSD.layerName = tSD.layerID.ToString(); // b

 // pull additional attributes based on the type of each <slot>
 switch (tSD.type) {
 case "slot":
 // ignore slots that are just of the "slot" type
 break;

 case "drawpile": //
c
 tSD.stagger.x = float.Parse(slotsX[i].att("xstagger"));
 drawPile = tSD;
 break;

 case "discardpile":
 discardPile = tSD;
 break;

 case "target":
 target = tSD;
 break;

 case "hand": //

768

d
 tSD.player = int.Parse(slotsX[i].att("player"));
 tSD.rot = float.Parse(slotsX[i].att("rot"));
 slotDefs.Add (tSD);
 break;
 }
 }
 }
}

a. In this game, the Sorting Layers are named 1, 2, 3, ... through 10. The layers are used
to make sure that the correct cards are on top of the others. In Unity 2D, all of the
assets are effectively treated as if they were at the same Z depth, so the sorting layers
are used to differentiate between them.

b. This converts the number of the layerID to a text layerName.
c. The drawpile xstagger value is still read in, but this is not used in Bartok because

the players don't actually need to know how many cards are in the draw pile.
d. This section reads in data particular to each player's hand, including the rotation of

the hand and the number of the player who will have access to that hand.
5. Attach the BartokLayout script to _MainCamera. (Drag the BartokLayout script from

the Project pane onto _MainCamera in the Hierarchy pane.)
6. In the Bartok (Script) component on _MainCamera, assign the BartokLayoutXML file

in the Resources folder of the Project pane to the layoutXML field.
7. Open the Bartok script and add the following bolded code to have it make use of

BartokLayout:
Click here to view code image

public class Bartok : MonoBehaviour {
 static public Bartok S;

 …
 public List<CardBartok> discardPile;

 private BartokLayout layout;
 private Transform layoutAnchor;

 void Awake() { … }

 void Start () {
 deck = GetComponent<Deck>(); // Get the Deck
 deck.InitDeck(deckXML.text); // Pass DeckXML to it
 Deck.Shuffle(ref deck.cards); // This shuffles the deck

 layout = GetComponent<BartokLayout>(); // Get the Layout
 layout.ReadLayout(layoutXML.text); // Pass LayoutXML to it

769

 drawPile = UpgradeCardsList(deck.cards);
 }

 List<CardBartok> UpgradeCardsList(List<Card> lCD) { // a
 List<CardBartok> lCB = new List<CardBartok>();
 foreach(Card tCD in lCD) {
 lCB.Add (tCD as CardBartok);
 }
 return(lCB);
 }

}

a. This method upgrades all the Cards in the List<Card> lCD to be CardBartoks
and creates a new List<CardBartok> to hold them. This works just like it did in
Prospector, so they were always CardBartoks, but this lets Unity know that.

8. Return to Unity and run the project.

When you run the project now, you should be able to select _MainCamera from the
Hierarchy pane and expand the variables in the BartokLayout (Script) component to see
that they're being populated with the correct values from BartokLayoutXML. You should
also look at the draw-Pile field of Bartok (Script) to see that it is properly filled with
52 shuffled CardBartok instances.

The Player Class
Because this game has four players, I've chosen to create a class to represent players that
can do things like gather cards into a hand and eventually choose what to play using simple
artificial intelligence. One thing that is unique about the Player class relative to others that
you've written is that the Player class does not extend MonoBehaviour (or any other class),
yet it still has its own separate C# script file. Because Player does not extend
MonoBehaviour, it doesn't receive calls from Awake(), Start(), or Update() and
that you can't call some functions like print() from within it or attach it to a GameObject
as a component. However, none of that is necessary for the Player class, so it is actually
easier in this case to have Player not subclass MonoBehaviour.

1. Create a new C# script in the __Scripts folder named Player and enter this code:
Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using System.Linq; // Enables LINQ queries, which will be explained soon
// The player can either be human or an ai
public enum PlayerType {
 human,
 ai

770

}

[System.Serializable] // a
public class Player { // b
 public PlayerType type = PlayerType.ai;
 public int playerNum;
 public SlotDef handSlotDef;
 public List<CardBartok> hand; // The cards in this player's hand

 // Add a card to the hand
 public CardBartok AddCard(CardBartok eCB) {
 if (hand == null) hand = new List<CardBartok>();

 // Add the card to the hand
 hand.Add (eCB);

 return(eCB);
 }

 // Remove a card from the hand
 public CardBartok RemoveCard(CardBartok cb) {
 // If hand is null or doesn't contain cb, return null
 if (hand == null|| !hand.Contains(cb)) return null;
 hand.Remove(cb);
 return(cb);
 }
 }

a. [System.Serializable] instructs Unity to serialize the Player class, enabling it to be
viewed and edited within the Unity Inspector.

b. The Player class stores information that is important to each player. As mentioned
before, it does not extend MonoBehaviour or any other class, so you must delete the ":
MonoBehaviour" from this line.

2. Add the following code to Bartok to make use of the Player class:
Click here to view code image

public class Bartok : MonoBehaviour {
 …
 [Header("Set in Inspector")]
 …
 public Vector3 layoutCenter = Vector3.zero;
 public float handFanDegrees =
10f; // a

 [Header("Set Dynamically")]
 …
 public List<CardBartok> discardPile;
 public
List<Player> players; // b
 public CardBartok targetCard;

 private BartokLayout layout;

771

 private Transform layoutAnchor;

 void Awake() { … }

 void Start () {
 …
 drawPile = UpgradeCardsList(deck.cards);
 LayoutGame();
 }

 List<CardBartok> UpgradeCardsList(List<Card> lCD) { … }

 // Position all the cards in the drawPile properly
 public void ArrangeDrawPile() {
 CardBartok tCB;

 for (int i=0; i<drawPile.Count; i++) {
 tCB = drawPile[i];
 tCB.transform.SetParent(layoutAnchor);
 tCB.transform.localPosition = layout.drawPile.pos;
 // Rotation should start at 0
 tCB.faceUp = false;
 tCB.SetSortingLayerName(layout.drawPile.layerName);
 tCB.SetSortOrder(-i*4); // Order them front-to-back
 tCB.state = CBState.drawpile;
 }
 }

 // Perform the initial game layout
 void LayoutGame() {
 // Create an empty GameObject to serve as the tableau's anchor //
c
 if (layoutAnchor == null) {
 GameObject tGO = new GameObject("_LayoutAnchor");
 layoutAnchor = tGO.transform;
 layoutAnchor.transform.position = layoutCenter;
 }

 // Position the drawPile cards
 ArrangeDrawPile();

 // Set up the players
 Player pl;
 players = new List<Player>();
 foreach (SlotDef tSD in layout.slotDefs) {
 pl = new Player();
 pl.handSlotDef = tSD;
 players.Add(pl);
 pl.playerNum = tSD.player;
 }
 players[0].type = PlayerType.human; // Make only the 0th player human
 }

 // The Draw function will pull a single card from the drawPile and return

772

it
 public CardBartok Draw() {
 CardBartok cd = drawPile[0]; // Pull the 0th CardProspector
 drawPile.RemoveAt(0); // Then remove it from List<> drawPile
 return(cd); // And return it
 }

 // This Update() is temporarily used to test adding cards to players' hands
 void Update() { //
d
 if (Input.GetKeyDown(KeyCode.Alpha1)) {
 players[0].AddCard(Draw ());
 }
 if (Input.GetKeyDown(KeyCode.Alpha2)) {
 players[1].AddCard(Draw ());
 }
 if (Input.GetKeyDown(KeyCode.Alpha3)) {
 players[2].AddCard(Draw ());
 }
 if (Input.GetKeyDown(KeyCode.Alpha4)) {
 players[3].AddCard(Draw ());
 }
 }
 }

a. handFanDegrees determines how many degrees rotation there should be between
each card in a fanned hand.

b. The List<Player> players holds a reference to the data for each player.
Because the Player class is [System.Serializable], exploring the depths of the
players List within the Unity Inspector is possible.

c. The layoutAnchor is a Transform created to be the parent in the Hierarchy over
all the cards in the tableau. First, an empty GameObject is created named
_LayoutAnchor. The Transform component of that GameObject is then assigned to the
field layoutAnchor. Finally, the position of layoutAnchor is set to the
location specified by layoutCenter.

d. This Update() function will be used to test the code you've written to add cards to
each player's hand. It is only temporary and will be replaced by other code later in
this chapter. The Keycode.Alpha1 through Keycode.Alpha4 refer to the
number keys 1–4 on the main keyboard above the letters. When one of these keys is
pressed, a Card is added to that player's hand.

3. Save the scripts, return to Unity, and run the game again.
4. Select _MainCamera in the Hierarchy and find the players field on the Bartok

(Script) component. Open the disclosure triangle for players, and you'll see four
elements, one for each player. Open those disclosure triangles, as well, and then open
up the disclosure triangles for hand under each. Because of the new Update()
method, if you click in the Game pane (which gives the game focus and allows it to

773

react to keyboard input), you can press the number keys 1 to 4 on your keyboard (across
the top of the keyboard, not the keypad) to add cards to the players' hands. The Inspector
for the Bartok (Script) component should show cards being added to hands as shown in
Figure 33.4.

Figure 33.4 Bartok (Script) component showing players and their hands

This Update() method, of course, won't be used in the final version of the game, but
building little functions like this that allow you to test features before other aspects of the
game are ready is often useful. In this case, you needed a way to test whether the
Player.AddCard() method worked properly, and this was a quick way to do so.

Fanning the Hands
Now that cards are logically being moved from the drawPile into players' hands, it's time to
move them there graphically as well.

1. Add the following code to the Player class to make this happen:
Click here to view code image

public class Player {
 …

 public CardBartok AddCard(CardBartok eCB) {
 if (hand == null) hand = new List<CardBartok>();

 // Add the card to the hand
 hand.Add (eCB);
 FanHand();

774

 return(eCB);
 }

 // Remove a card from the hand
 public CardBartok RemoveCard(CardBartok cb) {
 // If hand is null or doesn't contain cb, return null
 if (hand == null || !hand.Contains(cb)) return null;
 hand.Remove(cb);
 FanHand();
 return(cb);
 }

 public void FanHand() { // a
 // startRot is the rotation about Z of the first card // b
 float startRot = 0;
 startRot = handSlotDef.rot;
 if (hand.Count > 1) {
 startRot += Bartok.S.handFanDegrees * (hand.Count-1) / 2;
 }

 // Move all the cards to their new positions
 Vector3 pos;
 float rot;
 Quaternion rotQ;
 for (int i=0; i<hand.Count; i++) {
 rot = startRot - Bartok.S.handFanDegrees*i;
 rotQ = Quaternion.Euler(0, 0, rot); // c

 pos = Vector3.up * CardBartok.CARD_HEIGHT / 2f; // d

 pos = rotQ * pos; // e

 // Add the base position of the player's hand (which will be at the
 // bottom-center of the fan of the cards)
 pos += handSlotDef.pos; // f
 pos.z = -0.5f*i; // g

 // Set the localPosition and rotation of the ith card in the hand
 hand[i].transform.localPosition = pos; // h
 hand[i].transform.rotation = rotQ;
 hand[i].state = CBState.hand;

 hand[i].faceUp = (type == PlayerType.human); // i

 // Set the SortOrder of the cards so that they overlap properly
 hand[i].SetSortOrder(i*4); // j
 }
 }
 }

a. FanHand()rotates the Cards to appear fanned in an arc as shown in Figure 33.1.
b. startRot is the rotation about Z of the first card (the one rotated the most

counterclockwise). It starts with the rotation of the entire hand as specified in

775

BartokLayoutXML and then rotates counterclockwise so that the fanned cards will
appear to be centered when rotated. After choosing startRot, each subsequent
card is rotated Bartok.S.handFanDegrees clockwise from the previous card.

c. rotQ holds the Quaternions representation of the rot about the Z axis.
d. pos is then chosen, which is a Vector3 location one half Card height above the center

(i.e., localPosition = [0, 0, 0]) of this hand, so pos is initially [0, 1.75, 0].
e. The Quaternion rotQ is then multiplied by the Vector3 pos. When a Quaternion is

multiplied by a Vector3, it rotates the Vector3, so now pos is rotated rot degrees
around the Z axis of the local origin.

f. The base position of the hand is added to pos.
g. The pos.z of the various cards in the hand is staggered. While this isn't actually

visible (because you're dealing with 2D sprites), it does keep the 3D Box Colliders
you're using from overlapping.

h. Apply the pos and rotQ you calculated to the ith Card in the hand.
i. Only the human player's Cards should be face up.
j. Setting the sort order of each card causes them to overlap properly within a single

sorting layer.
2. Save the Player script, return to Unity, and click Play.

Try pressing the numbers 1, 2, 3, and 4 on the top row of your keyboard; you should see
cards jumping into the players' hands and being fanned correctly. However, you probably
noticed that the cards aren't sorted by rank in the human player's hand, which looks kind of
sloppy. Luckily, you can do something about that.2

A Tiny Introduction to LINQ
LINQ, which stands for Language INtegrated Query, is a fantastic extension to C# that has
had many books written about it. Fully 24 pages of Joseph and Ben Albahari's fantastic C#
5.0 Pocket Reference3 are devoted to LINQ (wherein they only devote four pages to
arrays). Most of LINQ is far beyond the scope of this book, but I hope that this brief
introduction will lead you to consider LINQ as a possible solution to problems you may
encounter in later projects.

LINQ has the capability to do database-like queries within a single line of C#, allowing
you to select and order specific elements in an array. This is how you will sort the cards in
the human player's hand.

1. Add the following bolded lines to Player.AddCard():
Click here to view code image

776

public class Player {
 …

 // Add a card to the hand
 public CardBartok AddCard(CardBartok eCB) {
 if (hand == null) hand = new List<CardBartok>();

 // Add the card to the hand
 hand.Add (eCB);

 // Sort the cards by rank using LINQ if this is a human
 if (type == PlayerType.human) {
 CardBartok[] cards = hand.ToArray(); //
a

 // This is the LINQ call
 cards = cards.OrderBy(cd => cd.rank).ToArray(); //
b

 hand = new List<CardBartok>(cards); //
c
 // Note: LINQ operations can be a bit slow (like it could take a
 // couple of milliseconds), but since we're only doing it once
 // every round, it isn't a problem.
 }

 FanHand();
 return(eCB);
 }

 …
}

a. LINQ works on arrays of values, so you create a CardBartok[] array cards
from the List<CardBartok> hand.

b. This line is a LINQ call that works on the cards array of CardBartoks. It is similar
to doing a foreach(CardBartok cd in cards) and sorting them by rank
(which is what is meant by cd => cd.rank). It then returns a sorted array, which
is assigned to cards, replacing the old, unsorted array. LINQ syntax is different from
the normal C# you've seen, which is why this may look strange to you.

Note that LINQ operations can be a bit slow—a single call could take a couple of
milliseconds—but because you're only making this LINQ call once every turn, it isn't
a problem.

c. After the cards array is sorted, you create a new List<CardBartok> from it
and assign that to hand, replacing the old unsorted List.

As you can see, with a single line of LINQ code, you were able to sort the list. LINQ has
tremendous capabilities that are beyond the scope of this book, but I highly recommend you
look them up if you need to do sorting or other query-like operations on elements in an

777

array (e.g., if you had an array of people and needed to find all of them between the ages of
18 and 25 who had names that start with a "J").

2. Save the Player script, return to Unity, and play the scene. The cards in the human
player's hand are now always in order by rank.

The cards are going to need to animate into position for the game to be intelligible to the
player, so it's time to make the cards move.

Making Cards Move!
Now comes the fun part, where you make the cards actually interpolate from one position
and rotation to the next. This makes the card game look much more like it's actually being
played, and as you'll see, it makes it easier for the player to understand what is happening
in the game.

A lot of the interpolation that occurs here is based on that which you did for FloatingScore
in Prospector. Just like FloatingScore, you'll start an interpolation that the card itself will
handle, and when the card is done moving, it will send a callback message to notify the
game that it's done.

Let's start by moving the cards smoothly into the players' hands. CardBartok already has a
lot of the movement code written, so let's take advantage of it.

1. Modify the following bolded code of the Player.FanHand() method:
Click here to view code image

public class Player {
 …

 public void FanHand() {
 …
 for (int i=0; i<hand.Count; i++) {
 …
 pos.z = -0.5f*i;

 // Set the localPosition and rotation of the ith card in the hand
 hand[i].MoveTo(pos, rotQ); // Tell CardBartok to interpolate
 hand[i].state = CBState.toHand;
 // After the move, CardBartok will set the state to CBState.hand

 /* <= This begins a multiline comment // a
 hand[i].transform.localPosition = pos;
 and[i].transform.rotation = rotQ;
 hand[i].state = CBState.hand;
 This ends the multiline comment => */ // b

778

 hand[i].faceUp = (type == PlayerType.human);

 …
 }
 }
 }

a. The /* begins a multiline comment, so all lines of code between it and the following
*/ are considered to be commented out (and are ignored by C#). This is the same
way that you could have commented out the SlotDef class in the Layout script at the
beginning of this chapter.

b. The */ ends the multiline comment.
2. Save the Player script, return to Unity, and play the scene.

Now when you play the scene and press the number keys (1, 2, 3, 4), you see the cards
actually move into place! Because CardBartok does most of the heavy lifting, this took very
little code to implement. This is one of the great advantages of object-oriented code. You
trust that CardBartok knows how to move on its own so you can just call MoveTo() with
a position and rotation, and CardBartok will do the rest.

Managing the Initial Card Deal
In the beginning of a round of Bartok, seven cards are dealt to each player, and then a single
card is turned up from the drawPile to become the first target card.

1. Add the following code to Bartok to make this happen:
Click here to view code image

public class Bartok : MonoBehaviour {
 …
 [Header("Set in Inspector")]
 …
 public float handFanDegrees = 10f;
 public int numStartingCards = 7;
 public float drawTimeStagger = 0.1f;

 …
 void LayoutGame() {
 …
 players[0].type = PlayerType.human; // Make the 0th player human

 CardBartok tCB;
 // Deal seven cards to each player
 for (int i=0; i<numStartingCards; i++) {
 for (int j=0; j<4; j++) { //
a
 tCB = Draw (); // Draw a card
 // Stagger the draw time a bit.

779

 tCB.timeStart = Time.time + drawTimeStagger * (i*4 + j); //
b

 players[(j+1)%4].AddCard(tCB); // c
 }
 }

 Invoke("DrawFirstTarget", drawTimeStagger * (numStartingCards*4+4));//
d

 }

 public void DrawFirstTarget() {
 // Flip up the first target card from the drawPile
 CardBartok tCB = MoveToTarget(Draw ());
 }

 // This makes a new card the target
 public CardBartok MoveToTarget(CardBartok tCB) {
 tCB.timeStart = 0;
 tCB.MoveTo(layout.discardPile.pos+Vector3.back);
 tCB.state = CBState.toTarget;
 tCB.faceUp = true;

 targetCard = tCB;

 return(tCB);
 }

 // The Draw function will pull a single card from the drawPile and return it
 public CardBartok Draw() { … }
 …
}

a. The j variable ranges from 0 to 3 because there are four players. If the game
accommodated different numbers of players, this would need to be dynamic rather
than using the integer literal 4 throughout this code. This would be a great place to use
a const, but it wouldn't have fit within the width of the page.

b. Staggering the timeStart for each Card causes them to be dealt out one after the
other. Remember the order of operations for math here: drawTimeStagger * (
i*4 + j) happens before adding Time.time. This will cause all cards after the
0th one to begin moving a little later in time, which will look like nice for your
players.

c. Add the card to a Player's hand. The (j+1)%4 causes the index of the players
List loop through the numbers 1, 2, 3, 0 in succession, dealing cards sequentially to
each Player, starting with players[1] (the Player clockwise after the human
Player[0]).

d. After all the initial cards have been drawn, DrawFirstTarget() is called.

780

2. Save the Bartok script, return to Unity, and play the scene.

Upon playing the scene, you will see that the distribution of the seven cards and the draw of
the first target happen properly on schedule; however, the human player's cards are
overlapping each other in strange ways. Just as you did with Prospector, you need to very
carefully manage both the sortingLayerName and the sortingOrder for each of
the cards.

Managing 2D Depth-Sorting Order
In addition to the standard issue of depth-sorting 2D objects, you now have to deal with the
fact that the cards are moving, and there will be some times that you want them in one sort
order and layer at the beginning of the move and another when they arrive. To enable that,
you need to add fields for an eventualSortLayer and eventualSortOrder to
CardBartok. This way, when a card is moving, it will switch to the
eventualSortLayer and eventualSortOrder partway through the move.

1. First, you need to rename all the sorting layers. Open the Tags & Layers settings by
choosing Edit > Project Settings > Tags & Layers from the menu bar.

2. Set the names of Sorting Layers 1 through 10 to 1 through 10, as shown in Figure 33.5.
Add additional Sorting Layers as needed.

781

Figure 33.5 Simply named sorting layers for Bartok

3. Add the following bolded code to CardBartok:
Click here to view code image

public class CardBartok : Card {
 …
 [Header("Set Dynamically")]
 …
 public float timeStart, timeDuration;
 public int eventualSortOrder
 public string eventualSortLayer

 …

 void Update() {
 switch (state) {
 case CBState.toHand:
 case CBState.toTarget:
 case CBState.to:
 …
 } else {
 Vector3 pos = Utils.Bezier(uC, bezierPts);
 transform.localPosition = pos;
 Quaternion rotQ = Utils.Bezier(uC, bezierRots);
 transform.rotation = rotQ;

 if (u>0.5f) { // a

782

 SpriteRenderer sRend = spriteRenderers[0];
 if (sRend.sortingOrder != eventualSortOrder) {
 // Jump to the proper sort order
 SetSortOrder(eventualSortOrder);
 }
 if (sRend.sortingLayerName != eventualSortLayer) {
 // Jump to the proper sort layer
 SetSortingLayerName(eventualSortLayer);
 }
 }

 }
 break;
 }
 }
}

a. When the move is halfway done (i.e., u>0.5f), the Card jumps to the
eventualSortOrder and the eventualSortLayer.

Now that the eventualSortOrder and eventualSortLayer fields exist, you
need to use them throughout the code that has already been written.

4. Incorporate this into the MoveToTarget() method of the Bartok script and also add
a MoveToDiscard() function that moves the target card into the discardPile:

Click here to view code image

public class Bartok : MonoBehaviour {
 …

 public CardBartok MoveToTarget(CardBartok tCB) {
 tCB.timeStart = 0;
 tCB.MoveTo(layout.discardPile.pos+Vector3.back);
 tCB.state = CBState.toTarget;
 tCB.faceUp = true;

 tCB.SetSortingLayerName("10");
 tCB.eventualSortLayer = layout.target.layerName;
 if (targetCard != null) {
 MoveToDiscard(targetCard);
 }

 targetCard = tCB;

 return(tCB);
 }

 public CardBartok MoveToDiscard(CardBartok tCB) {
 tCB.state = CBState.discard;
 discardPile.Add (tCB);
 tCB.SetSortingLayerName(layout.discardPile.layerName);
 tCB.SetSortOrder(discardPile.Count*4);

783

 tCB.transform.localPosition = layout.discardPile.pos + Vector3.back/2;

 return(tCB);
 }

 // The Draw function will pull a single card from the drawPile and return it
 public CardBartok Draw() { … }
 …
}

5. You also need to make some changes to the AddCard() and FanHand() methods of
Player:

Click here to view code image

public class Player {
 …
 public CardBartok AddCard(CardBartok eCB) {
 …
 // Sort the cards by rank using LINQ if this is a human
 if (type == PlayerType.human) {
 …
 }

 eCB.SetSortingLayerName("10"); // Sorts the moving card to the top //
a
 eCB.eventualSortLayer = handSlotDef.layerName;

 FanHand();
 return(eCB);
 }

 // Remove a card from the hand
 public CardBartok RemoveCard(CardBartok cb) { … }

 public void FanHand() {
 …
 hand[i].faceUp = (type == PlayerType.human);

 // Set the SortOrder of the cards so that they overlap properly
 hand[i].eventualSortOrder = i*4; //
b
 //hand[i].SetSortOrder(i*4);
 }
 }
}

a. Setting the sorting layer of the moving card to "10" causes it to be above all other
cards while it's moving. Based on the code you added to CardBartok in step 3 of this
section, halfway through the move, the card will then jump to its
eventualSortLayer.

b. Comment out the line that was here (shown on the subsequent line now) and replace it
with this one.

784

6. Make sure you've saved the changes to all of these scripts, return to Unity, and click
Play. You should now see the cards layering much better.

Handling Turns
In this game, players need to take turns. Start by having the Bartok script track whose turn it
is.

1. Open the Bartok script and add the bolded code shown here:
Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

// This enum contains the different phases of a game turn
public enum TurnPhase {
 idle,
 pre,
 waiting,
 post,
 gameOver
}

public class Bartok : MonoBehaviour {
 static public Bartok S;
 static public Player CURRENT_PLAYER; // a

 …

 [Header("Set Dynamically")]
 …
 public CardBartok targetCard;
 public TurnPhase phase = TurnPhase.idle;

 private BartokLayout layout;

 …

 public void DrawFirstTarget() {
 // Flip up the first target card from the drawPile
 CardBartok tCB = MoveToTarget(Draw ());
 // Set the CardBartok to call CBCallback on this Bartok when it is done
 tCB.reportFinishTo = this.gameObject; //
b
 }

 // This callback is used by the last card to be dealt at the beginning
 public void CBCallback(CardBartok cb) { //
c
 // You sometimes want to have reporting of method calls like this
 Utils.tr("Bartok:CBCallback()",cb.name); //
d

785

 StartGame(); // Start the Game
 }

 public void StartGame() {
 // Pick the player to the left of the human to go first.
 PassTurn(1); //
e
 }

 public void PassTurn(int num=-1) { //
f
 // If no number was passed in, pick the next player
 if (num == -1) {
 int ndx = players.IndexOf(CURRENT_PLAYER);
 num = (ndx+1)%4;
 }
 int lastPlayerNum = -1;
 if (CURRENT_PLAYER != null) {
 lastPlayerNum = CURRENT_PLAYER.playerNum;
 }
 CURRENT_PLAYER = players[num];
 phase = TurnPhase.pre;

// CURRENT_PLAYER.TakeTurn(); //
g

 // Report the turn passing
 Utils.tr("Bartok:PassTurn()", "Old: "+lastPlayerNum, //
h
 "New: "+CURRENT_PLAYER.playerNum);
 // h
 }

 // ValidPlay verifies that the card chosen can be played on the discard pile
 public bool ValidPlay(CardBartok cb) {
 // It's a valid play if the rank is the same
 if (cb.rank == targetCard.rank) return(true);

 // It's a valid play if the suit is the same
 if (cb.suit == targetCard.suit) {
 return(true);
 }

 // Otherwise, return false
 return(false);
 }

 // This makes a new card the target
 public CardBartok MoveToTarget(CardBartok tCB) { … }

 …

 /* Now is a good time to comment out this testing code //
i

786

 // This Update method is used to test adding cards to players' hands
 void Update() {
 if (Input.GetKeyDown(KeyCode.Alpha1)) {
 players[0].AddCard(Draw ());
 }
 if (Input.GetKeyDown(KeyCode.Alpha2)) {
 players[1].AddCard(Draw ());
 }
 if (Input.GetKeyDown(KeyCode.Alpha3)) {
 players[2].AddCard(Draw ());
 }
 if (Input.GetKeyDown(KeyCode.Alpha4)) {
 players[3].AddCard(Draw ());
 }
 }
 */ //
i
}

a. CURRENT_PLAYER is static and public here for two reasons: There should only
ever be one current player in the game, and making this field static will allow the
TurnLight that you'll set up in a subsequent section to access it easily.

b. reportFinishTo is a GameObject field that already exists on the CardBartok
class. It gives the CardBartok a reference back to the gameObject of this Bartok
instance (which is _MainCamera in this case). The existing CardBartok code will
already call SendMessage("CBCallback",this) on the
reportFinishTo GameObject if it is not null.

c. The CDCallback() method is called by the first target card when it is done
moving into place (as just described in).

d. The call to Utils.tr() on this line reports to the Console that CBCallback()
was called. This is the first use you've seen of the static public
Utils.tr() method (tr being short for "trace"). This method takes any number of
arguments (via the params keyword), concatenates them with tabs in between, and
outputs them to the Console pane. It is one of the elements that was added to the
Utils class in the unity-package that you imported into Prospector.
tr() is called here with a string literal of the method name ("Bartok:
CBCallback()") and the name of the GameObject that called CBCallback().

e. The game always starts with the player clockwise from the human player. Because the
human is players[0], passing the turn to player 1 makes players[1] active.

f. The PassTurn() method has an optional parameter allowing you to specify which
player to pass the turn to. Without any int passed in, num defaults to -1, and in the
following four lines, num is then assigned the number for the next clockwise player.

g. This line is currently commented out because the Player class does not yet have a
TakeTurn() method. You uncomment this line as part of the next section.

787

h. These two lines are actually a single line that was too long to fit in the book. You can
type it as one line or as two. Because the first of these two lines does not have a
semicolon (;) at the end, Unity reads both lines as a single statement. Note that the //
h at the end of the first line also does not break Unity's interpretation of it as a single
line. In these cases, I use the code continuation symbol at the beginning of the
second line. You do not need to type the symbol.

i. This Update() method was initially used for testing, but you no longer need it. You
can comment out the whole thing by adding /* before it and */ after it.

2. Save the Bartok script, return to Unity, and click Play. You should see the initial hands
deal out and then a console message that reads something like:
Bartok:PassTurn() Old: -1 New: 1

Shedding Some Light on the Situation
Although the Bartok:PassTurn() Console message from the preceding exercise lets
you know whose turn it is while running Unity, your players won't have access to the
Console. You need another way to show them whose turn it is. To accomplish you can
highlight the background behind the current player with a light.

1. In Unity, choose GameObject > Light > Point Light from the menu bar to create a new
Point Light.

2. Name the new light TurnLight and set its transform to the following:
TurnLight (Point Light) P:[0, 0, -3] R:[0, 0, 0] S:[1, 1, 1]

As you can see, this casts a nice, obvious light on the background. Now you need to add
code to have it show who is the CURRENT_PLAYER.

3. Create a new script named TurnLight in the __Scripts folder of the Project pane.
4. Attach the TurnLight C# script to the GameObject TurnLight in the Hierarchy.
5. Open the TurnLight script and add the following code.

Click here to view code image

using UnityEngine;
using System.Collections;

public class TurnLight : MonoBehaviour {

 void Update () {
 transform.position = Vector3.back*3; //
a

 if (Bartok.CURRENT_PLAYER == null) { //
b
 return;

788

 }

 transform.position += Bartok.CURRENT_PLAYER.handSlotDef.pos; //
c
 }
}

a. This moves the light to its default position above the center of the board ([0, 0, -3]
).

b. If Bartok.CURRENT_PLAYER is null, then you're done.
c. If Bartok.CURRENT_PLAYER is not null, then just add the position of the

current Player to move the light above it.

In the previous edition of the book, the code to move TurnLight was part of the Bartok
class, but in the time since I wrote that edition, I've been moving more toward component-
based code, the core idea of which is to separate out your code into smaller chunks that
have simpler purposes. There's no reason for the Bartok script to even know that a light
exists, so in the second edition, I have the light manage itself.

6. Save the TurnLight script, return to Unity, and click Play.

Now when the cards are dealt, you should see the TurnLight move to hover over the left
player, signifying that it is that player's turn.

A Simple Bartok AI
Now, let's make the AI players able to take turns.

1. Open the Bartok script and look for the line that was marked // g in the code listing
under the heading "Handling Turns" a few pages back. Remove the comment slashes
from the beginning of that line. After you do so, the line should read:
CURRENT_PLAYER.TakeTurn(); // g

2. Save the Bartok script.
3. Open the Player script and add the following bolded code:

Click here to view code image

public class Player {
 …

 public void FanHand() {
 …
 Quaternion rotQ;
 for (int i=0; i<hand.Count; i++) {
 …
 pos += handSlotDef.pos;
 pos.z = -0.5f*i;

789

 // If not the initial deal, start moving the card immediately.
 if (Bartok.S.phase != TurnPhase.idle) { // a
 hand[i].timeStart = 0;
 }

 // Set the localPosition and rotation of the ith card in the hand
 hand[i].MoveTo(pos, rotQ); // Tell CardBartok to interpolate
 …
 }

}

// The TakeTurn() function enables the AI of the computer Players
public void TakeTurn() {
 Utils.tr ("Player.TakeTurn");

 // Don't need to do anything if this is the human player.
 if (type == PlayerType.human) return;

 Bartok.S.phase = TurnPhase.waiting;

 CardBartok cb;

 // If this is an AI player, need to make a choice about what to play
 // Find valid plays
 List<CardBartok> validCards = new List<CardBartok>(); // b
 foreach (CardBartok tCB in hand) {
 if (Bartok.S.ValidPlay(tCB)) {
 validCards.Add (tCB);
 }
 }
 // If there are no valid cards
 if (validCards.Count == 0) { // c
 // ...then draw a card
 cb = AddCard(Bartok.S.Draw ());
 cb.callbackPlayer = this; // e
 return;
 }

 // So, there is a card or more to play, so pick one
 cb = validCards[Random.Range (0,validCards.Count)]; // d
 RemoveCard(cb);
 Bartok.S.MoveToTarget(cb);
 cb.callbackPlayer = this; // e

}

 public void CBCallback(CardBartok tCB) {
 Utils.tr ("Player.CBCallback()",tCB.name,"Player "+playerNum);
 // The card is done moving, so pass the turn
 Bartok.S.PassTurn();
 }
}

790

a. Though you want cards to move in a staggered way during the initial deal at the start
of the game, you don't want any delays later, so this makes sure the card gets moving.

b. Here, the AI looks for valid plays. It calls ValidPlay() on each card in its hand,
and if the card is a valid play, it adds the card to a list validCards.

c. If the count of validCards is 0 (i.e., there are no valid plays), then the AI draws a
card and returns.

d. If there are valid cards to pick from, the AI chooses one at random and makes it the
new target card (i.e., it plays it to the discard pile).

e. callbackPlayer is red on these two lines because you have not yet added a
public callbackPlayer field to CardBartok.

4. Save the Player script.

At the end of the Player script, you added a CBCallback() function that a CardBartok
should call when it's done moving; however, because Player does not extend
MonoBehaviour, you cannot use SendMessage() to call CBCallback(). Instead,
you'll pass the CardBartok a reference to this Player, and then the CardBartok can call
CBCallback() directly on the Player instance. This Player reference will be stored on
CardBartok as the field callbackPlayer.

5. Open the CardBartok script and add this code:
Click here to view code image

public class CardBartok : Card {
 …
 [Header("Set Dynamically")]
 …
 public GameObject reportFinishTo = null;
 [System.NonSerialized] //
a
 public Player callbackPlayer = null; //
b

 // MoveTo tells the card to interpolate to a new position and rotation
 public void MoveTo(Vector3 ePos, Quaternion eRot) { … }
 …

 void Update() {
 switch (state) {
 case CBState.toHand:
 case CBState.toTarget:
 case CBState.to:
 …
 if (u<0) {
 …
 } else if (u>=1) {
 …
 if (reportFinishTo != null) {

791

 reportFinishTo.SendMessage("CBCallback", this);
 reportFinishTo = null;
 } else if (callbackPlayer != null) { //
c
 // If there's a callback Player
 // Call CBCallback directly on the Player
 callbackPlayer.CBCallback(this);
 callbackPlayer = null;
 } else { // If there is nothing to callback
 // Just let it stay still.
 }
 } else {
 …
 }
 break;

 }
 }
}

a. As with [System.Serialized], [System.NonSerialized] affects the
line below it. In this case, you are asking that the callbackPlayer field not be
serialized, meaning two things: It will not appear in the Inspector, and the Inspector
will not give it a value. The second one is most important in this case. See letter c that
follows for why.

b. Now that you've defined callbackPlayer, it no longer appears in red in the
Player script.

c. Here you only call callbackPlayer.CBCallback() if callbackPlayer
is not null. This is why you needed callbackPlayer to be NonSerialized. If you
allowed the Inspector to serialize callbackPlayer, it would have created a new
Player instance for callbackPlayer so that it could be shown in the Inspector. To
say that a different way, if callbackPlayer were serialized by the Inspector, it
would be set to something other than null before the game even started. You make
callbackPlayer NonSerialized to prevent this from happening. To test this, you
can try commenting out the [System.NonSerialized] line and playing the
game. You will get exceptions as a result because CardBartoks are trying to call
CBCallback() on invalid Players that were created by the Inspector.

6. Save the CardBartok script and return to Unity.

Now, when you play the scene, the three AI players each play their turn.

Enabling the Human Player
It's time to make the human able to play as well. You do this by making the cards clickable.

792

1. Add the following bolded code to the end of the CardBartok class:
Click here to view code image

public class CardBartok : Card {
 …

 void Update() { … }

 // This allows the card to react to being clicked
 override public void OnMouseUpAsButton() {
 // Call the CardClicked method on the Bartok singleton
 Bartok.S.CardClicked(this); //
a
 // Also call the base class (Card.cs) version of this method
 base.OnMouseUpAsButton();
 }

}

a. CardClicked is red here because you have not yet added the CardClicked()
method to the Bartok class.

2. Save the CardBartok script.
3. Add the CardClicked() method to the end of the Bartok script:

Click here to view code image

public class Bartok : MonoBehaviour {
 …
 public CardBartok Draw() { … }

 public void CardClicked(CardBartok tCB) {
 if (CURRENT_PLAYER.type != PlayerType.human) return; //
a
 if (phase == TurnPhase.waiting) return; //
b

 switch (tCB.state) { //
c
 case CBState.drawpile: //
d
 // Draw the top card, not necessarily the one clicked.
 CardBartok cb = CURRENT_PLAYER.AddCard(Draw());
 cb.callbackPlayer = CURRENT_PLAYER;
 Utils.tr ("Bartok:CardClicked()","Draw",cb.name);
 phase = TurnPhase.waiting;
 break;

 case CBState.hand: //
e
 // Check to see whether the card is valid
 if (ValidPlay(tCB)) {

793

 CURRENT_PLAYER.RemoveCard(tCB);
 MoveToTarget(tCB);
 tCB.callbackPlayer = CURRENT_PLAYER;
 Utils.tr("Bartok:CardClicked()","Play",tCB.name,
 targetCard.name+" is target"); //
f
 phase = TurnPhase.waiting;
 } else {
 // Just ignore it but report what the player tried
 Utils.tr("Bartok:CardClicked()","Attempted to Play",
 tCB.name,targetCard.name+" is target"); //
f
 }
 break;
 }
 }
}

a. If it's not the human's turn, don't respond to the click at all; just return.
b. If the game is waiting on a card to move, don't respond. This forces the player to wait

until the game is still before playing.
c. This switch statement acts differently based on whether the clicked card was a

card in the player's hand or on the drawPile.
d. If the card clicked was in the drawPile, draw the top card of the drawPile.

Because the sprites of the drawPile are not sorted using a sort order or anything,
the card drawn might not actually be the card that caught the mouse click.

e. If the card clicked was in the player's hand, check to see whether it is a valid play. If
it is valid, play the card to the target (discard pile). If it is invalid, ignore the click,
but report the attempt to the Console.

f. Remember that you do not need to type the line continuation character.
4. Save the Bartok script, return to Unity, and click Play.

Now you can play as well, and the game works! However, right now there is no logic to
end the game when it's over. Just a few more additions, and this prototype will be done.

Handling an Empty Draw Pile
Now that you and the AIs can all play, you could empty the draw pile, which would
currently crash the game. Let's add some code to Bartok to handle this case. Add the
following code to the Bartok class to handle this:
Click here to view code image

public class Bartok : MonoBehaviour {
 …
 // The Draw function will pull a single card from the drawPile and return it

794

 public CardBartok Draw() {
 CardBartok cd = drawPile[0]; // Pull the 0th CardProspector

 if (drawPile.Count == 0) { // If the drawPile is now empty
 // We need to shuffle the discards into the drawPile
 int ndx;
 while (discardPile.Count > 0) {
 // Pull a random card from the discard pile
 ndx = Random.Range(0, discardPile.Count); //
a
 drawPile.Add(discardPile[ndx]);
 discardPile.RemoveAt(ndx);
 }
 ArrangeDrawPile();
 // Show the cards moving to the drawPile
 float t = Time.time;
 foreach (CardBartok tCB in drawPile) {
 tCB.transform.localPosition = layout.discardPile.pos;
 tCB.callbackPlayer = null;
 tCB.MoveTo(layout.drawPile.pos);
 tCB.timeStart = t;
 t += 0.02f;
 tCB.state = CBState.toDrawpile;
 tCB.eventualSortLayer = "0";
 }
 }

 drawPile.RemoveAt(0); // Then remove it from List<> drawPile
 return(cd); // And return it
 }
 …
}

a. It's easier to use this while loop to pull random cards from the discardPile
than to convert the discardPile from a List<CardBartok> to a
List<Card> so you can call Deck.Shuffle() on it.

Adding Game UI
Just as with Prospector, you want to message the player when she finishes the game. To
make it possible to do so, you need to create some uGUI Text fields.

1. From the menu bar, choose GameObject > UI > Text to add a new Text as a child of
Canvas in the Hierarchy.

2. Rename this Text to GameOver and give it the settings shown on the left of Figure 33.6.

795

Figure 33.6 Settings for GameOver and RoundResult

3. Duplicate GameOver by selecting it and choosing Edit > Duplicate from the menu bar.
4. Rename GameOver (1) to RoundResult, and give it the settings shown on the right of

Figure 33.6. Often when you edit the Min and Max Anchors values, Unity changes the
Pos X and Pos Y values as well. You can limit this by checking the [R] button in the
RectTransform as I have, but Unity still messes with it a bit even after you do that.

Just like the TurnLight, you can give each of these Texts its own script so that Bartok
doesn't have to worry about them.

5. Create a C# script named GameOverUI inside the __Scripts folder of the Project pane,
attach it to the GameOver GameObject in the Hierarchy, and give it this code:

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI; // Required for the uGUI classes like
Text

public class GameOverUI : MonoBehaviour {
 private Text txt;

 void Awake() {
 txt = GetComponent<Text>();

796

 txt.text = "";
 }

 void Update () {
 if (Bartok.S.phase != TurnPhase.gameOver) {
 txt.text = "";
 return;
 }
 // We only get here if the game is over
 if (Bartok.CURRENT_PLAYER == null) return; //
a
 if (Bartok.CURRENT_PLAYER.type == PlayerType.human) {
 txt.text = "You won!";
 } else {
 txt.text = "Game Over";
 }
 }
}

a. Bartok.CURRENT_PLAYER is null at the beginning of the game, so you need to
accommodate that case.

6. Save the GameOverUI script.
7. Create a C# script named RoundResultUI inside the __Scripts folder of the Project

pane, attach it to the RoundResult GameObject in the Hierarchy, and give it this code:
Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI; // Required for the uGUI classes like
Text

public class RoundResultUI : MonoBehaviour {
 private Text txt;

 void Awake() {
 txt = GetComponent<Text>();
 txt.text = "";
 }

 void Update () {
 if (Bartok.S.phase != TurnPhase.gameOver) {
 txt.text = "";
 return;
 }
 // We only get here if the game is over
 Player cP = Bartok.CURRENT_PLAYER;
 if (cP == null || cP.type == PlayerType.human) { //
a
 txt.text = "";

797

 } else {
 txt.text = "Player "+(cP.playerNum)+" won";
 }
 }
}

a. Remember that || (logical OR) is a shorting function, so if cP is null, this line will
never ask for cP.type and won't encounter a null reference exception.

8. Save the RoundResultUI script.

Game Over Logic
Now that you have the UI to show game over messages, let's actually allow the game to
realize that it's over.

1. Open the Bartok script and add this bolded code to manage finishing the game.
Click here to view code image

public class Bartok : MonoBehaviour {
 …

 public void PassTurn(int num=-1) {
 …
 if (CURRENT_PLAYER != null) {
 lastPlayerNum = CURRENT_PLAYER.playerNum;
 // Check for Game Over and need to reshuffle discards
 if (CheckGameOver()) {
 return; //
a
 }
 }
 …
 }

 public bool CheckGameOver() {
 // See if we need to reshuffle the discard pile into the draw pile
 if (drawPile.Count == 0) {
 List<Card> cards = new List<Card>();
 foreach (CardBartok cb in discardPile) {
 cards.Add (cb);
 }
 discardPile.Clear();
 Deck.Shuffle(ref cards);
 drawPile = UpgradeCardsList(cards);
 ArrangeDrawPile();
 }

 // Check to see if the current player has won
 if (CURRENT_PLAYER.hand.Count == 0) {
 // The player that just played has won!
 phase = TurnPhase.gameOver;
 Invoke("RestartGame", 1); //

798

b
 return(true);
 }

 return(false);
 }

 public void RestartGame() {
 CURRENT_PLAYER = null;
 SceneManager.LoadScene("__Bartok_Scene_0");
 }

 // ValidPlay verifies that the card chosen can be played on the discard pile
 public bool ValidPlay(CardBartok cb) { … }
 …
}

a. If the game is over, you return before advancing the turn. This leaves CURRENT_
PLAYER set to the player who won, which allows GameOverUI and RoundResultUI
to read from it.

b. You invoke RestartGame() in 1 second, which shows the results for a second
before restarting the game.

2. Save the Bartok script, return to Unity, and click Play.

Now the game plays properly, it ends when it's over, and it restarts properly as well.

Building for WebGL
Now that you have a game, let's make a distributable version of it. These instructions are
for WebGL, but building for Standalone is pretty similar. Building for iOS or Android
involves several more steps.

1. From the Unity menu bar, choose File > Build Settings. This is the window that you
used at the beginning of the chapter.

2. In the Build Settings window, click the Player Settings button. This opens
PlayerSettings in the Inspector pane. If you're building for WebGL, the PlayerSettings
should look like those shown in Figure 33.7.

799

Figure 33.7 The Build Settings window and PlayerSettings in the Inspector pane

3. Click the Resolution and Presentation tab in PlayerSettings and set Default Screen
Width to 1024 and Default Screen Height to 768 as shown in Figure 33.7.

4. Feel free to set Company Name and Product Name to whatever you want. All the other
PlayerSettings should be fine. Save your scene.

5. Return to the Build Settings window (if you closed it, use the File > Build Settings
menu option to open it again) and click the Build button.

6. A standard file save dialog box appears, asking you to choose a folder name and place
for the WebGL build. This will be a folder, and I recommend saving it on your Desktop
so that you can find it easily (the default location is inside the project folder for this
Unity project, which I don't think is ideal).

7. Type a folder name in the Save As: field. For a WebGL build, it's important that you do
not put any spaces in the folder name; on some machines, JavaScript (WebGL)
crashes if you try to run a file inside a folder with a space in the name (this is another
reason that I don't recommend putting it in your Unity project folder; it or any folder
above it could have a space in their name). Try the name Bartok_WebGL.

8. Click the Save button, and get ready to wait for a while. Sometimes, WebGL builds in a
few minutes, in rare cases, it can take as many as 30 minutes or more. However, if the
progress bar seems stuck for more than an hour, you should cancel it (sometimes the
WebGL build process crashes). The build for Bartok took about 5 minutes on my i7
MacBook Pro.

9. Find and open the Bartok_WebGL folder on your Desktop. Open the folder and try
double-clicking the index.html file.

800

You might get an error message that reads:

It seems your browser does not support running Unity WebGL content from file://
urls. Please upload it to an http server, or try a different browser.

If so, that's because browsers like Google Chrome are trying to be security conscious and
not run code like Unity's WebGL off of a local hard drive. I have found that Firefox opens
the local Unity index.html files just fine (as of July 2017).

After you either get a browser that won't complain about running it off of your local drive
or have uploaded it to space online, you should be able to play Bartok in a web browser.

Summary
The goal of this chapter was to demonstrate how possible it is to take the digital prototypes
that you make in this book and adapt them to your own games. After you finish all the
tutorial chapters, you will have the framework for a classic arcade game (Apple Catcher),
a physics-based casual game (Mission Demolition), a space shooter (Space SHMUP), a
card game (Prospector and Bartok), a word game (the next chapter), and a top-down
adventure game (Dungeon Delver). As prototypes, none of these are finished games, but
any of them could serve as a foundation on which to build your own games.

Next Steps
The classic paper version of the Bartok card game included the ability for the winner of
any round to add additional rules to the game. Although allowing the player to just make up
rules for this digital game is not possible, adding your own optional rules through code is
certainly possible, just as I did for the version you played with in Chapter 1.

If you visit the http://book.prototools.net website, you can look under Chapter 33 for the
Unity project of the expanded version of Bartok that includes all the optional rules you
were able to play with in Chapter 1. That should be a good starting point for you to use to
add your own rules to the game.

1. Vectorized Playing Cards 1.3 (http://code.google.com/p/vectorized-playing-cards/).
©2011 Chris Aguilar

2. You may have also noticed that if you draw all the cards out of the draw deck, it will
throw an Argument Out Of Range Exception. Don't worry; we'll address this later.

3. Joseph Albahari and Ben Albahari, C# 5.0 Pocket Reference: Instant Help for C# 5.0
Programmers (Beijing: O'Reilly Media, Inc., 2012).

801

http://book.prototools.net
http://code.google.com/p/vectorized-playing-cards/

CHAPTER 34

PROTOTYPE 6: WORD GAME

In this chapter, you learn how to create a simple word game. This game uses
several concepts that you have already learned, and it introduces the concept of
coroutines, methods that can yield during execution to allow the processor to
handle other methods.

By the end of this chapter, you'll have a fun word game that you can expand
yourself.

Getting Started: Prototype 6
As usual, you'll import a unitypackage to start this chapter. This package contains a few art
assets and some C# scripts that you created in previous chapters.

SET UP THE PROJECT FOR THIS CHAPTER
Following the standard project setup procedure, create a new project in Unity. If you
need a refresher on how to do so, see Appendix A, "Standard Project Setup
Procedure." When you create the project, you are asked whether you want to set up
defaults for 2D or 3D. Choose 3D for this project.

For this project, you will import the main scene from the unitypackage, so you do not
need to set up the _MainCamera.

 Project name: Word Game
 Download and import package: See Chapter 34 at http://book.prototools.net
 Scene name: _WordGame_Scene_0 (imported via the unitypackage)
 Project folders: _Scripts, _Prefabs, Materials & Textures, Resources
 C# script names: Just the imported scripts in the ProtoTools folder

Open the scene __WordGame_Scene_0, and you will find a _MainCamera that is already
set up for an orthographic game. Additionally, some of the reusable C# scripts that you saw
in previous chapters have been moved into the folder __Scripts/ProtoTools to keep them

802

separate from the new scripts you'll create for this project. I find this is useful because it
enables me to just place a copy of the ProtoTools folder into the __Scripts folder of any
new project and have all that functionality ready to go.

In your Build Settings, I recommend setting this one is to PC, Mac, & Linux Standalone.
Set the aspect ratio of the Game pane to Standalone (1024 x 768). You could also compile
this for WebGL or mobile if you like, but I won't cover any of that in this chapter.

About the Word Game
This game is a classic form of word game. Commercial examples of this game include
Word Whomp by Pogo.com, Jumbline 2 by Branium, Pressed for Words by Words and
Maps, and many others. The player is presented with jumbled letters that can spell at least
one word of a certain length (usually six letters), and she is tasked with finding all the
words that can be created by rearranging the letters in that word. This chapter's version of
the game includes some slick animations (using Bézier interpolations) and a scoring
paradigm that encourages the player to find long words before short ones. Figure 34.1
shows an image of the game you'll create.

Figure 34.1 An image of the game created in this chapter using an eight-letter word as the
base

In this image, you can see that each of the words are composed of individual letter tiles,

803

and there are two sizes of these tiles: a large size for the letters at the bottom of the screen
and a smaller size for all the words above that. For the sake of object orientation, you'll
create a Letter class that handles each letter and a Word class to collect them into words.
You'll also create a WordList class to read the large dictionary of possible words that you
have and turn it into usable data for the game. The game will be managed by a WordGame
class, and you'll use the Scoreboard and FloatingScore classes from previous prototypes to
show the score to the player. In addition, you'll use the Utils class for interpolation and
easing. The PT_XMLReader class is imported with this project, but is unused. I left this
script in the unitypackage because I want to encourage you to start building your own
collection of useful scripts that you can import into any project to help you get started (just
as the ProtoTools folder is for the projects in this book). Feel free to add any useful scripts
that you create to this collection, and think about importing it as the first thing you do for
each new game prototype that you start.

Parsing the Word List
This game uses a modified form of the 2of12inf word list created by Alan Beale.1 I've
removed some offensive words and attempted to correct others. You are more than
welcome to use this word list however you want in the future, as long as you follow the
copyright terms of both Alan Beale and Kevin Atkinson (as listed in footnote 1). I also
modified the list by shifting all the letters to uppercase and by changing the line ending from
\r\n (a carriage return and a line feed, which is the standard Windows text file format) to
\n (just a line feed, the standard macOS text format). I did this to make it easier to split the
file into individual words based on line feed, and for purposes of this chapter, it works on
Windows just as well as macOS.

I have attempted to remove offensive words from the word list because of the kind of game
this is. In a game like Scrabble or Letterpress, the player is given a series of letter tiles,
and she is able to choose which words she wants to spell with those tiles. However, in this
game, the player is forced to spell every word in the list that can be made from the
collection of letters that she is given. This means that the game could force players to spell
some terms that would be offensive to them. In this game, the decision of which words are
chosen has shifted from the player to the computer, and I did not feel comfortable forcing
players to spell potentially offensive words. However, in the more than 75,000 words in
the list, I probably missed some, so if you find any words in the game that you feel I should
omit (or ones I should add), please let me know by sending a message to me via the website
http://book.prototools.net. Thanks.

To read the word list file, you need to pull its text into a single large string and split that
string into an array of individual word strings (separated by \n in the original string). After
this is done, you need to individually analyze each word and decide whether to add it to the
dictionary for the game (based on its length). This one-by-one analysis of the words can

804

take some time to execute; so rather than freeze the game on a single frame while waiting
for this process to complete, you're going to create a coroutine to handle the process over
multiple frames (see the following sidebar "Using Coroutines").

USING COROUTINES
A coroutine is a function that can pause in its execution to allow other functions to
update. It's a Unity C# feature that allows developers to have control over repeating
tasks in code or to handle very large tasks. In this chapter, you learn to use it for the
latter by having a coroutine parse all 75,000 words from the 2of12inf word list.

Coroutines are initiated with a call to StartCoroutine(), which can only be
called within a class that extends MonoBehaviour. After it is initiated in this way, a
coroutine executes until it encounters a yield statement. yield tells the coroutine
to pause for a certain amount of time and allow other code to execute during the
pause. After the designated time has passed, the coroutine continues on the next line
after the yield statement. This means that you could have an infinite
while(true) {} loop in a coroutine, and it wouldn't freeze your game as long as
a yield statement existed somewhere within the while loop. In this game, the
coroutine ParseLines()yields every 10,000 words that it parses.

Look for how the coroutine is used in the first code listing of this chapter. Although
the coroutine in this chapter probably isn't strictly necessary as long as you have a fast
computer, this kind of thing becomes much more important when you're developing for
mobile devices (or other devices with slower processors). Parsing this same word
list on an older iPhone can take as much as 10 to 20 seconds, so including breaks in
the parsing where the app can handle other tasks and not just look frozen is important.

You can learn more about coroutines in the Unity documentation.

1. Create a new C# script named WordList in the __Scripts folder and enter the following
code:

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class WordList : MonoBehaviour {
 private static WordList S;
 // a
 [Header("Set in Inspector")]
 public TextAsset wordListText;
 public int numToParseBeforeYield = 10000;

805

 public int wordLengthMin = 3;
 public int wordLengthMax = 7;

 [Header("Set Dynamically")]
 public int currLine = 0;
 public int totalLines;
 public int longWordCount;
 public int wordCount;

 // Private fields
 private string[] lines; //
b
 private List<string> longWords;
 private List<string> words;

 void Awake() {
 S = this; // Set up the WordList Singleton
 }

 void Start () {
 lines = wordListText.text.Split('\n'); //
c
 totalLines = lines.Length;

 StartCoroutine(ParseLines()); //
d
 }

 // All coroutines have IEnumerator as their return type.
 public IEnumerator ParseLines() { //
e
 string word;
 // Init the Lists to hold the longest words and all valid words
 longWords = new List<string>(); //
f
 words = new List<string>();

 for (currLine = 0; currLine < totalLines; currLine++) { //
g
 word = lines[currLine];

 // If the word is as long as wordLengthMax…
 if (word.Length == wordLengthMax) {
 longWords.Add(word); // …then store it in longWords
 }

 // If it's between wordLengthMin and wordLengthMax in length…
 if (word.Length>=wordLengthMin && word.Length<=wordLengthMax) {
 words.Add(word); // …then add it to the list of all valid words
 }

 // Determine whether the coroutine should yield
 if (currLine % numToParseBeforeYield == 0)
{ // h

806

 // Count the words in each list to show parsing progress
 longWordCount = longWords.Count;
 wordCount = words.Count;
 // This yields execution until the next frame
 yield return
null; // i

 // The yield will cause the execution of this method to wait
 // here while other code executes and then continue from this
 // point into the next iteration of the for loop.
 }
 }

 longWordCount = longWords.Count;
 wordCount = words.Count;
 }

 // These methods allow other classes to access the private List<string>s //
j
 static public List<string> GET_WORDS() {
 return(S.words);
 }

 static public string GET_WORD(int ndx) {
 return(S.words[ndx]);
 }

 static public List<string> GET_LONG_WORDS() {
 return(S.longWords);
 }

 static public string GET_LONG_WORD(int ndx) {
 return(S.longWords[ndx]);
 }

 static public int WORD_COUNT {
 get { return S.wordCount; }
 }

 static public int LONG_WORD_COUNT {
 get { return S.longWordCount; }
 }

 static public int NUM_TO_PARSE_BEFORE_YIELD{
 get { return S.numToParseBeforeYield; }
 }

 static public int WORD_LENGTH_MIN {
 get { return S.wordLengthMin; }
 }

 static public int WORD_LENGTH_MAX {
 get { return S.wordLengthMax; }
 }

807

}

a. This is a private Singleton (because it's private, it is not exactly a Singleton any
more). Making the singleton S private ensures that only instances of the WordList
class can see it, protecting it from other code. This private Singleton is used by the
accessors discussed in // j.

b. Because these fields are private, they do not appear in the Inspector. These variables
will contain so much data that it would drastically slow playback if the Inspector
were trying to display them, so you must make these private—restricting them to only
be accessible by this instance of WordList—and make public accessor functions at the
end of the class to allow code outside of this instance to access them.

c. Split the text of wordListText on line feeds (\n), which creates a large,
populated string[] with an element for each word from the list.

d. This starts the coroutine ParseLines(). See the sidebar "Using Coroutines" for
more info.

e. All coroutines must have the return type of IEnumerator. This enables them to
yield their execution and allow other methods to run before returning to the coroutine,
which is extremely important for processes like loading large files or like parsing a
large amount of data (as you're doing in this case).

f. The string array lines will be sorted into two lists: longWords is for all the
words that are composed of wordLengthMax characters, and words is for all the
words that are between wordLengthMin and wordLengthMax (inclusive)
characters. For example, if wordLengthMin were 3 characters and
wordLengthMax were 6, the word DESIGN would be in longWords, while
DIE, DICE, GAME, BOARD, and DESIGN would be in words.
You parse the whole list here so that the player only has to wait once and is then able
to play many rounds in a row with many different words.

g. This for loop iterates over all 75,000 entries in lines. Every
numToParseBeforeYield words, the yield statement pauses this for loop and
allows other code to run. Then, on the next frame, execution returns to the for loop
for another numToParseBeforeYield lines.

h. Determine whether the coroutine should yield. This uses a modulus (%) function to
yield every 10,000th record (or whatever you have numToParseBeforeYield
set to).

i. This yield statement yields execution of the coroutine until the next frame because it
returns null. Yielding for a certain number of seconds is also possible with a
statement like yield return new WaitForSeconds(1); , which would
wait for at least 1 second before continuing coroutine execution (note that coroutine
yield times are reasonably accurate but not exact). This also means that you can put

808

timed repeating tasks in a coroutine rather than using the InvokeRepeating()
method.

j. The four methods below the // i line are static public accessors for the private
fields words and longWords. Code anywhere in the game can call
WordList.GET_WORD(10) to get the tenth word in the private words array of
this singleton instance of WordList. Additionally, the last several accessors are read-
only static public properties, showing another way to access private variables of
WordList. By convention, static variables and methods are often named with
ALL_CAPS_SNAKE_CASE.

2. After writing and saving the code, switch back to Unity.
3. Attach the WordList C# script to _MainCamera.
4. Select _MainCamera in the Hierarchy and set the wordListText variable of the

WordList (Script) component in the Inspector to be the file 2of12inf, which you can find
in the Resources folder of the Project pane.

5. Click Play.

You can see that the currLine, longWordCount, and wordCount count up
progressively by 10,000s. This happens because the numbers are allowed to update every
time the coroutine ParseLines() yields.

If you stop, use the Inspector to change numToParseBeforeYield to 100, and play
again, you will see that these numbers build much more slowly because the coroutine is
yielding every 100 words. However, if you change it to something like 100,000. these
numbers will update only once because there are fewer than 100,000 words in the word
list. If you're interested in seeing how much time each pass through the ParseLines()
coroutine is taking, try using the profiler, as described in the sidebar titled The Unity
Profiler.

THE UNITY PROFILER
The Unity profiler is one of the most powerful tools for optimizing the performance of
your games, and it's one of the many tools available to you in the free version of Unity.
For every frame of your game, the profiler maintains stats on the amount of time spent
on each C# function, calls to the graphics engine, handling user input, and so on. You
can see a great example of how this works by running the profiler on this project.

1. Make sure that the WordList code from the preceding pages is working properly.
2. Add a Profiler pane to the same group as the Scene pane. That ensures that you

can see both the Game pane and the Profiler pane simultaneously. To add the

809

Profiler pane, click the pop-up menu button at the top right of the current Scene
pane and choose Add Tab > Profiler (as shown in Figure 34.2).

Figure 34.2 The Profiler pane

3. To see the profiler in action, click the Pause button at the top of the Unity window
and then click Play. This causes Unity to prepare itself to run your game but to be
paused before the first frame. If you click Pause again, a graph starts to appear in
the profiler. Pause the game again when the graph is about an inch from the left
side of the screen.

With the game paused, the profiler should stop graphing yet maintain the graph of the
frames that have already passed. Each of the colors in the graph beside the heading
CPU Usage covers a different aspect of things for which the CPU (the main processor
in your computer) is used. In the later frames, if you're on a fast computer, you should
see that most of the chart is yellow; the yellow represents the time Unity spends on
VSync (that is, waiting for the screen to be ready to display another frame). This
blocks your view of how much time is taken by the scripts (which are light blue), so
you need to hide it from the graph.

4. The little colored boxes below CPU Usage on the left side of the profiler each
represent a different kind of process that runs on the CPU. For now, turn off all of
them off except for the Scripts box (which is blue). To do this, click the colored
box next to everything except for Scripts. This should leave you with a blue graph
like the one shown in Figure 34.2.

5. Click and drag the mouse along the blue graph in the CPU Usage section of the
Profiler, and you should see a white line following the mouse. This white line
represents a single frame in the graph. As you move, the text in the bottom half of
the profiler updates to show how much processing time each function or

810

background process took during that frame. The function you're interested in is the
WordList. SetupCoroutine() [Coroutine: InvokeMoveNext] coroutine. This only
runs in the first few frames, so you won't see it on the right side of the graph;
however, you should see a spike of script activity at the beginning of the graph (as
shown in Figure 34.2), which is the time taken by the coroutine ParseLines().

6. There is a search field on the dividing bar between the top and bottom halves of
the Profiler pane. (If you don't see the search field, try clicking in the top (CPU
Usage) half of the graph.) Type "ParseLines" into this field to search for the
WordList:ParseLines method. This method only runs in the first few frames, so you
won't see it on the right side of the graph; however, you should see a spike of
script activity at the beginning of the graph (as shown in Figure 34.2).

7. Move the white line to the part of the graph with the tall spike, and two WordList.
ParseLines() rows will appear in the data area below the graph. Click WordList.
ParseLines() [Coroutine: MoveNext] in the Search column below the graph. This
highlights the graph contribution of that one routine and dims the others as shown
in the figure. If you use the left and right arrow buttons at the top-right corner of the
Profiler pane, you can step one frame back or forward (respectively) and see the
CPU resources used by the coroutine in each frame. In my profiling shown in
Figure 34.2, I set numToParseBeforeYield to 1,000 and found that for the
first several frames, the coroutine took up about 6.7% of the CPU time spent on
each frame (although your numbers might vary due to computer type and
processing speed).

In addition to profiling scripts, the profiler can also help you find what aspects of
rendering or physics simulation are taking the most time in your game. If you ever run
into frame rate issues in one of your games, try checking the profiler to see what's
happening. (You'll want to be sure to turn all the other types of CPU profiling back on
when you do [that is, re-check all the boxes that you unchecked earlier to isolate
Scripts under CPU Usage].)

To see a very different profiler graph, you can try running the profiler on the Hello
World project from Chapter 19, "Hello World: Your First Program." You'll see that in
Hello World, much more time is spent on physics than scripts. (You might need to turn
the VSync element of the graph off again to see this clearly.)

You can learn more about the profiler in the Unity documentation.

After playing with the Profiler, be sure to set numToParseBeforeYield back to
10,000.

811

Setting Up the Game
You're going to create a WordGame class to manage the game, but before you do so, you
need to make a couple of changes to WordList. First, you need to make it not start parsing
the words on Start() but instead wait until an Init() method is called by another
class. Second, you need to make WordList notify the upcoming WordGame script when the
parsing is complete. To do this, you need to have the WordList send a message to the
_MainCamera GameObject using the SendMessage() command. WordGame will
interpret this message, as you'll soon see.

1. Change the name of the void Start() method in WordList to public void
Init() and add the following bold code, including the static public void
INIT() function and the lines at the end of the ParseLines() method in WordList:

Click here to view code image

public class WordList : MonoBehaviour {
 …
 void Awake() { … }

 public void Init () { // This line replaces "void Start()"
 lines = wordListText.text.Split('\n');
 totalLines = lines.Length;

 StartCoroutine(ParseLines());
 }

 static public void INIT () {
// a
 S.Init();
 }
 // All coroutines have IEnumerator as their return type.
 public IEnumerator ParseLines() {
 …
 for(currLine = 0; currLine < totalLines; currLine++) {
 …
 }
 longWordCount = longWords.Count;
 wordCount = words.Count;

 // Send a message to this gameObject to let it know the parse is done
 gameObject.SendMessage("WordListParseComplete");
// b
 }

 // These methods allow other classes to access the private List<string>s
 static public List<string> GET_WORDS() { … }
 …
}

a. This INIT() method is static and public, meaning that the WordGame class can call
it.

812

b. The SendMessage() command is executed on the GameObject _MainCamera
(because WordList is a Script Component of _MainCamera). This command calls a
WordListParseComplete() method on any script that is attached to the
GameObject on which it is called (that is, _MainCamera).

2. Create a WordGame C# script in the __Scripts folder and attach it to _MainCamera.
Enter the following code to take advantage of the changes just made to WordList:

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using System.Linq; // We'll be using LINQ

public enum GameMode {
 preGame, // Before the game starts
 loading, // The word list is loading and being parsed
 makeLevel, // The individual WordLevel is being created
 levelPrep, // The level visuals are Instantiated
 inLevel // The level is in progress
}

public class WordGame : MonoBehaviour {
 static public WordGame S; // Singleton

 [Header("Set Dynamically")]
 public GameMode mode = GameMode.preGame;

 void Awake() {
 S = this; // Assign the singleton
 }

 void Start () {
 mode = GameMode.loading;

 // Call the static Init() method of WordList
 WordList.INIT();
 }

 // Called by the SendMessage() command from WordList
 public void WordListParseComplete() {
 mode = GameMode.makeLevel;
 }
}

3. Select _MainCamera in the Hierarchy pane, and look at the WordGame (Script)
component in the Inspector. Click Play, and you will see the value of the mode field
initially move from preGame to loading. Then, after all the words have been
parsed, it changes from loading to makeLevel. This shows you that everything is
working as hoped.

813

Building a Level with the WordLevel Class
Now, it's time to take the words in the WordList and make a level from them. The
WordLevel class will include the following:

 The long word on which the level is based. (If maxWordLength is 6, this is the six-
letter word whose letters will be reshuffled into the other words.)
 The index number of that word in the longWords array of WordList.
 The level number as int levelNum. In this chapter, every time the game starts, you'll
choose a random word.2

 A Dictionary<,> of each character in the word and how many times it is used.
Dictionaries are part of System.Collections.Generic along with Lists.
 A List<> of all the other words that can be formed from the characters in the
Dictionary described in the preceding bullet.

A Dictionary<,> is a generic collection type that holds a series of key, value pairs that
is covered in detail in Chapter 23, "Collections in C#." In each level, the
Dictionary<,> uses char keys and int values to hold information about how many
times each char is used in the long word. For example, this is how the long word
MISSISSIPPI would look:

Click here to view code image

Dictionary<char,int> charDict = new Dictionary<char,int>();
charDict.Add('M',1); // MISSISSIPPI has 1 M
charDict.Add('I',4); // MISSISSIPPI has 4 Is
charDict.Add('S',4); // MISSISSIPPI has 4 Ss
charDict.Add('P',2); // MISSISSIPPI has 2 Ps

WordLevel also contains two useful static methods:
 MakeCharDict(): Populates charDict based on any string.
 CheckWordInLevel(): Checks to see whether a word can be spelled using the
chars in a WordLevel's charDict.

1. Create a new C# script named WordLevel in the __Scripts folder and enter the
following code. Note that WordLevel does not extend MonoBehaviour, so it is not a
class that can be attached to a GameObject as a Script component, and it cannot have
StartCoroutine(), SendMessage(), or many other Unity-specific functions
called within it.

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

814

[System.Serializable] // WordLevels can be viewed & edited in the Inspector
public class WordLevel { // WordLevel does NOT extend MonoBehaviour
 public int levelNum;
 public int longWordIndex;
 public string word;
 // A Dictionary<,> of all the letters in word
 public Dictionary<char,int> charDict;
 // All the words that can be spelled with the letters in charDict
 public List<string> subWords;

 // A static function that counts the instances of chars in a string and
 // returns a Dictionary<char,int> that contains this information
 static public Dictionary<char,int> MakeCharDict(string w) {
 Dictionary<char,int> dict = new Dictionary<char, int>();
 char c;
 for (int i=0; i<w.Length; i++) {
 c = w[i];
 if (dict.ContainsKey(c)) {
 dict[c]++;
 } else {
 dict.Add (c,1);
 }
 }
 return(dict);
 }

 // This static method checks to see whether the word can be spelled with
the
 // chars in level.charDict
 public static bool CheckWordInLevel(string str, WordLevel level) {
 Dictionary<char,int> counts = new Dictionary<char, int>();
 for (int i=0; i<str.Length; i++) {
 char c = str[i];
 // If the charDict contains char c
 if (level.charDict.ContainsKey(c)) {
 // If counts doesn't already have char c as a key
 if (!counts.ContainsKey(c)) {
 // ...then add a new key with a value of 1
 counts.Add (c,1);
 } else {
 // Otherwise, add 1 to the current value
 counts[c]++;
 }

 // If this means that there are more instances of char c in str
 // than are available in level.charDict
 if (counts[c] > level.charDict[c]) {
 // ... then return false
 return(false);
 }
 } else {
 // The char c isn't in level.word, so return false
 return(false);

815

 }
 }
 return(true);
 }
}

2. To make use of the WordLevel class, make the following bolded changes to WordGame:
Click here to view code image

public class WordGame : MonoBehaviour {
 static public WordGame S; // Singleton

 [Header("Set Dynamically")]
 public GameMode mode = GameMode.preGame;
 public WordLevel currLevel;

 …

 public void WordListParseComplete() {
 mode = GameMode.makeLevel;
 // Make a level and assign it to currLevel, the current WordLevel
 currLevel = MakeWordLevel();
 }

 public WordLevel MakeWordLevel(int levelNum = -1) { // a
 WordLevel level = new WordLevel();
 if (levelNum == -1) {
 // Pick a random level
 level.longWordIndex = Random.Range(0,WordList.LONG_WORD_COUNT);
 } else {
 // This will be added later in the chapter
 }
 level.levelNum = levelNum;
 level.word = WordList.GET_LONG_WORD(level.longWordIndex);
 level.charDict = WordLevel.MakeCharDict(level.word);

 StartCoroutine(FindSubWordsCoroutine(level)); // b

 return(level); // c
 }

 // A coroutine that finds words that can be spelled in this level
 public IEnumerator FindSubWordsCoroutine(WordLevel level) {
 level.subWords = new List<string>();
 string str;

 List<string> words = WordList.GET_WORDS(); // d

 // Iterate through all the words in the WordList
 for (int i=0; i<WordList.WORD_COUNT; i++) {
 str = words[i];
 // Check whether each one can be spelled using level.charDict
 if (WordLevel.CheckWordInLevel(str, level)) {

816

 level.subWords.Add(str);
 }
 // Yield if we've parsed a lot of words this frame
 if (i%WordList.NUM_TO_PARSE_BEFORE_YIELD == 0) {
 // yield until the next frame
 yield return null;
 }
 }

 level.subWords.Sort (); // e
 level.subWords = SortWordsByLength(level.subWords).ToList();

 // The coroutine is complete, so call SubWordSearchComplete()
 SubWordSearchComplete();
 }

 // Use LINQ to sort the array received and return a copy // f
 public static IEnumerable<string> SortWordsByLength(IEnumerable<string> ws) {
 ws = ws.OrderBy(s => s.Length);
 return ws;
 }

 public void SubWordSearchComplete() {
 mode = GameMode.levelPrep;

 }
}

a. With the default value of -1, this method picks a random word from which to generate
a WordLevel.

b. This starts a coroutine to check all the words in the WordList and see whether each
word can be spelled by the chars in level.charDict.

c. This returns the WordLevel level before the coroutine finishes. When the coroutine
has completed, SubWordSearchComplete() is called.

d. This is very fast because Lists are passed by reference. (So C# doesn't have to make
a copy of WordList's List<string> words—it just returns a reference to it.)

e. These two lines sort the words in the WordLevel.subWords List.
List<string>.Sort() sorts the words alphabetically (because that is the
default for List<String>). Then, the custom SortWordsByLength() method is
called to sort the words by the number of characters in each word. This groups
alphabetized words of the same length.

f. This custom sorting function uses LINQ to sort the array received and return a copy.
The LINQ syntax inside this method is different from regular C# and is beyond the
scope of this book. You can learn more about it by searching for "C# LINQ" online.
The Unity Gems website also offers a good explanation of LINQ. The following link
is from the Internet Archive to ensure that it remains valid:

817

https://web.archive.org/web/20140209060811/http://unitygems.com/linq-1-time-linq/

This code creates the level, chooses a goal word, and populates it with subWords that
can be spelled using the characters in the goal word. Save all scripts, return to Unity, and
click Play. You should now see the currLevel field populate in the _MainCamera
WordGame (Script) component Inspector.

3. Save your scene! If you haven't been saving your scene all along—and this served as a
reminder to do so—you need to be reminding yourself to save more often.

Laying Out the Screen
Now that you've created the data representation of the level, it's time to generate on-screen
visuals to represent both the big letters that can be used to spell words and the smaller
letters of the words. To start, you need to create a PrefabLetter to be instantiated for each
letter.

Making PrefabLetter
Follow these steps to make PrefabLetter:

1. From the menu bar, choose GameObject > 3D Object > Quad. Rename the quad to
PrefabLetter.

2. From the menu bar, choose Assets > Create > Material. Name the material LetterMat
and place it in the Materials & Textures folder.

3. Drag LetterMat onto PrefabLetter in the Hierarchy to assign it. Click on PrefabLetter,
and set the shader of LetterMat to Unlit > Transparent.

4. Select Rounded Rect 256 as the texture for the LetterMat material (you might need to
open the disclosure triangle in the LetterMat area of the PrefabLetter Inspector).

5. Double-click PrefabLetter in the Hierarchy, and you should now see a nice rounded
rectangle there. If you can't see it, you might need to move the camera around to the
other side. See the following "Backface Culling" sidebar for information about why
quads are visible from one side and invisible from the other. Choose ProtoTools >
UnlitAlpha as the shader for LetterMat to enable the quad to be seen from either side.

BACKFACE CULLING
Backface culling is a rendering optimization where polygons are only rendered if
they are viewed from the correct side. This works well when rendering something
like a sphere. When viewing a sphere, half of the polygons forming the surface of the
sphere are facing the viewer, while the other half (those on the far side of the sphere)

818

are facing away. Rather than render the whole sphere, computer scientists realized
that they only needed to render the polygons facing toward the viewer. Those
polygons on the far side of the sphere—facing away from the viewer—are never
rendered. If the viewer is looking at the back of a face (i.e., polygon), it is culled
from the rendering; hence the term "backface culling."

The quads in Unity are composed of only two triangular polygons that form a square,
and both face in the same direction. When viewing a quad from behind in Unity, both
of these polygons are usually culled, and the quad is not rendered.

There are some shaders in Unity that do not use backface culling, including the
ProtoTools UnlitAlpha shader used in this chapter and Chapter 31, "Space SHMUP
Plus."

6. Right-click PrefabLetter in the Hierarchy and choose 3D Object > 3D Text from the
pop-up menu. This creates a New Text GameObject as a child of PrefabLetter.

7. Change the name of the New Text child GameObject to 3D Text (with a space after
"3D").

8. Select 3D Text in the Hierarchy and give it the settings in Figure 34.3. If the W doesn't
line up in the center of the box, you might have accidentally typed a tab in the Text box
after the W (as I did when writing this).

819

Figure 34.3 The Inspector settings for 3D Text, a child of PrefabLetter

9. Drag PrefabLetter from the Hierarchy into the _Prefabs folder in the Project pane and
delete the remaining PrefabLetter instance from the Hierarchy. Save your scene.

The Letter C# Script
Now you will give PrefabLetter its own C# script to handle setting the character it shows,
its color, and various other things.

1. Create a new C# script named Letter, place it in the __Scripts folder, and attach it to
PrefabLetter.

2. Open the Letter script in MonoDevelop and enter the following code:
Click here to view code image

820

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Letter : MonoBehaviour {
 [Header("Set Dynamically")]
 public TextMesh tMesh; // The TextMesh shows the char
 public Renderer tRend; // The Renderer of 3D Text. This will
 // determine whether the char is visible
 public bool big = false; // Big letters act a little differently

 private char _c; // The char shown on this Letter
 private Renderer rend;

 void Awake() {
 tMesh = GetComponentInChildren<TextMesh>();
 tRend = tMesh.GetComponent<Renderer>();
 rend = GetComponent<Renderer>();
 visible = false;
 }

 // Property to get or set _c and the letter shown by 3D Text
 public char c {
 get { return(_c); }
 set {
 _c = value;
 tMesh.text = _c.ToString();
 }
 }

 // Gets or sets _c as a string
 public string str {
 get { return(_c.ToString()); }
 set { c = value[0]; }
 }

 // Enables or disables the renderer for 3D Text, which causes the char to be
 // visible or invisible respectively.
 public bool visible {
 get { return(tRend.enabled); }
 set { tRend.enabled = value; }
 }

 // Gets or sets the color of the rounded rectangle
 public Color color {
 get { return(rend.material.color); }
 set { rend.material.color = value; }
 }

 // Sets the position of the Letter's gameObject
 public Vector3 pos {
 set {
 transform.position = value;
 // More will be added her later
 }

821

 }
}

This class makes use of several properties (faux fields with get{} and set{} accessors) to
perform various actions when variables are set. This enables, for instance, WordGame to
set the char c of a Letter without worrying about how that gets converted to a string and
then shown by 3D Text. This kind of encapsulation of functionality within a class is central
to object-oriented programming. You'll notice that if the get{} or set{} clause is just one
statement, I'll often collapse it to a single line.

The Wyrd Class: A Collection of Letters
The Wyrd class will act as a collection of Letters, and its name is spelled with a y to
differentiate it from the other instances of the word word throughout the code and the text of
the book. Wyrd is another class that does not extend MonoBehaviour and cannot be attached
to a GameObject, but it can still contain Lists of classes that are attached to GameObjects.

1. Create a new C# script named Wyrd inside the __Scripts folder.
2. Open Wyrd in MonoDevelop and enter the following code:

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Wyrd { // Wyrd does not extend MonoBehaviour
 public string str; // A string representation of the word
 public List<Letter> letters = new List<Letter>();
 public bool found = false; // True if the player has found this word

 // A property to set visibility of the 3D Text of each Letter
 public bool visible {
 get {
 if (letters.Count == 0) return(false);
 return(letters[0].visible);
 }
 set {
 foreach(Letter l in letters) {
 l.visible = value;
 }
 }
 }

 // A property to set the rounded rectangle color of each Letter
 public Color color {
 get {
 if (letters.Count == 0) return(Color.black);
 return(letters[0].color);
 }

822

 set {
 foreach(Letter l in letters) {
 l.color = value;
 }
 }
 }

 // Adds a Letter to letters
 public void Add(Letter l) {
 letters.Add(l);
 str += l.c.ToString();
 }
}

The WordGame.Layout() Method
The Layout() method will generate Wyrds and Letters for the game as well as big
Letters for the player to use to spell each of the words in the level (shown as large gray
letters at the bottom of Figure 34.1). You'll start with the small letters, and for this phase of
the prototype, you'll make the character of each Letter initially visible (rather than hiding it
as you'll do in the final version).

1. Add the following bold code to WordGame:
Click here to view code image

public class WordGame : MonoBehaviour {
 static public WordGame S; // Singleton

 [Header("Set in Inspector")]
 public GameObject prefabLetter;
 public Rect wordArea = new Rect(-24, 19, 48, 28);
 public float letterSize = 1.5f;
 public bool showAllWyrds = true;

 [Header("Set Dynamically")]
 public GameMode mode = GameMode.preGame;
 public WordLevel currLevel;
 public List<Wyrd> wyrds;

 private Transform letterAnchor, bigLetterAnchor;

 void Awake() {
 S = this; // Assign the singleton
 letterAnchor = new GameObject("LetterAnchor").transform;
 bigLetterAnchor = new GameObject("BigLetterAnchor").transform;
 }

 …

 public void SubWordSearchComplete() {
 mode = GameMode.levelPrep;
 Layout(); // Call the Layout() function once WordSearch is done

823

 }

 void Layout() {
 // Place the letters for each subword of currLevel on screen
 wyrds = new List<Wyrd>();

 // Declare a lot of local variables that will be used in this method
 GameObject go;
 Letter    lett;
 string     word;
 Vector3    pos;
 float     left = 0;
 float     columnWidth = 3;
 char     c;
 Color      col;
 Wyrd      wyrd;

 // Determine how many rows of Letters will fit on screen
 int numRows = Mathf.RoundToInt(wordArea.height/letterSize);

 // Make a Wyrd of each level.subWord
 for (int i=0; i<currLevel.subWords.Count; i++) {
 wyrd = new Wyrd();
 word = currLevel.subWords[i];

 // if the word is longer than columnWidth, expand it
 columnWidth = Mathf.Max(columnWidth, word.Length);

 // Instantiate a PrefabLetter for each letter of the word
 for (int j=0; j<word.Length; j++) {
 c = word[j]; // Grab the jth char of the word
 go = Instantiate<GameObject>(prefabLetter);
 go.transform.SetParent(letterAnchor);
 lett = go.GetComponent<Letter>();
 lett.c = c; // Set the c of the Letter

 // Position the Letter
 pos = new Vector3(wordArea.x+left+j*letterSize, wordArea.y, 0);

 // The % here makes multiple columns line up
 pos.y -= (i%numRows)*letterSize;

 lett.pos = pos; // You'll add more code around this line later

 go.transform.localScale = Vector3.one*letterSize;

 wyrd.Add(lett);

 }

 if (showAllWyrds) wyrd.visible = true;

 wyrds.Add(wyrd);

 // If we've gotten to the numRows(th) row, start a new column
 if (i%numRows == numRows-1) {

824

 left += (columnWidth + 0.5f) * letterSize;
 }
 }
 }
}

2. Before clicking Play, you need to assign the PrefabLetter prefab from the Project pane
to the prefabLetter field of the WordGame (Script) component of _MainCamera.
After doing so, click Play, and you should see a list of words pop up on screen, as
shown in Figure 34.4.3

Figure 34.4 An example of the current state of the game: the level for the word TORNADO

Adding the Big Letters at the Bottom
The next step in Layout() is to place the large letters at the bottom of the screen.

1. Add the following code to do so:
Click here to view code image

public class WordGame : MonoBehaviour {
 static public WordGame S; // Singleton
 [Header("Set in Inspector")]
 …
 public bool showAllWyrds = true;
 public float bigLetterSize = 4f;
 public Color bigColorDim = new Color(0.8f, 0.8f, 0.8f);

825

 public Color bigColorSelected = new Color(1f, 0.9f, 0.7f);
 public Vector3 bigLetterCenter = new Vector3(0, -16, 0);

 [Header("Set Dynamically")]
 …
 public List<Wyrd> wyrds;
 public List<Letter> bigLetters;
 public List<Letter> bigLettersActive;

 …

 void Layout() {
 …

 // Make a Wyrd of each level.subWord
 for (int i=0; i<currLevel.subWords.Count; i++) {
 …
 }

 // Place the big letters
 // Initialize the List<>s for big Letters
 bigLetters = new List<Letter>();
 bigLettersActive = new List<Letter>();

 // Create a big Letter for each letter in the target word
 for (int i=0; i<currLevel.word.Length; i++) {
 // This is similar to the process for a normal Letter
 c = currLevel.word[i];
 go = Instantiate<GameObject>(prefabLetter);
 go.transform.SetParent(bigLetterAnchor);
 lett = go.GetComponent<Letter>();
 lett.c = c;
 go.transform.localScale = Vector3.one*bigLetterSize;

 // Set the initial position of the big Letters below screen
 pos = new Vector3(0, -100, 0);
 lett.pos = pos; // You'll add more code around this line later

 col = bigColorDim;
 lett.color = col;
 lett.visible = true; // This is always true for big letters
 lett.big = true;
 bigLetters.Add(lett);
 }
 // Shuffle the big letters
 bigLetters = ShuffleLetters(bigLetters);
 // Arrange them on screen
 ArrangeBigLetters();

 // Set the mode to be in-game
 mode = GameMode.inLevel;
 }

 // This method shuffles a List<Letter> randomly and returns the result
 List<Letter> ShuffleLetters(List<Letter> letts) {
 List<Letter> newL = new List<Letter>();

826

 int ndx;
 while(letts.Count > 0) {
 ndx = Random.Range(0,letts.Count);
 newL.Add(letts[ndx]);
 letts.RemoveAt(ndx);
 }
 return(newL);
 }

 // This method arranges the big Letters on screen
 void ArrangeBigLetters() {
 // The halfWidth allows the big Letters to be centered
 float halfWidth = ((float) bigLetters.Count)/2f - 0.5f;
 Vector3 pos;
 for (int i=0; i<bigLetters.Count; i++) {
 pos = bigLetterCenter;
 pos.x += (i-halfWidth)*bigLetterSize;
 bigLetters[i].pos = pos;
 }
 // bigLettersActive
 halfWidth = ((float) bigLettersActive.Count)/2f - 0.5f;
 for (int i=0; i<bigLettersActive.Count; i++) {
 pos = bigLetterCenter;
 pos.x += (i-halfWidth)*bigLetterSize;
 pos.y += bigLetterSize*1.25f;
 bigLettersActive[i].pos = pos;
 }
 }
}

2. Now, in addition to the Letters up top, you should also see big Letters below, the
shuffled form of the goal word. It's time to add some interactivity.

Adding Interactivity
For this game, you want the player to be able to type words from the available big Letters
on her keyboard and press Return/Enter to submit them. She can also press
Backspace/Delete to remove a letter from the end of what she has typed and press the space
bar to shuffle the remaining unselected letters.

When she presses Enter, the word she typed is compared with the possible words in the
WordLevel. If the word she typed is in the WordLevel, she gets a point for each letter in the
word. In addition, if the word she typed contains any smaller words that are also in the
WordLevel, she also gets points for those plus a multiplier for each word. Looking at the
TORNADO example earlier, if a player typed TORNADO as her first word and pressed
Return, she would get 36 total points as follows:

TORNADO 7 × 1 points1 point per letter × 1 for first word = 7 points
TORN 4 × 2 points 1 point per letter × 2 for second word = 8 points

827

TOR 3 × 3 points 1 point per letter × 3 for third word = 9 points
ADO + 3 × 4 points 1 point per letter × 4 for fourth word = 12 points

36 total points

All of this interactivity will be handled in WordGame by an Update() function and will
be based on Input.inputString, a string of all the keyboard input that occurred this
frame.

1. Add the following Update() method and supporting methods to WordGame:
Click here to view code image

public class WordGame : MonoBehaviour {
 …

 [Header("Set Dynamically")]
 …
 public List<Letter> bigLettersActive;
 public string testWord;
 private string upperCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

 …

 void ArrangeBigLetters() { … }

 void Update() {
 // Declare a couple useful local variables
 Letter ltr;
 char c;

 switch (mode) {
 case GameMode.inLevel:
 // Iterate through each char input by the player this frame
 foreach (char cIt in Input.inputString) {
 // Shift cIt to UPPERCASE
 c = System.Char.ToUpperInvariant(cIt);

 // Check to see if it's an uppercase letter
 if (upperCase.Contains(c)) { // Any uppercase letter
 // Find an available Letter in bigLetters with this char
 ltr = FindNextLetterByChar(c);
 // If a Letter was returned
 if (ltr != null) {
 // ... then add this char to the testWord and move
 // the returned big Letter to bigLettersActive
 testWord += c.ToString();
 // Move it from the inactive to the active List<>
 bigLettersActive.Add(ltr);
 bigLetters.Remove(ltr);
 ltr.color = bigColorSelected; // Make it look active
 ArrangeBigLetters(); // Rearrange the big Letters
 }

828

 }

 if (c == '\b') { // Backspace
 // Remove the last Letter in bigLettersActive
 if (bigLettersActive.Count == 0) return;
 if (testWord.Length > 1) {
 // Clear the last char of testWord
 testWord = testWord.Substring(0,testWord.Length-1);
 } else {
 testWord = "";
 }

 ltr = bigLettersActive[bigLettersActive.Count-1];
 // Move it from the active to the inactive List<>
 bigLettersActive.Remove(ltr);
 bigLetters.Add (ltr);
 ltr.color = bigColorDim; // Make it the inactive color
 ArrangeBigLetters(); // Rearrange the big Letters
 }

 if (c == '\n' || c == '\r') { // Return/Enter macOS/Windows
 // Test the testWord against the words in WordLevel
 CheckWord();
 }

 if (c == ' ') { // Space
 // Shuffle the bigLetters
 bigLetters = ShuffleLetters(bigLetters);
 ArrangeBigLetters();
 }
 }
 break;
 }
 }

 // This finds an available Letter with the char c in bigLetters.
 // If there isn't one available, it returns null.
 Letter FindNextLetterByChar(char c) {
 // Search through each Letter in bigLetters
 foreach (Letter ltr in bigLetters) {
 // If one has the same char as c
 if (ltr.c == c) {
 // ...then return it
 return(ltr);
 }
 }
 return(null); // Otherwise, return null
 }

 public void CheckWord() {
 // Test testWord against the level.subWords
 string subWord;
 bool foundTestWord = false;

 // Create a List<int> to hold the indices of other subWords that are

829

 // contained within testWord
 List<int> containedWords = new List<int>();

 // Iterate through each word in currLevel.subWords
 for (int i=0; i<currLevel.subWords.Count; i++) {

 // Check whether the Wyrd has already been found
 if (wyrds[i].found) { // a
 continue;
 }

 subWord = currLevel.subWords[i];
 // Check whether this subWord is the testWord or is contained in it
 if (string.Equals(testWord, subWord)) { // b
 HighlightWyrd(i);
 foundTestWord = true;
 } else if (testWord.Contains(subWord)) {
 containedWords.Add(i);
 }
 }

 if (foundTestWord) { // If the test word was found in subWords
 // ...then highlight the other words contained in testWord
 int numContained = containedWords.Count;
 int ndx;
 // Highlight the words in reverse order
 for (int i=0; i<containedWords.Count; i++) {
 ndx = numContained-i-1;
 HighlightWyrd(containedWords[ndx]);
 }
 }

 // Clear the active big Letters regardless of whether testWord was valid
 ClearBigLettersActive();
 }

 // Highlight a Wyrd
 void HighlightWyrd(int ndx) {
 // Activate the subWord
 wyrds[ndx].found = true; // Let it know it's been found
 // Lighten its color
 wyrds[ndx].color = (wyrds[ndx].color+Color.white)/2f;
 wyrds[ndx].visible = true; // Make its 3D Text visible
 }

 // Remove all the Letters from bigLettersActive
 void ClearBigLettersActive() {
 testWord = ""; // Clear the testWord
 foreach (Letter ltr in bigLettersActive) {
 bigLetters.Add(ltr); // Add each Letter to bigLetters
 ltr.color = bigColorDim; // Set it to the inactive color
 }
 bigLettersActive.Clear(); // Clear the List<>
 ArrangeBigLetters(); // Rearrange the Letters on screen
 }

830

}

a. If the ith Wyrd on screen has already been found then continue and skip the rest of this
iteration. This works because the Wyrds on screen and the words in the subWords
List are in the same order.

b. Check whether this subWord is the testWord, and if so then highlight the
subWord. If it's not the testWord, check to see whether testWord contains this
subWord (e.g., SAND contains AND), and if so, then add it to the
containedWords List.

2. Save the WordGame script and return to Unity.
3. Set showAllWyrds to false in the Inspector for the WordGame (Script) component of

_MainCamera, and then click Play.

A working version of the game and a random level should appear. You can play the game
using the keyboard as described earlier.

Adding Scoring
Because of the Scoreboard and FloatingScore classes that you wrote in previous chapters
and imported into this project, adding scoring to this game should be very easy.

1. Create a Canvas for the UI Text fields to use by choosing GameObject > UI > Canvas
from the menu bar.

2. Drag Scoreboard from the _Prefab folder in the Project pane onto Canvas in the
Hierarchy pane, making Scoreboard a child of Canvas.

3. Double-check that the prefabFloatingScore field of the Scoreboard (Script)
component of the Scoreboard GameObject is set to the PrefabFloatingScore prefab from
the _Prefabs folder. (If you want to learn more about how the Scoreboard works, refer
to Chapter 32, "Prototype 4: Prospector Solitaire.")

4. Create a new script named ScoreManager in the __Scripts folder and attach it to
Scoreboard.

5. Open ScoreManager in MonoDevelop and enter the following code:
Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;

public class ScoreManager : MonoBehaviour {
 static private ScoreManager S; // Another private Singleton

 [Header("Set in Inspector")]

831

 public List<float> scoreFontSizes = new List<float> { 36, 64, 64, 1 };
 public Vector3 scoreMidPoint = new Vector3(1, 1, 0);
 public float scoreTravelTime = 3f;
 public float scoreComboDelay = 0.5f;

 private RectTransform rectTrans;

 void Awake() {
 S = this;
 rectTrans = GetComponent<RectTransform>();
 }

 // This method allows ScoreManager.SCORE() to be called from anywhere
 static public void SCORE(Wyrd wyrd, int combo) {
 S.Score(wyrd, combo);
 }

 // Add to the score for this word
 // int combo is the number of this word in a combo
 void Score(Wyrd wyrd, int combo) {
 // Create a List<> of Vector2 Bezier points for the FloatingScore.
 List<Vector2> pts = new List<Vector2>();

 // Get the position of the first Letter in the wyrd
 Vector3 pt = wyrd.letters[0].transform.position; // a
 pt = Camera.main.WorldToViewportPoint(pt);

 pts.Add(pt); // Make pt the first Bezier point // b

 // Add a second Bezier point
 pts.Add(scoreMidPoint);

 // Make the Scoreboard the last Bezier point
 pts.Add(rectTrans.anchorMax);

 // Set the value of the Floating Score
 int value = wyrd.letters.Count * combo;
 FloatingScore fs = Scoreboard.S.CreateFloatingScore(value, pts);

 fs.timeDuration = scoreTravelTime;
 fs.timeStart = Time.time + combo * scoreComboDelay;
 fs.fontSizes = scoreFontSizes;

 // Double the InOut Easing effect
 fs.easingCurve = Easing.InOut+Easing.InOut;

 // Make the text of the FloatingScore something like "3 x 2"
 string txt = wyrd.letters.Count.ToString();
 if (combo > 1) {
 txt += " x "+combo;
 }
 fs.GetComponent<Text>().text = txt;
 }

}

832

a. You want the starting position of the FloatingScore to be directly over the wyrd. First,
you get the 3D, world coordinates location of the 0th letter of the wyrd. On the next
line, you use the _MainCamera to convert it from 3D world coordinates to a
ViewportPoint. ViewportPoints range from 0 to 1 in X and Y coordinates and indicate
where the point is relative to the width and height of the screen and are used for UI
coordinates.

b. When the Vector3 pt is added to the List<Vector2> pts, the Z coordinate is
dropped.

6. Save the ScoreManager script.
7. Open the WordGame script and add scoring code to the CheckWord()by making

the following bolded edits:
Click here to view code image

public class WordGame : MonoBehaviour {
 …

 public void CheckWord() {
 …
 for (int i=0; i<currLevel.subWords.Count; i++) {
 …
 // Check whether this subWord is the testWord or is contained in it
 if (string.Equals(testWord, subWord)) {
 HighlightWyrd(i);
 ScoreManager.SCORE(wyrds[i], 1); // Score the testWord // a
 foundTestWord = true;
 } else if (testWord.Contains(subWord)) {
 …
 }
 }

 if (foundTestWord) { // If the test word was found in subWords
 …
 for (int i=0; i<containedWords.Count; i++) {
 ndx = numContained-i-1;
 HighlightWyrd(containedWords[ndx]);
 ScoreManager.SCORE(wyrds[containedWords[ndx]], i+2); // b
 }
 }
 …
 }

 …
}

a. This line calls the ScoreManager.SCORE() static method to score the
testWord that the player spelled.

b. Here, ScoreManager.SCORE() is called to score any smaller words contained
within the testWord. The second parameter (i+2) is the number of this word in the

833

combo.
8. Save the WordGame script, return to Unity, and click Play.

You should now get a score for each correct word you enter, and you get a multiplier for
each additional valid word contained in the word you type. However, the white scores are
a bit difficult to see over the white Letter tiles. You'll fix this a little later when you add
more color to the game.

Adding Animation to Letters
In a similar manner to scoring, you can easily add smooth animation of Letters by taking
advantage of the interpolation functions that you imported in the Utils script.

1. Add the following code to the Letter C# script:
Click here to view code image

public class Letter : MonoBehaviour {
 [Header("Set in Inspector")]
 public float timeDuration = 0.5f;
 public string easingCuve = Easing.InOut; // Easing from Utils.cs

 [Header("Set Dynamically")]
 public TextMesh tMesh; // The TextMesh shows the char
 public Renderer tRend; // The Renderer of 3D Text. This will
 // determine whether the char is visible
 public bool big = false; // Big letters act a little differently
 // Linear interpolation fields
 public List<Vector3> pts = null;
 public float timeStart = -1;

 private char _c; // The char shown on this Letter
 …

 // Sets the position of the Letter's gameObject
 // Now sets up a Bezier curve to move to the new position
 public Vector3 pos {
 set {
 // transform.position = value; // This line is now commented out

 // Find a midpoint that is a random distance from the actual
 // midpoint between the current position and the value passed in
 Vector3 mid = (transform.position + value)/2f;

 // The random distance will be within 1/4 of the magnitude of the
 // line from the actual midpoint
 float mag = (transform.position - value).magnitude;
 mid += Random.insideUnitSphere * mag*0.25f;

 // Create a List<Vector3> of Bezier points
 pts = new List<Vector3>() { transform.position, mid, value };

834

 // If timeStart is at the default -1, then set it
 if (timeStart == -1) timeStart = Time.time;
 }
 }

 // Moves immediately to the new position
 public Vector3 posImmediate { // a
 set {
 transform.position = value;
 }
 }

 // Interpolation code
 void Update() {
 if (timeStart == -1) return;

 // Standard linear interpolation code
 float u = (Time.time-timeStart)/timeDuration;
 u = Mathf.Clamp01(u);
 float u1 = Easing.Ease(u,easingCuve);
 Vector3 v = Utils.Bezier(u1, pts);
 transform.position = v;

 // If the interpolation is done, set timeStart back to -1
 if (u == 1) timeStart = -1;
 }

}

a. Because setting pos now creates an interpolation to the new position,
posImmediate was added to allow us to jump this Letter immediately to another
position.

2. Save the Letter script, return to Unity, and click Play.

You'll now see the Letters all interpolate to their new positions. However, it looks a little
strange for all the Letters to move at the same time and start from the center of the screen.

3. Let's add some small changes to the WordGame.Layout() method to improve this:
Click here to view code image

public class WordGame : MonoBehaviour {
 …

 void Layout() {
 …
 for (int i=0; i<currLevel.subWords.Count; i++) {
 …
 // Instantiate a PrefabLetter for each letter of the word
 for (int j=0; j<word.Length; j++) {
 …
 // The % here makes multiple columns line up
 pos.y -= (i%numRows)*letterSize;

835

 // Move the lett immediately to a position above the screen
 lett.posImmediate = pos+Vector3.up*(20+i%numRows);
 // Then set the pos for it to interpolate to
 lett.pos = pos; // You'll add more code around this line later
 // Increment lett.timeStart to move wyrds at different times
 lett.timeStart = Time.time + i*0.05f;

 go.transform.localScale = Vector3.one*letterSize;
 wyrd.Add(lett);
 }
 …
 }
 …
 // Create a big Letter for each letter in the target word
 for (int i=0; i<currLevel.word.Length; i++) {
 …
 // Set the initial position of the big Letters below screen
 pos = new Vector3(0, -100, 0);

 lett.posImmediate = pos;
 lett.pos = pos; // You'll add more code around this line later
 // Increment lett.timeStart to have big Letters come in last
 lett.timeStart = Time.time + currLevel.subWords.Count*0.05f;
 lett.easingCuve = Easing.Sin+"-0.18"; // Bouncy easing

 col = bigColorDim;
 …
 }
 …
 }

 …
}

4. Save the WordGame script, return to Unity, and click Play.

The game should now lay out with nice smooth, progressive motions.

Adding Color
Now that the game moves well, it's time to add a little color:

1. Add the following bold code to WordGame to color the Wyrds based on their length:
Click here to view code image

public class WordGame : MonoBehaviour {
 static public WordGame S; // Singleton

 [Header("Set in Inspector")]
 …
 public Vector3 bigLetterCenter = new Vector3(0, -16, 0);
 public Color[] wyrdPalette;

836

 [Header("Set Dynamically")]
 …

 void Layout() {
 …
 // Make a Wyrd of each level.subWord
 for (int i=0; i<currLevel.subWords.Count; i++) {
 …
 // Instantiate a PrefabLetter for each letter of the word
 for (int j=0; j<word.Length; j++) {
 …
 }

 if (showAllWyrds) wyrd.visible = true;

 // Color the wyrd based on length
 wyrd.color = wyrdPalette[word.Length - WordList.WORD_LENGTH_MIN];

 wyrds.Add(wyrd);

 …
 }
 …
 }

 …
}

These last few code changes have been so simple because you already had supporting code
in place (e.g., the Wyrd.color and Letter.color properties as well as the Easing
code in the Utils class).

Now, you need to set about eight colors for wyrdPalette. To do this, use the Color
Palette image included in the import at the beginning of the project. You're going use the
eye dropper to set color, which might leave you wondering how to see both the Color
Palette image and the _MainCamera Inspector at the same time. To do that, you'll take
advantage of Unity's capability to have more than one Inspector window open at the same
time.

2. As shown in Figure 34.5, click the pane options button (circled in red) and choose Add
Tab > Inspector to add an Inspector to the Game tab.

837

Figure 34.5 Using the pane options button to add an Inspector to the Game pane

3. Select the Color Palette image in the Materials & Textures folder of the Project pane.
It now appears in both Inspectors. (You might need to drag up the edge of the image
preview part of the Inspector to make it look like Figure 34.6.)

Figure 34.6 The lock icon on one Inspector (circled in red) and the eye dropper in the
other Inspector (circled in light blue)

4. Click the lock icon on one inspector (circled in red in the Figure 34.6).
5. Select _MainCamera in the Hierarchy pane. Only the unlocked Inspector changes to

_MainCamera, while the locked one still shows the Color Palette image.
6. Expand the disclosure triangle next to wyrdPalette in the _MainCamera Inspector

838

and set its Size to 8.
7. Click the eye dropper next to each wyrdPalette element (circled in light blue), and

then click one of the colors in the Color Palette image. Doing this gives you the eight
different colors of the Color Palette image, but they will all default to having an alpha of
0 (and therefore being invisible). You can tell the alpha is 0 by the black bar beneath
each color in wyrdPalette.

8. Click each color bar in the wyrdPalette array and set each one's alpha (or A) to
255 to make it fully opaque. When you have done this, the bar beneath each color in the
wyrdPalette will change from black to white.

9. As always, save your scene.

Now when you play the scene, you should see something that looks like the screenshot from
the beginning of the chapter.

Summary
In this chapter, you created a simple word game and added a little flair to it with some nice
interpolated movement. If you've been following these tutorials in order, you might have
realized that the process of making them is getting a little bit easier. With the expanded
understanding of Unity that you now have and the capabilities of readymade utility scripts
like Scoreboard, FloatingScore, and Utils, you can focus more of the coding effort on the
things that are new and different in each game and less on reinventing the wheel.

Next Steps
In the previous prototypes, you saw examples of how to set up a series of game states to
handle the different phases of the game and transition from one level to the next. Right now,
this prototype doesn't have any of that. On your own, you should add that kind of control
structure to this game.

Here are some things to think about as you do so:
 When should the player be able to move on to the next level? Must she guess every
single word, or can she move on when she has either reached a specific point total or
has guessed the target word?
 How will you handle levels? Will you just pick a completely random word—as you are
now—or will you modify the randomness to make sure that level 5 is always the same
word (therefore making it fair for players to compare their scores on level 5)? Here's a
hint if you decide to try for a modified randomness:

Click here to view code image

using UnityEngine;
using System.Collections;

839

public class LevelPicker : MonoBehaviour {
 static private System.Random rng;

 [Header("Set in Inspector")]
 public int randomSeed = 12345;

 void Awake() {
 rng = new System.Random(randomSeed);
 }

 static public int Next(int max=-1) {
 // Returns the next number from rng between 0 and max-1.
 // If -1 is passed in, max is ignored
 if (max == -1) {
 return rng.Next();
 } else {
 return rng.Next(max);
 }
 }

}

 How do you want to handle levels with too many or too few subWords? Some
collections of seven letters have so many words that they extend off the screen to the
right, whereas others have so few that there's only one column. Do you want to make the
game skip the level in either case? If so, how do you then instruct something like the
PickNthRandom function to skip certain numbers?

You should have enough knowledge of programming and prototyping now that you can take
these questions and make this into a real game. You have the skills, now go for it!

1. Alan Beale has released all of his word lists into the public domain apart from the
aspects of the 2of12inf list that were based on the AGID word list, Copyright 2000 by
Kevin Atkinson. Permission to use, copy, modify, distribute, and sell this [the AGID]
database, the associated scripts, the output created from the scripts and its
documentation for any purpose is hereby granted without fee, provided that the above
copyright notice appears in all copies and that both that copyright notice and this
permission notice appear in supporting documentation. Kevin Atkinson makes no
representations about the suitability of this array for any purpose. It is provided "as is"
without express or implied warranty.

2. If you wanted, you could call Random.InitState(1); in the WordGame.Awake() method,
which would set the initial random number seed of Random to 1 and ensure that the
eighth level would always be the same word as long as you only ever used Random to
choose the level. I describe another way to approach this in the "Next Steps" section at
the end of the chapter.

3. When you save these scripts and return to Unity, you will see two yellow warnings

840

about unused variables (col and bigLetterAnchor) in your scripts. Don't worry about
these; we'll use them soon.

841

CHAPTER 35

PROTOTYPE 7: DUNGEON DELVER

The Dungeon Delver game that you create in this chapter is a partial clone of the
original Legend of Zelda game for the Nintendo Entertainment System. In my
classes, I have found that recreating old games can really help designers to learn
them, and The Legend Of Zelda has always been one of the best games to clone in
this way.

This is the last prototype of the book and therefore the most complex. However,
this prototype also uses stronger component-based design than many of the
others, so individual scripts are going to be shorter. When you're done with this
chapter, you'll have a nice skeleton for an action-adventure game that you can
expand yourself.

Dungeon Delver—Game Overview
This chapter is considerably longer than most of the others, but it's also making a larger
game. This is the only prototype that is completely new for the second edition of the book.
It is an action-adventure game strongly based on The Legend of Zelda for the Nintendo
Entertainment System. The game follows an adventurer named Dray as they explore a
dungeon, fight Skeletos, and find a Grappler (grappling hook).1

Figure 35.1 shows what Dungeon Delver will look like at the end of this chapter. Dungeon
Delver starts with a clone of the first dungeon encountered in The Legend of Zelda for the
NES. Part way through the chapter, we will switch to a second dungeon (the one featured in
Chapter 9, "Paper Prototyping"). After you're finished with the chapter, check Chapter 35
on the website for this book to find a level editor for this game and instructions on how to
make your own dungeons.

842

Figure 35.1 An example of what Dungeon Delver will look like

Component-Based Design
For this prototype, we'll attempt to work with component-based design as much as
possible (see Chapter 27, "Object-Oriented Thinking"). To do this properly, you need to
think ahead a bit about how you want the game to work. The Legend of Zelda and most
other games of the time were tile-based, meaning that their maps were constructed of a
limited number of tiles that were repeated several times throughout the stage. In Figure
35.2, you can see the set of tiles you'll use on the left and part of a map made from those
tiles on the right.

Figure 35.2 An atlas of tiles on the left and a room made from them on the right. A grid has
been laid over the left image to help you see the edges of the tiles more clearly.

Unity does not have a built-in tile engine, so we'll have to make one. This means that we'll
need both a prefab for the tiles and a script on the camera to arrange those tiles. Because

843

we're trying to think in a more object-oriented way, we should have the script on each tile
(Tile.cs) handle as much work as possible, with the camera script (TileCamera.cs) merely
assigning a location to each tile. Here is the planned division of labor:

1. TileCamera.cs
 Position self—The camera starts at the entrance to the dungeon and follows the player
(Dray) into other rooms as they move into them.
 Read map data—TileCamera reads the DelverData map file, the DelverCollisions
collision information, and the DelverTiles Texture2D that contains all tiles Sprites.
 Assign locations to Tiles—TileCamera instantiates Tile GameObjects and assigns
them a position on the map.

2. Tile.cs—All of these require that TileCamera has assigned a location to this Tile.
 Position self—The Tile should position itself at the location it has been assigned.
 Show proper tile sprite—The Tile should look in the DelverData MAP data that the
TileCamera manages to find which tile sprite it should display.
 Manage BoxCollider—The Tile should look at the DelverCollisions data managed by
TileCamera and set its BoxCollider appropriately.

Getting Started: Prototype 7
The unitypackage for this project includes a number of assets, materials, and scripts.
Because you already have experience with building objects and slicing sprites in Unity, I
do not ask you to do those things in this chapter. Instead, you import a series of prefabs to
serve as the artwork in this game.

SET UP THE PROJECT FOR THIS CHAPTER
Following the standard project setup procedure, create a new project in Unity. If
you need a refresher on the standard project setup procedure, see Appendix A,
"Standard Project Setup Procedure." When you create the project, you are asked
whether you want to set up defaults for 2D or 3D. Choose 2D for this project.

 Project name: Dungeon Delver
 Download and import package: Find Chapter 35 at http://book.prototools.net.
 Scene name: _Scene_Eagle (this scene will have a dungeon layout identical to
that of the Eagle dungeon in The Legend of Zelda).
 Project folders: These are all imported from the unitypackage.
 C# script names: None other than the imported scripts.

844

http://book.prototools.net

The __Scripts folder in the unitypackage includes a Spiker.cs script with most of
the code commented out. After you've finished the chapter, you can uncomment that
code and attach the Spiker script to the Spiker prefab.

All images of characters, tiles, items, and so on in this chapter were created by my fantastic
colleague and friend Andrew Dennis, who teaches art and animation at Michigan State
University.2

Setting Up the Cameras
This is the first project where you will use more than one camera. The first, Main Camera,
will show the actual gameplay, whereas the second, GUI Camera, will show the graphical
user interface (GUI) for the game. This will allow you to manage each camera
independently, which will make your GUI coding much simpler.

Game Pane
Before adjusting the cameras, you should prepare the Game Pane.

From the Aspect Ratio pop-up of the Game pane, choose 1080p (1920x1080). If you don't
have that option in your Game pane aspect ratios, then do the following:

1. Click the Aspect Ratio pop-up menu at the top of the Game pane (the second pop-up
menu from the left) and click the + at the bottom of that menu.

2. In the dialog box that appears, set:
 Label to 1080p
 Type to Fixed Resolution
 W to 1920
 H to 1080

3. Click OK to save this as a preset.
4. Choose 1080p (1920x1080) from the Aspect Ratio pop-up.

Main Camera
Select Main Camera in the Hierarchy. In the Inspector, set the following:

 Transform—P:[23.5, 5, -10] R:[0, 0, 0] S:[1, 1, 1]
 Camera

 Clear Flags: Solid Color

845

 Background: Set this to black (RGBA:[0, 0, 0, 255])
 Projection: Orthographic
 Size: 5.5
 Viewport Rect: X:0, Y:0, W:0.8, H:1

GUI Camera
Follow these steps to create a camera named GUI Camera.

1. Create a new camera by choosing GameObject > Camera.
2. Rename the Camera to GUI Camera.
3. Select GUI Camera in the Hierarchy and set the following in the Inspector:

 Tag: Untagged—This ensures that Camera.main still refers to Main Camera.
 Transform—P:[-100, 0, -10] R:[0, 0, 0] S:[1, 1, 1]
 Camera
 Clear Flags: Solid Color

 Background: Set this to gray for now (RGBA:[128, 128, 128, 255])
 Projection: Orthographic
 Size: 5.5
 Viewport Rect: X:0.8, Y:0, W:0.2, H:1

 Audio Listener—You can only have one Audio Listener in a scene, and for this scene,
that's Main Camera.
 Click the gear icon on the right side of the Audio Listener component and select
Remove Component from the pop-up menu.

These settings will split the Game pane into two smaller panes. The Main Camera will fill
most of the screen, and the GUI Camera will fill the right 20%.

Understanding the Dungeon Data
Three files in the Resources folder of the Project pane hold all the information needed to
display a dungeon in this game (the file extensions like .png do not appear in the Project
pane):

 DelverTiles.png—A Texture2D image file that holds all the images that can be used to
display a dungeon.
 DelverCollisions.txt—A text file that holds collision information for each of the tile
sprites in DelverTiles.png. Later I will cover what each of the letters in this file mean.

846

 DelverData.txt—A text file containing the map information about which of the tile
sprites from DelverTiles.png to place where.

Preparing DelverTiles
To prepare DelverTiles, follow these steps:

1. Select DelverTiles in the Resources folder of the Project pane.

Figure 35.3 Import Settings and Sprite Editor for DelverTiles showing proper settings for
both

2. Set the Import Settings in the Inspector to match those shown in Figure 35.3:
 Texture Type: Sprite (2D and UI)
 Sprite Mode: Multiple
 Pixels Per Unit: 16. This means that in the scene, a sprite 16 pixels wide would
appear 1m wide. Because each tile is 16x16, this makes each tile of the map take up 1
square meter (i.e., 1 square Unity unit).
 Generate Mip Maps: False. MIP maps are a way of speeding up rendering for things
that are very far away by storing multiple versions of the image at different

847

resolutions. They are not needed for this project.
 Wrap Mode: Clamp. If the texture coordinates for a polygon were set to less than 0 or
greater than 1, the Clamp mode would cause this image to repeat the edge pixel (rather
than tiling by repeating the entire image over and over).
 Filter Mode: Point (no filter). This helps you keep the sharp, 8-bit look.
 Compression (in the Default tab of the box at the bottom): None. Although
compression is great and often necessary for large images (and the png files you're
importing do an excellent job of lossless compression), Unity's compression is very
lossy, especially for small, 8-bit graphics like these.
 Each of the other tabs in this box at the bottom containing the Compression setting
allow you to create import settings for specific platforms, including PC, Mac & Linux
Standalone; WebGL; and any other platform you've installed (you can also see an iOS
option in the image). Please check each of these to ensure that the Override checkbox
under each is unchecked: False.

3. Click the Apply button (shown under the cursor in Figure 35.3).
4. Click the Sprite Editor button surrounded by red in Figure 35.3. This opens the Sprite

Editor, which you can see on the right side of Figure 35.3.
5. Click the Slice pop-up menu in the top-left corner of the Sprite Editor, and use the

following settings:
 Type: Grid by Cell Size
 Pixel Size: x:16 y:16

6. Click the Slice button (at the bottom of the Slice pop-up menu). This creates multiple
sprites from the single image, all of them 16x16 pixels in size. They are numbered
starting with 0 in the top-left, continuing to 15 in the top-right corner, and then on to the
second row.

7. Click the Apply button at the top of the Sprite Editor window and then close the Sprite
Editor. In all, 256 sprites will be created—DelverTiles_0 through DelverTiles_255—
which you can now see in the Project pane by opening the disclosure triangle next to
Resources/DelverTiles.

The DelverData Text File
DelverData stores hexadecimal information about which tile goes where in the dungeon.

In the Project pane, double-click Resources/DelverData to open it in MonoDevelop.

Figure 35.4 shows the contents of DelverData.txt. As you can see, it's an upside-down
version of the Eagle dungeon from The Legend of Zelda that was described in Chapter 9,
"Paper Prototyping."3 The image is upside-down because text files are always read top-to-

848

bottom, whereas the Y coordinate of your map will go from bottom-to-top.

Figure 35.4 DelverData.txt

This file includes several two-digit hexadecimal numbers (see sidebar), separated by
spaces. To make it easier to see the dungeon pattern, I've replaced the hexadecimal value
"00" with ".." in this file.

HEXADECIMAL NUMBERS
If you've ever done any web development, you've seen an example of hexadecimal
(or hex) numbers in the way that web colors are specified (e.g., FF0000 is bright
red). The DelverData.txt file uses two-digit hex numbers that can count from 0 to
255 (in decimal).

Just as with your normal decimal numbers, hex numbers have digits in places
(e.g., a ones place, a tens place, and so on). In regular decimal numbers, the digits
can count from 0 to 9, whereas hexadecimal, the digits can count from 0 to 15.
Hexadecimal uses the characters a through f to represent the numbers 10–15 as
shown here:

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Hexadecimal 0 1 2 3 4 5 6 7 8 9 a b c d e f 10

The letters a–f can either be upper- or lowercase. I chose lowercase in the
DelverData file because I thought it was slightly easier to read. In programming
C#, you will see hex values preceded by 0x to differentiate them from decimal

849

numbers (for clarity in this sidebar, I list hex numbers with 0x and in the code
font, and I show decimal numbers in the regular text font).

Just as with decimal numbers, a number in a higher place means that number
should be multiplied by 1 more than you can represent with digits. So, 0x10 in
hex has a 1 in the sixteens place and represents 1*16 + 0*1 (just as 10 in decimal
represents 1*10 + 0*1). So, 0x10 in hex is equal to 16 in decimal.

One of the nice things about using hex for tiles in the DelverTiles image is that
there are exactly 256 possible tiles in that image and exactly 256 possible
numbers in two-digit hex. This also means that the first hex digit is always the
row, and the second hex digit is always the column when referencing that image.
So, if I wanted to get the number in the map for the red statue facing right, I could
count down the number of rows (starting with 0), put that in the sixteens place,
and then count across the number of columns and put that in the ones place (see
Figure 35.5).

Figure 35.5 Demonstration of finding the number of a tile in DelverTiles

Generating a Map from Data
Now that you have both an image of the tiles and a text file that tells you which tile to put
where, you can combine these into an actual map. You will create both the TileCamera and
Tile classes, and they are interrelated, so I'll be taking you back and forth between them as
you code.

850

Tile Class—Preparation
Let's start with the Tile class. At its core, the Tile class needs to be able to receive an int
from TileCamera telling it which tile to show. This is all you need right now.

1. Create a new Sprite in the Hierarchy (GameObject > 2D Object > Sprite). Rename the
New Sprite to Tile.

2. Create a new C# script in the __Scripts folder named Tile.
3. Attach the Tile script to the Tile GameObject in the Hierarchy.
4. Open the Tile script in MonoDevelop and enter this code:

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Tile : MonoBehaviour {

 [Header("Set Dynamically")]
 public int x;
 public int y;
 public int tileNum;

 public void SetTile(int eX, int eY, int eTileNum = -1) { //
a
 x = eX;
 y = eY;
 transform.localPosition = new Vector3(x, y, 0);
 gameObject.name = x.ToString("D3")+"x"+y.ToString("D3"); // b

 if (eTileNum == -1) {
 eTileNum = TileCamera.GET_MAP(x,y); // c
 }
 tileNum = eTileNum;
 GetComponent<SpriteRenderer>().sprite = TileCamera.SPRITES[tileNum]; //
d
 }
}

a. This method declaration has a default (optional) parameter for eTileNum. If nothing
(or a -1) is passed in for eTileNum, then the default tile number will be read from
TileCamera.GET_MAP().

b. The ToString("D3") method of the ints x and y output a string in a specific
format. "D" causes the output to be in decimal (i.e., base-ten) numbers, and "3" forces
it to use at least three characters (adding preceding zeroes as needed). So, if x=23 and
y=5, then this line would output "023x005". For more information on the various
formats, search online for "C# numeric format strings."

851

c. If -1 is passed into eTileNum, the tile number will be read from
TileCamera.MAP. This text is colored red because you have not yet written the
TileCamera class.

d. Once TileCamera.SPRITES exists, this will assign the proper sprite to this Tile.
5. Save the Tile script and return to Unity. You will see two red errors in the Console

because you haven't yet written the TileCamera class.
6. Drag Tile from the Hierarchy to the _Prefabs folder in the Project pane to make it a

prefab.
7. Delete the Tile instance from the Hierarchy.

That's all you need for now. This allows you to call SetTile() from TileCamera, and
the Tile will automatically jump to the proper location and set its name.

TileCamera Class—Parsing Data and Sprite Files
The TileCamera class is responsible for parsing and storing all the sprites from the
DelverTiles.png image and reading DelverData.txt to determine where to position those
tiles. Let's start with reading the two files. It is important for this that both the DelverData
and DelverTiles files are in the Resources folder of the Project pane. "Resources" is one of
Unity's special project folder names. Any file in the Resources folder will be included in a
compiled project by Unity, regardless of whether or not it is included in the scene, and files
in the Resources folder can be loaded in code using the Resources class that is part of
UnityEngine.

1. Create a new C# script named TileCamera in the __Scripts folder. You won't be able to
attach it to a GameObject now because of the compiler errors that you see in the
Console. If you look in Tile.cs now, you can see that TileCamera has turned blue, but
the static field names after it are red because you have not defined them yet.

2. Open TileCamera in MonoDevelop and enter the following code:
Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class TileCamera : MonoBehaviour {
 static private int W, H;
 static private int[,] MAP;
 static public Sprite[] SPRITES;
 static public Transform TILE_ANCHOR;
 static public Tile[,] TILES;

 [Header("Set in Inspector")]
 public TextAsset mapData;

852

 public Texture2D mapTiles;
 public TextAsset mapCollisions; // This will be used later
 public Tile tilePrefab;

 void Awake() {
 LoadMap();
 }

 public void LoadMap() {
 // Create the TILE_ANCHOR. All Tiles will have this as their parent.
 GameObject go = new GameObject("TILE_ANCHOR");
 TILE_ANCHOR = go.transform;

 // Load all of the Sprites from mapTiles
 SPRITES = Resources.LoadAll<Sprite>(mapTiles.name); //
a

 // Read in the map data
 string[] lines = mapData.text.Split('\n'); //
b
 H = lines.Length;
 string[] tileNums = lines[0].Split('');
 W = tileNums.Length;

 System.Globalization.NumberStyles hexNum; //
c
 hexNum = System.Globalization.NumberStyles.HexNumber;
 // Place the map data into a 2D Array for faster access
 MAP = new int[W,H];
 for (int j=0; j<H; j++) {
 tileNums = lines[j].Split('');
 for (int i=0; i<W; i++) {
 if (tileNums[i] == "..") {
 MAP[i,j] = 0;
 } else {
 MAP[i,j] = int.Parse(tileNums[i], hexNum); //
d
 }
 }
 }
 print("Parsed "+SPRITES.Length+"sprites."); // e
 print("Map size: "+W+"wide by "+H+"high");
 }

 static public int GET_MAP(int x, int y) { //
f
 if (x<0 || x>=W || y<0 || y>=H) {
 return -1; // Do not allow IndexOutOfRangeExceptions
 }
 return MAP[x,y];
 }
 static public int GET_MAP(float x, float y) { // A float GET_MAP()
overload

853

 int tX = Mathf.RoundToInt(x);
 int tY = Mathf.RoundToInt(y - 0.25f); //
g
 return GET_MAP(tX,tY);
 }

 static public void SET_MAP(int x, int y, int tNum) { //
f
 // Additional security or a break point could be set here.
 if (x<0 || x>=W || y<0 || y>=H) {
 return; // Do not allow IndexOutOfRangeExceptions
 }
 MAP[x,y] = tNum;
 }
}

a. Because the mapTiles image (DelveTiles.png) is in the Resources folder, you can
load all of its sprites using the Resources.LoadAll<Sprite>() method.

b. With DelverData.txt assigned to the TextAsset mapData field, you can access its text
via mapData.text. This line splits it on carriage returns '\n', which puts each line
of the map into an element of the lines string array. The total number of lines is
assigned to H. Then, the first line is split on spaces ' ', which puts a two-digit
hexadecimal code into each element of the tileNums array. The number of elements
of tileNums is assigned to W.

c. To interpret the two-character hexadecimal strings in tileNums as hexadecimal
numbers, you need the
System.Globalization.NumberStyles.HexNumber constant to pass into
the int.Parse() method. This constant requires so many characters to spell that I
couldn't fit it on the // d line, so I placed it in the hexNum variable.

d. The int.Parse() method attempts to parse a string into an int. With the
NumberStyles hexNum second parameter, it knows to look for a hexadecimal
number. You can see in the if clause that each tileNums element is first checked to
see whether it is "..", which is converted directly to the int 0.

e. If you place a debug breakpoint on this line before running the game, you can see all
the values that get stored in the static fields MAP and SPRITES.

f. The static public GET_MAP() and SET_MAP() methods provide protected access
to get and set MAP while preventing things like IndexOutOfRangeExceptions.

g. The y - 0.25f here accounts for the forced perspective in this game where your
player character can have the top half of their body outside of a tile and still be
considered to be walking on that tile. This is important much later in this chapter
when the Grappler needs to determine whether or not it has dropped Dray on an
unsafe tile.

3. Save the TileCamera script, and switch back to Unity.

854

4. Now that there are no more compiler errors, attach the TileCamera script to Main
Camera.

5. Assign the following fields of TileCamera in the Main Camera Inspector:
 mapData: Assign DelverData from the Resources folder of the Project pane.
 mapTiles: Assign DelverTiles from the Resources folder of the Project pane.
 mapCollisions: Assign DelverCollisions from the Resources folder of the Project
pane. You'll use mapCollisions later in the chapter.
 tilePrefab: Assign Tile from the _Prefabs folder of the Project pane. Because this is
of the type Tile instead of GameObject, you must drag it from the Project pane to the
slot in the Inspector. Clicking the target next to tilePrefab in the Inspector will not
work.

6. Save your scene.
7. Click Play, and you should see the following two lines output to the Console:

Click here to view code image

Parsed 256 sprites.
Map size: 96 wide by 66 high

Showing the Map
To show the map, you need to code another method.

TileCamera—ShowMap()
In the TileCamera class, we'll create a method that shows the entire map all at once. This is
not the most efficient thing that we could do, but it will certainly run quickly enough for
your prototype.

1. Add the following bolded code to TileCamera.
Click here to view code image

public class TileCamera : MonoBehaviour {
 …
 public void LoadMap() {
 …
 print("Parsed "+SPRITES.Length+" sprites.");
 print("Map size: "+W+" wide by "+H+" high");

 ShowMap(); //
a
 }

 /// <summary>
 /// Generates Tiles for the entire map all at once.

855

 /// </summary>
 void ShowMap() {
 TILES = new Tile[W,H];

 // Run through the entire map and instantiate Tiles where necessary
 for (int j=0; j<H; j++) {
 for (int i=0; i<W; i++) {
 if (MAP[i,j] != 0) {
 Tile ti = Instantiate<Tile>(tilePrefab); //
b
 ti.transform.SetParent(TILE_ANCHOR);
 ti.SetTile(i, j); //
c
 TILES[i,j] = ti;
 }
 }
 }
 }

 static public int GET_MAP(int x, int y) { … }
 …
}

a. At the end of LoadMap(), ShowMap() is called to put the Tiles into the scene.
b. This is a different use of Instantiate than you have seen before. Because all you really

need is the Tile instance and not the GameObject that it is attached to, you can
instantiate the Tile tilePrefab as a Tile and pass that into the local variable ti.
The containing GameObject is still instantiated in the scene; you just don't need to
deal with it in code.

c. SetTile() is called on ti with just the location (omitting the optional
eTileNum parameter and causing the tileNum from TileCamera.MAP to be
used).

2. Save the script, return to Unity, and click Play.

In the Scene pane, you can see the entire map for the dungeon is built in a short amount of
time. To get a good view of the whole thing, double-click TILE_ANCHOR in the
Hierarchy.

The Main Camera should show a single room in the dungeon, as shown in Figure 35.6. (If
you don't see this room, then double-check your Main Camera transform.position, which
you set earlier in this chapter.)

856

Figure 35.6 The results of adding the ShowMap code with a zoomed area showing anti-
aliasing issues

Dealing with Anti-aliasing Issues
By default, Unity uses anti-aliasing when it wants to look good (which is nearly always),
but this can cause problems when dealing with 8-bit style graphics like those in Dungeon
Delver.

Anti-aliasing is a method of oversampled rendering where Unity creates a larger image of
the screen in memory and then downsamples it to make graphics appear smoother, with the
default setting being 2x Multi Sampling. 2x Multi Sampling is a method of oversampling
where Unity renders an image at double the size of the screen and then shrinks it down to
regular size, blending the pixels in the process. This works very well for 3D graphics, but
it can make 2D graphics look like the zoomed-in area of Figure 35.6 where the edges of the
tiles overlap instead of being perfectly side-by-side. For Dungeon Delver, you should turn
off anti-aliasing to get the look you want.

1. From the Unity menu bar, choose Edit > Project Settings > Quality. The
QualitySettings inspector opens in the Inspector pane.
By default, you should see that the Ultra row is highlighted (in darker gray). You should
also see that under the Standalone column (the column for the Standalone build has a
downward-pointing arrow atop it), the Ultra row has a green checkbox. This means that
Ultra is the default quality setting for running a Standalone build (you can set the default
quality for each build type by clicking the triangle in the Default row for each column).

2. Click the Ultra row to ensure that it is selected, and look for the Anti Aliasing4 setting

857

under the Rendering heading.
3. Set Anti Aliasing to Disabled.
4. Save your scene and try playing again.

You should now no longer see the overlapping tile borders. For more information on
QualitySettings, click the box with a question mark in the top corner of the QualitySettings
inspector.

Starting with Unity 2017, there is also a way to turn anti-aliasing on or off for individual
cameras across all quality settings. Select both Main Camera and GUI Camera and set the
Allow MSAA check box option to false. (MSAA stands for MultiSample Anti-Aliasing.)

Adding the Hero
The hero of this game will be Dray, a knight in armor. To mimic the 8-bit technology of the
original Legend of Zelda game, this hero will be able to face in any of four directions and
will have an animation play when they walk. Later, you will also add a lunging pose when
they attack with their sword or other weapon.

This is the first time in the book that you will work with sprite animation in Unity. The
Unity animation system is meant to allow you to create very complex, multi-layered, 3D
animations. This is great, but is not really what you need for a simple game like Dungeon
Delver. As such, you'll be using the Animator and Animations in slightly non-standard
ways.

The Dray Sprite Naming Convention
The Dray sprites require a specific naming convention to allow them to be used in our
code:

1. Open the disclosure triangle next to the _Images folder in the Project pane.
2. Open the disclosure triangle next to the Dray Texture2D image asset.

In here, you'll see that I have chosen specific sprite names on this image that you imported
(I did so using the Sprite Editor in the Import Settings Inspector for the Dray image). Look
at Figure 35.7 to see these names superimposed over the Dray image.

858

Figure 35.7 The named sprites of the Dray image.

One of the key aspects of how you'll create this game is the numbering convention specified
in the sprite naming shown in Figure 35.7. Throughout this project, the number 0 refers to
things facing to the right. 1 is up, 2 is left, and 3 is down. I chose this numbering because if
you start with an arrow pointing to the right (along the positive X axis) and rotate it 90
degrees around the Z axis, it then points up. Rotating it 180 degrees (or 2 * 90°) points it
left, and rotating it 270° (or 3 * 90°) points it down. As you'll see, this pairing of
orientation and naming will be used to great effect throughout this game.

Your First Animation
To create your first animation, follow these steps:

1. Create a new folder in the Project pane named _Animations (Assets > Create >
Folder).

2. Select Dray_Walk_0a and Dray_Walk_0b from the sprites under Dray in the _Images
folder of the Project pane. (To do this, you can click one and then hold Shift and click
the other.)

859

3. Drag them together from the Project pane to the Hierarchy pane and release. A dialog
box appears asking you to name this animation.

4. Name it Dray_Walk_0.anim and save it into the _Animations folder.
This creates several things:

 In the _Animations folder of the Project pane:
 Dray_Walk_0: The Animation that you saved as Dray_Walk_0.anim. This animation
includes the two images of Dray walking to the right.

 Dray_Walk_0a: This is an Animator, which stores several different Animations and
controls when to show each one.

 In the Hierarchy:
 A GameObject named Dray_Walk_0a that has the Dray_Walk_0a Animator attached.
This is the main GameObject for your hero that the player will control.

Before anything else, you need to rename two of these things.

5. Select the Dray_Walk_0a GameObject in the Hierarchy and rename it Dray.
6. Select the Dray_Walk_0a Animator in the _Animations folder of the Project pane and

rename it Dray_Animator.
7. Double-click Dray_Animator in the Project pane. The Animator pane opens in Unity

(the Animator pane is shown on the upper image of Figure 35.8). If the Animator pane
does not appear as a second tab in the same area of the screen as the Scene pane, then
click the tab at the top of the Animator pane and drag and release it just to the right of
the Scene pane tab.

860

Figure 35.8 The Animator and Animation panes

8. If your Animator pane is too small to see what's going on (as mine is in Figure 35.8),
click the open eye button (under the cursor in Figure 35.8) to hide a part of the Animator
that you will not be using. You can hold Option/Alt on your keyboard while clicking and
dragging on the background of the Animator to move the view around.

9. Select Dray in the Hierarchy and set the transform position to P:[23.5, 5, 0]. This
centers Dray in the Main Camera view of the Game pane.

10. Click the Unity Play button.

Unity switches to show you the Game pane, and you should see Dray running quickly in
place in the middle of an open room.5 Also, in the Animator view, you should see a blue
progress bar repeatedly filling inside the orange Dray_Walk_0 rectangle. This shows you
that Dray_Walk_0 is the Animation that is currently playing and that it is repeating.

11. Stop playback in Unity and save your scene.

Sprite Layering

861

As Dray moved around the room, you might have noticed that they were sometimes in front
of and sometimes behind the floor sprites. Based on the order in which you have created the
various elements of the game, it is possible that you didn't encounter this in your Game
pane, but you should still properly order the sprites to guarantee that you don't have sprite
layering issues in the future.

1. Select Dray in the Hierarchy.
2. In Dray's Sprite Renderer component, click the pop-up menu next to Sorting Layer that

currently reads Default and choose Add Sorting Layer. The Tags & Layers editor opens
with Sorting Layers shown.

3. Click the + button on the bottom-right corner of the list of Sorting Layers, and name the
new layer Dray.

4. Repeat this process to create three more layers: Ground, Enemies, and Items.
5. Arrange the four layers top-to-bottom: Ground, Default, Enemies, Dray, Items. This

ensures that the Ground is always behind everything else, Enemies are between
unspecified (Default) things and Dray, Dray is in front of everything but Items, and Items
are in front of everything.

6. Select Dray in the Hierarchy and set the Sorting Layer of Dray's Sprite Renderer
Inspector to Dray. (Don't try to change the Layer at the top of Dray's inspector; that's for
physics layers.)

7. Select Tile in the _Prefabs folder of the Project pane and set the Sorting Layer of Tile's
Sprite Renderer Inspector to Ground. This ensures that any Tile instance appears
behind everything else in the game.

8. Save the scene.

As you add more things to the game, you will set their Sorting Layers as well.

Tweaking the Dray_Walk_0 Animation
Right now, Dray is running a little too quickly and is only able to run to the right. You'll fix
both of these using the Animation pane.

1. Click the tiny three-bar menu on the right side of the Game pane (highlighted in red on
the lower image of Figure 35.8). From that menu, choose Add Tab > Animation to open
the Animation pane as a tab in the same pane as the Game pane (as shown in the lower
image of Figure 35.8).

2. To make your Animation pane look like that shown in Figure 35.8, select Dray in the
Hierarchy and open the disclosure triangle next to Dray : Sprite in the Animation pane.

There is a pop-up menu in the Animation pane that currently displays Dray_Walk_0 (it's

862

just below the red Animation Record circle). I refer to this pop-up menu as the Animation
Selector throughout the rest of this section. To the right of the Animation Selector is a field
for entering number of Samples. Samples sets the rate at which the animation will play (as
the number of frames that display every second).

3. Set the number of Samples to 10 and press Return/Enter. This causes Dray to take about
5 steps per second.

4. To see this movement from Dray:
 Switch to the Scene pane (click the Scene tab to display it instead of the Animator).
 Double-click Dray in the Hierarchy to focus on them in the Scene.
 Click the Animation Play button (within the Animation pane, just above the Animation
Selector).

5. Click the Animation Play button again to stop playback.

If the timeline bar at the top of the Animation pane ever changes tint from blue to red, that
means that you've shifted into recording mode. Prior to Unity 2017, this happened every
time you clicked the Animation Play button, but that now seems to be fixed. However, if
you do ever end up in recording mode, click the Animation Record button (the red circle to
the left of the Animation Play button) to exit recording mode.

Adding Additional Dray Animation
You need to add additional Animations to Dray to allow them to animate in all four
directions.

1. Click the Animation Selector menu and choose Create New Clip.
2. Name the new Animation clip Dray_Walk_1.anim and save it in the _Animations

folder.
3. Set the Samples of the new Dray_Walk_1 Animation to 10 and press Return/Enter.
4. Select both Dray_Walk_1a and Dray_Walk_1b in the Projects pane and drag them into

the timeline area of the Animation pane (where you can see the images of Dray in Figure
35.8).

This makes Dray_Walk_1 look like the Animation pane in Figure 35.8, except that Dray is
now facing upward (the 1 direction) in the animation. It may also shift the Animation pane
into recording mode. If so, click the red circle Animation Record button in the Animation
pane to switch back out of recording mode.

5. Repeat steps 1 through 4 of this section for Dray_Walk_2 and Dray_Walk_3, using the
appropriate naming and sprites for each one.

863

6. Save your scene when you're done.

Animation States in the Animator
If you switch back to the Animator pane view (choose Window > Animator from the Unity
menu bar), you can see four states are now listed for Dray here as well. This Animator is a
component of the Dray GameObject in the Hierarchy, and it ties the Dray GameObject and
the four Dray_Walk_# sprite animations together.

Moving Dray
Before moving Dray, you must add a Rigidbody to them.

1. Select the Dray GameObject in the Hierarchy.
2. Attach a Rigidbody component to Dray (Component > Physics > Rigidbody).

 Set Use Gravity to false (unchecked).
 Under Constraints:

 Set Freeze Position Z to true.
 Set Freeze Rotation X, Y, and Z to true.

3. Save your scene.

Now, add a script to Dray to get them moving.

4. Create a C# script named Dray in the __Scripts folder and attach it to the Dray
GameObject in the Hierarchy.

5. Open the Dray script in MonoDevelop and enter this code:
Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Dray : MonoBehaviour {
 [Header("Set in Inspector")]
 public float speed = 5;

 [Header("Set Dynamically")]
 public int dirHeld = -1; // Direction of the held movement key

 private Rigidbody rigid;

 void Awake () {
 rigid = GetComponent<Rigidbody>();
 }

864

 void Update () {
 dirHeld = -1;
 if (Input.GetKey(KeyCode.RightArrow)) dirHeld = 0; //
a
 if (Input.GetKey(KeyCode.UpArrow)) dirHeld = 1;
 if (Input.GetKey(KeyCode.LeftArrow)) dirHeld = 2;
 if (Input.GetKey(KeyCode.DownArrow)) dirHeld = 3;

 Vector3 vel = Vector3.zero;
 switch (dirHeld) { //
b
 case 0:
 vel = Vector3.right;
 break;
 case 1:
 vel = Vector3.up;
 break;
 case 2:
 vel = Vector3.left;
 break;
 case 3:
 vel = Vector3.down;
 break;
 }

 rigid.velocity = vel * speed;
 }
}

a. Due to the arrangement of the four single-line if clauses at the beginning of the
Update() function, if multiple arrow keys are held at the same time, the last line
that evaluates to true will override the rest (e.g., if the down and right keys are held,
Dray will only move down). Because this game is so simple, I've chosen to make it
work this way, though this might be something you would enjoy improving after
finishing this chapter.

b. This entire switch clause is replaced by better code in the next section.
6. Save the Dray script, return to Unity, and click Play. Now using the arrow keys, you

can move Dray around the stage in a very simplistic way.

A More Interesting Movement Approach
Because you are using a dirHeld integer value that ranges from 0 to 3, you can take
advantage of dirHeld in interesting ways. For instance, the switch case marked // b in the
previous code listing is very repetitive and uses the dirHeld value to choose one of four
directions. Look at the following code listing to see how can take advantage of the 0-3
value of dirHeld.

Open the Dray script in MonoDevelop again and update the code to match the following:

865

Click here to view code image

public class Dray : MonoBehaviour {
 …
 private Rigidbody rigid;
 private Vector3[] directions = new Vector3[] {
 Vector3.right, Vector3.up, Vector3.left, Vector3.down }; //
a
 void Awake () {
 rigid = GetComponent<Rigidbody>();
 }

 void Update () {
 dirHeld = -1;
 if (Input.GetKey(KeyCode.RightArrow)) dirHeld = 0;
 if (Input.GetKey(KeyCode.UpArrow)) dirHeld = 1;
 if (Input.GetKey(KeyCode.LeftArrow)) dirHeld = 2;
 if (Input.GetKey(KeyCode.DownArrow)) dirHeld = 3;
 Vector3 vel = Vector3.zero;
 // Delete the entire switch clause that used to be here
 if (dirHeld > -1) vel = directions[dirHeld]; //
b

 rigid.velocity = vel * speed;
 }
}

a. This directions Vector3 array allows you to reference each of the four
directional vectors easily.

b. This one line has replaced the entire 14-line switch clause from the preceding code
listing!

If you try playing the game in Unity again, you can see that you kept the same functionality
with far fewer lines of code. You will continue to use dirHeld in this manner to simplify
the code for this chapter.

A Better Way to Handle Input Keys
In a similar manner to the directions array, you can also store the keys that you want to
use for movement in an array. Make the following code modifications to the Dray class.
Click here to view code image

public class Dray : MonoBehaviour {
 [Header("Set in Inspector")]
 public float speed = 5;

 [Header("Set Dynamically")]

 public int dirHeld = -1; // Direction of the held movement key

 private Rigidbody rigid;

866

 private Vector3[] directions = new Vector3[] {
 Vector3.right, Vector3.up, Vector3.left, Vector3.down };

 private KeyCode[] keys = new KeyCode[] { KeyCode.RightArrow,
 KeyCode.UpArrow, KeyCode.LeftArrow, KeyCode.DownArrow }; //
a

 void Awake () {
 rigid = GetComponent<Rigidbody>();
 }

 void Update () {
 dirHeld = -1;
 // Delete the four "if (Input.GetKey..." lines that were here
 for (int i=0; i<4; i++) {
 if (Input.GetKey(keys[i])) dirHeld = i; //
b
 }
 Vector3 vel = Vector3.zero;
 if (dirHeld > -1) vel = directions[dirHeld];

 rigid.velocity = vel * speed;
 }
}

a. This array allows you to reference each of the four keys easily.
b. This for loop iterates over all the possible KeyCodes from the keys array and

finds whether any are held.

With the new KeyCode array, you've again taken advantage of the 0-3 nature of dirHeld
and maintained the ability to use the arrow keys via better code.

Animating Dray for Walking
Open Dray in MonoDevelop once more and make the following code additions:
Click here to view code image

public class Dray : MonoBehaviour {
 …
 private Rigidbody rigid;
 private Animator anim; //
a
 …
 void Awake () {
 rigid = GetComponent<Rigidbody>();
 anim = GetComponent<Animator>(); //
a
 }

 void Update () {
 …

867

 rigid.velocity = vel * speed;

 // Animation
 if (dirHeld == -1) { //
b
 anim.speed = 0;
 } else {
 anim.CrossFade("Dray_Walk_"+dirHeld, 0); //
c
 anim.speed = 1;
 }
 }
}

a. Cache a reference to the Animator component of Dray in the private field anim.
b. If no direction key is held (i.e., dir == -1) then the speed of the Animator is set to 0,

freezing the current animation in place.
c. If Dray is moving in a direction, the dirHeld number is concatenated onto the end

of "Dray_Walk_", which gives you the name of one of the Animations that you added
to Dray!6

The anim.CrossFade() function tells the Animator anim to switch to a new
Animation by name and to take 0 seconds for the transition. If anim is already
showing the named Animation, this has no effect.

Save the Dray script and return to Unity. You can play the game and see that Dray now
animates when moved.

Giving Dray an Attack Animation
It's time to give Dray the ability to attack! To do so, you first need to give them an attack
animation pose. (You'll implement the damage that Dray's attack does to enemies later in the
chapter.)

Generating the Attack Pose Animations
Generate the attack poses by doing the following:

1. Select Dray in the Hierarchy and switch to the Animation pane (Window > Animation
from the Unity menu bar).

2. Use the Animation Selector to choose Create New Clip and save the new clip as
Dray_Attack_0 inside the _Animations folder.

3. Choose Dray_Attack_0 from the Animation Selector.
4. Set the Samples of Dray_Attack_0 to 10 and press Return/Enter.

868

5. Select the Dray_Attack_0 sprite underneath the Dray image in the _Images folder of the
Project pane.

6. Drag the Dray_Attack_0 sprite from the Project pane into the timeline area of the
Animation window.

7. Repeat steps 2 through 6 to create Animations named Dray_Attack_1, Dray_Attack_2,
and Dray_Attack_3 and assign the appropriate sprite for each.

If you check the Animator pane, you should see that the four new attack Animations now all
appear in the Animator for Dray.

Coding the Attack Pose Animations
To add another animation state to the Dray class, you need to make it a bit more
complicated. As part of this, you need to differentiate between dirHeld (the direction of
the currently held movement key) and a new field, facing (the direction that Dray is
facing). When Dray is attacking, they will be temporarily frozen for the duration of the
attack, and you need to ensure that they don't change direction during that time.

1. Open Dray in MonoDevelop and add the bolded enum and fields to the top of the
script.

Click here to view code image

public class Dray : MonoBehaviour {
 public enum eMode { idle, move, attack, transition } //
a

 [Header("Set in Inspector")]
 public float speed = 5;
 public float attackDuration = 0.25f;// Number of seconds to
attack
 public float attackDelay = 0.5f; // Delay between attacks

 [Header("Set Dynamically")]
 public int dirHeld = -1; // Direction of the held movement key
 public int facing = 1; // Direction Dray is facing
 public eMode mode = eMode.idle; //
a

 private float timeAtkDone = 0; //
b
 private float timeAtkNext = 0; //
c

 private Rigidbody rigid;
 private Animator anim;
 …
}

869

a. The eMode enum and mode field give you an expandable way to track and query
Dray's state.

b. timeAtkDone is the time at which the attack animation should finish.
c. timeAtkNext is the time at which Dray will be able to attack again.

2. Because these new fields cause a major shift in how the Update() method works, the
following code listing includes the entire listing of the Update()method of the Dray
class. This includes all the same concepts presented in earlier code listings, just
rearranged a bit. Replace the Update() method in your Dray class with the
following (bold code is new):

Click here to view code image

 void Update () {
 //————Handle Keyboard Input and manage eDrayModes————
 dirHeld = -1;
 for (int i=0; i<4; i++) {
 if (Input.GetKey(keys[i])) dirHeld = i;
 }

 // Pressing the attack button(s)
 if (Input.GetKeyDown(KeyCode.Z) && Time.time >= timeAtkNext) { //
a
 mode = eMode.attack;
 timeAtkDone = Time.time + attackDuration;
 timeAtkNext = Time.time + attackDelay;
 }

 //Finishing the attack when it's over
 if (Time.time >= timeAtkDone) { //
b
 mode = eMode.idle;
 }

 //Choosing the proper mode if we're not attacking
 if (mode != eMode.attack) { //
c
 if (dirHeld == -1) {
 mode = eMode.idle;
 } else {
 facing = dirHeld; //
d
 mode = eMode.move;
 }
 }

 //————Act on the current mode————
 Vector3 vel = Vector3.zero;
 switch (mode) { //
e
 case eMode.attack:

870

 anim.CrossFade("Dray_Attack_"+facing, 0);
 anim.speed = 0;
 break;

 case eMode.idle:
 anim.CrossFade("Dray_Walk_"+facing, 0);
 anim.speed = 0;
 break;

 case eMode.move:
 vel = directions[dirHeld];
 anim.CrossFade("Dray_Walk_"+facing, 0);
 anim.speed = 1;
 break;
 }

 rigid.velocity = vel * speed;
 }

a. If the attack button (the Z key on the keyboard) is pressed and it has been long enough
since the last attack, then mode is set to eMode.attack.

Additionally, the timeAtkDone and timeAtkNext fields are set, letting the
Dray instance know when it should stop the attack animation and when it will be
able to attack again.

b. After Dray switches into attack mode, they are stuck there until the attack completes
(which happens after attackDuration seconds [0.25 seconds by default]). After
this time has passed, mode returns to eMode.idle.

c. If Dray is not in attack mode, this code chooses between idle and move based on
whether any movement key is held (i.e., dirHeld > -1).

d. facing is exclusively set here. The only time Dray changes facing is when
moving in a direction. This ensures that Dray maintains a consistent facing when
attacking or standing still.

e. After the proper mode for Dray has been determined, this switch statement
manages what happens as part of that mode. Both anim and vel are handled here.

Now that Dray is facing in the proper direction and holding an attack pose, adding a
weapon to the attack will be easy.

Dray's Sword
Dray's primary weapon is a sword, which they can stab in any direction. The Texture 2D
and Sprites for this sword were imported with the starter unitypackage for this chapter.

1. Select Dray in the Hierarchy. Right-click on Dray in the Hierarchy and choose Create
Empty from the pop-up menu. Rename the empty GameObject to SwordController

871

2. Set the Transform of SwordController to P:[0, 0, 0] R:[0, 0, 0] S:[1, 1, 1].
3. Open the disclosure triangle next to the Swords Texture 2D under the _Images folder.
4. Drag the Swords_0 sprite from the Project pane to the Hierarchy pane. Make it a child

of SwordController (and a grandchild of Dray).
 Rename the Swords_0 instance in the Hierarchy to Sword.
 Set the Transform of Sword to P:[0.75, 0, 0] R:[0, 0, 0] S:[1, 1, 1].
 Set the Sorting Layer of the Sword Sprite Renderer to Enemies (so it will be above
Ground but beneath Dray).

5. Add a Box Collider to Sword (Component > Physics > Box Collider). It should
assume a proper size, but if it did not, set the Size of the Box Collider to [1, 0.4375, 0.2
].
 Set the Is Trigger of the Sword Box Collider to true.

6. Select SwordController in the Hierarchy.
 In the SwordController Inspector, click the Add Component button.
 Choose New Script from the pop-up menu that appears.
 Name the new script SwordController.
 In the Project pane, move the SwordController script into the __Scripts folder.

7. Open the SwordController script and enter the following code:
Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class SwordController : MonoBehaviour {
 private GameObject sword;
 private Dray dray;

 void Start () {
 sword = transform.Find("Sword").gameObject; //
a
 dray = transform.parent.GetComponent<Dray>();
 // Deactivate the sword
 sword.SetActive(false); //
b
 }

 void Update () {
 transform.rotation = Quaternion.Euler(0, 0, 90*dray.facing); //
c
 sword.SetActive(dray.mode == Dray.eMode.attack); //
d
 }

872

}

a. These two lines find references to the Sword child GameObject and the Dray class
instance attached to the parent GameObject.

b. Calling SetActive(false) on a GameObject removes that GameObject from
rendering, collision, running scripts, etc. When you deactivate Sword, it becomes
invisible.

c. This line keeps the sword pointed in the direction that Dray is facing. Because Sword
is a child of this SwordController GameObject that is offset 0.75 in the local X
direction, the rotation of SwordController to match the facing of Dray makes the
sword properly appear in Dray's hand regardless of the direction that Dray is facing.

d. Each Update, the sword will be made active if Dray is in attack mode.

8. Save All scripts in MonoDevelop,7 return to Unity, and click Play. Now you can move
Dray around the stage using the arrow keys and attack by pressing Z. The sword should
only appear when Dray is attacking and always point in the right direction.

Enemy: Skeletos
The Skeletos will be Dray's basic enemy. Like the Stalfos in The Legend of Zelda, Skeletos
randomly wander around the dungeon room that they're in. Skeletos can pass over each
other and can damage Dray with a touch.

Skeletos Art
To implement the art for Skeletos:

1. Select the two sprites named Skeletos_0 and Skeletos_1 (they are under Project Pane
> _Images > Skeletos).

2. Drag these two sprites together into the Hierarchy. This creates a new Animation that
you should name Skeletos.anim and save in the _Animations folder.

3. Rename the Skeletos_0 GameObject in the Hierarchy to Skeletos.
4. Set the Transform position of Skeletos to P:[19, 7, 0].
5. Attach a Rigidbody component to Skeletos (Component > Physics > Rigidbody).

 Set Use Gravity to false (unchecked).
 Under Constraints:
 Set Freeze Position Z to true.
 Set Freeze Rotation X, Y, and Z to true.

6. Add a Sphere Collider to Skeletos (Component > Physics > Sphere Collider).

873

7. In the Sprite Renderer component of the Skeletos Inspector, set Sorting Layer to
Enemies.

8. Select Skeletos in the Hierarchy and switch to the Animation pane (Window >
Animation).

9. Set the Samples of the Skeletos Animation to to 5 and press Return/Enter.
10. Save the scene.

Click Play, and you should see the Skeletos running in place in the same room with Dray.

The Enemy Base Class
All enemies in Dungeon Delver will inherit from a single base class named Enemy.

1. Create a new C# script named Enemy in the __Scripts folder of the Project pane.
2. Open the Enemy script in MonoDevelop and enter the following code:

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Enemy : MonoBehaviour {
 protected static Vector3[] directions = new Vector3[] { //
a
 Vector3.right, Vector3.up, Vector3.left, Vector3.down };

 [Header("Set in Inspector: Enemy")] //
b
 public float maxHealth = 1; //
c

 [Header("Set Dynamically: Enemy")]
 public float health; //
c

 protected Animator anim; //
c
 protected Rigidbody rigid; //
c
 protected SpriteRenderer sRend; //
c

 protected virtual void Awake() { //
d
 health = maxHealth;
 anim = GetComponent<Animator>();
 rigid = GetComponent<Rigidbody>();
 sRend = GetComponent<SpriteRenderer>();

874

 }
}

a. directions is used by enemies in a similar manner to how Dray uses it. Because
its value is the same across all Enemy instances, you can make it static. It is
declared protected so that it can be accessed by any subclasses of Enemy.

b. I've modified the standard [Header(…)]s that you use for the Inspector to show
which fields are inherited from the Enemy base class and which are part of Skeletos
and other Enemy subclasses.

c. The Enemy class also declares several fields that will commonly be used by the
Enemy subclasses, including fields to track health and commonly referenced
components.

d. The Enemy Awake() method sets default values for health and the common
Component references anim, rigid, and sRend. Declaring this protected
virtual allows it to be overridden in subclasses (as you'll see soon).

The Skeletos Subclass of Enemy
Follow these steps to create the Skeletos subclass:

1. Create a new C# script named Skeletos inside the __Scripts folder of the Project pane.
2. Attach the Skeletos script to the Skeletos GameObject in the Hierarchy.
3. Open the Skeletos script in MonoDevelop and enter the following code:

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Skeletos : Enemy { //
a
 [Header("Set in Inspector: Skeletos")] //
b
 public int speed = 2;
 public float timeThinkMin = 1f;
 public float timeThinkMax = 4f;

 [Header("Set Dynamically: Skeletos")]
 public int facing = 0;
 public float timeNextDecision = 0;

 void Update () {
 if (Time.time >= timeNextDecision) { // c
 DecideDirection();
 }
 // rigid is inherited from Enemy and is initialized in Enemy.Awake()
 rigid.velocity = directions[facing] * speed;

875

 }

 void DecideDirection() { // d
 facing = Random.Range(0,4);
 timeNextDecision = Time.time + Random.Range(timeThinkMin,timeThinkMax);
 }
}

a. Skeletos is a subclass of Enemy (not MonoBehaviour).
b. I've modified the standard [Header(…)]s here as well to show which fields are

inherited from Enemy and which are part of Skeletos.
c. When it has been a sufficient amount of time since the Skeletos last changed direction,

it will call DecideDirection() to decide again.
d. In DecideDirection() a random facing is chosen as well as a randomized

amount of time before deciding again.

4. Save All scripts in MonoDevelop, switch to Unity, and click Play.

You should see the Skeletos wandering randomly across the floor and right out of the room!
We need to make a script to keep the Skeletos and other enemies in the room.8

The InRoom Script
The dungeon is divided into several rooms, each of which is 16m wide by 11m tall. The
InRoom script will provide several useful services. In order to know whether a Skeletos is
attempting to walk out of the room, you need to know where it is in the room, and because
all the rooms in the dungeon are the same size, this is pretty easy to do.

1. Create a new C# script named InRoom inside the __Scripts folder of the Project pane.
2. Open the InRoom script in MonoDevelop and enter the following code:

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class InRoom : MonoBehaviour {

 static public float ROOM_W = 16; //
a
 static public float ROOM_H = 11;
 static public float WALL_T = 2;

 // Where is this character in local room coordinates?
 public Vector2 roomPos { //
b

876

 get {
 Vector2 tPos = transform.position;
 tPos.x %= ROOM_W;
 tPos.y %= ROOM_H;
 return tPos;
 }
 set {
 Vector2 rm = roomNum;
 rm.x *= ROOM_W;
 rm.y *= ROOM_H;
 rm += value;
 transform.position = rm;
 }
 }

 // Which room is this character in?
 public Vector2 roomNum { //
c
 get {
 Vector2 tPos = transform.position;
 tPos.x = Mathf.Floor(tPos.x / ROOM_W);
 tPos.y = Mathf.Floor(tPos.y / ROOM_H);
 return tPos;
 }
 set {
 Vector2 rPos = roomPos;
 Vector2 rm = value;
 rm.x *= ROOM_W;
 rm.y *= ROOM_H;
 transform.position = rm + rPos;
 }
 }
}

a. These static floats set the basic width and height of the room (measured in Unity units
/ meters / tiles, which are all the same). WALL_T is thickness of the walls.

b. The roomPos property allows you to get or set the location of the GameObject
relative to the bottom-left corner of the room (which is X:0, Y:0).

c. The roomNum property allows you to get or set the room in which the GameObject
is located (with the bottom-left room of the dungeon being X:0, Y:0). If you set the
GameObject to a different room, it maintains the same relative roomPos in the new
room.

This basic version of InRoom can be attached to various GameObjects and to enable you to
find out where that GameObject is in any room. InRoom also enables you to set the location
of the GameObject in room-relative coordinates or to move the GameObject to another
room.

877

Keeping GameObjects in the Room
As mentioned earlier, you want to keep the Skeletos inside the room. To do this, you need to
add a LateUpdate() method that checks every frame to see whether the Skeletos has
wandered outside the main area of the room. The LateUpdate() method is called every
frame on every GameObject after the Update() method has been called on every
GameObject.9 Late-Update() is great for cleanup operations like returning wandering
characters to the room they're supposed to be in.

1. Attach the InRoom script to the Skeletos in the Hierarchy.
2. Open InRoom in MonoDevelop and add the following bolded code:

Click here to view code image

public class InRoom : MonoBehaviour {
 static public float ROOM_W = 16;
 static public float ROOM_H = 11;
 static public float WALL_T = 2;

 [Header("Set in Inspector")]
 public bool keepInRoom = true;
 public float gridMult = 1; // a

 void LateUpdate() {
 if (keepInRoom) { // b
 Vector2 rPos = roomPos;
 rPos.x = Mathf.Clamp(rPos.x, WALL_T, ROOM_W-1-WALL_T); // c
 rPos.y = Mathf.Clamp(rPos.y, WALL_T, ROOM_H-1-WALL_T);
 roomPos = rPos; // d
 }
 }

 // Where is this character in local room coordinates?
 public Vector2 roomPos { … }
 …
}

a. The gridMult field will be used later in the chapter.
b. If keepInRoom is checked, then each frame, these lines check to see that the
roomPos of this GameObject stays within the walls of the room.

c. Mathf.Clamp() ensures that rPos.x is between a minimum value of WALL_T
and a maximum value of ROOM_W-1-WALL_T, which keeps Skeletos from walking
through the walls of the room.

d. When the checks against the extents of the room are complete, rPos is assigned back
to roomPos, which executes the set clause of the roomPos property and moves
the GameObject (if it needs to be moved back into the room).

878

3. Save the InRoom script and return to Unity to test it. You should now see the Skeletos
wandering all around the room but no longer walking through the walls as it did before.

The InRoom script is very useful for efficiently faking collision between enemies and the
walls of the room, but you also need to have characters in the game collide directly with
some tiles (e.g., the statues and obelisks in the middle of some rooms). For this, you need to
implement collision on a per-tile basis.

Per-Tile Collision
The DelverData text file holds information about which tiles should be placed in each
position of the dungeon, and the DelverTiles image provides the imagery for each tile.
Another text file named DelverCollisions is responsible for storing the collision
information for each type of tile, and it does so in a somewhat encoded way (see Figure
35.9).

Figure 35.9 The encoding for the DelverCollisions text file (on the left) and an overlay of
DelverCollisions text on top of DelverTiles (on the right)

On the left side of Figure 35.9, you can see the encoding of the DelverCollisions text file
that matches correct Box Collider shapes with each tile in the DelverTiles image. Each
letter on the left represents a specific collision. The gray dashed line represents the entire
tile, and the green shaded box represents what the collider covers. For example, a tile with
a W would only have a collider covering the top half of the tile, which is used for all
pillars and statues that are placed in the middle of the room. Dungeon Delver uses only _
(no collision), S (full collision), A (left half collision), D (right half collision), and W (top
half collision), but I provide the others (Q, E, Z, X, & C) for any further games you might
want to develop.

On the right side of Figure 35.9, you can see the contents of the DelverCollisions text file

879

superimposed over the tiles in the DelverTiles image.

To make use of this DelverCollisions information, start by adding a collider to the Tile
prefab.

1. Select the Tile GameObject in the _Prefabs folder of the Project pane.
2. Attach a Box Collider to the Tile (Component > Physics > Box Collider).10

880

Per-Tile Collision Scripts
Next, add some code to the TileCamera and Tile C# scripts to enable use of the
DelverCollisions data.

1. Open the TileCamera script in MonoDevelop and add the bolded code:
Click here to view code image

public class TileCamera : MonoBehaviour {
 static public int W, H;
 static private int[,] MAP;
 static public Sprite[] SPRITES;
 static public Transform TILE_ANCHOR;
 static public Tile[,] TILES;
 static public string COLLISIONS; // a

 [Header("Set in Inspector")]
 …
 void Awake() {
 COLLISIONS = Utils.RemoveLineEndings(mapCollisions.text); // b
 LoadMap();
 }
 …
}

a. The static public COLLISIONS string can be accessed by any other script. String is
the perfect data type here because bracket access can be used to easily access
individual chars in strings, enabling you to pull the collision char for any tileNum.

b. Here, the text of the mapCollisions TextAsset is passed through a Utils method
that strips away line endings (making the result a 256-char string with no line breaks),
leaving an array of chars (in the form of a string) that aligns with the array of Sprites.

2. Save the TileCamera script.
3. Open the Tile script and make the following bolded additions:

Click here to view code image

public class Tile : MonoBehaviour {
 [Header("Set Dynamically")]
 public int x;
 public int y;
 public int tileNum;

 private BoxCollider bColl; // a

 void Awake() {
 bColl = GetComponent<BoxCollider>
(); // a
 }

881

 public void SetTile(int eX, int eY, int eTileNum = -1) {
 …
 GetComponent<SpriteRenderer>().sprite = TileCamera.SPRITES[tileNum];

 SetCollider(); // b
 }

 // Arrange the collider for this tile
 void SetCollider() {
 // Collider info is pulled from DelverCollisions.txt
 bColl.enabled = true;
 char c = TileCamera.COLLISIONS[tileNum]; // c
 switch (c) {
 case 'S': // Whole
 bColl.center = Vector3.zero;
 bColl.size = Vector3.one;
 break;
 case 'W': // Top
 bColl.center = new Vector3(0, 0.25f, 0);
 bColl.size = new Vector3(1, 0.5f, 1);
 break;
 case 'A': // Left
 bColl.center = new Vector3(-0.25f, 0, 0);
 bColl.size = new Vector3(0.5f, 1, 1);
 break;
 case 'D': // Right
 bColl.center = new Vector3(0.25f, 0, 0);
 bColl.size = new Vector3(0.5f, 1, 1);
 break;

 // vvvvvvvv-------- These are optional --------
vvvvvvvv // d
 case 'Q': // Top, Left
 bColl.center = new Vector3(-0.25f, 0.25f, 0);
 bColl.size = new Vector3(0.5f, 0.5f, 1);
 break;
 case 'E': // Top, Right
 bColl.center = new Vector3(0.25f, 0.25f, 0);
 bColl.size = new Vector3(0.5f, 0.5f, 1);
 break;
 case 'Z': // Bottom, left
 bColl.center = new Vector3(-0.25f, -0.25f, 0);
 bColl.size = new Vector3(0.5f, 0.5f, 1);
 break;
 case 'X': // Bottom
 bColl.center = new Vector3(0, -0.25f, 0);
 bColl.size = new Vector3(1, 0.5f, 1);
 break;
 case 'C': // Bottom, Right
 bColl.center = new Vector3(0.25f, -0.25f, 0);
 bColl.size = new Vector3(0.5f, 0.5f, 1);
 break;
 // ^^^^^^^^-------- These are optional --------

882

^^^^^^^^ // d

 default: // Anything else: _, |, etc. // e
 bColl.enabled = false;
 break;
 }
 }
}

a. bColl provides a reference to the Box Collider of this Tile.
b. At the end of the SetTile() method, SetCollider() is called.
c. Here, the tileNum is used to access the correct collision character from
TileCamera. COLLISIONS.

d. The lines between the two // d lines (for the chars Q, E, Z, X, & C) are not
necessary for Dungeon Delver but might be useful in your other projects.

e. The final default case is necessary to handle '_' collision chars.
4. Save the Tile script and return to Unity.

Adding a Collider to Dray
Finally, to see the results of the per-tile collision, you must add a collider to Dray.

1. Select Dray in the Hierarchy.
2. Add a Sphere Collider to Dray (Component > Physics > Sphere Collider).

 Set the Radius of the Sphere Collider to 0.4.

Try saving and playing your scene. Move around and see what happens when you run into
walls. While the Skeletos is trapped in the room, you are able to walk into the doorway.
However, you might notice two problems:

 Lining up perfectly with the door is somewhat difficult.
 You can't actually move to another room.

You'll tackle each one of these in turn.

Aligning to the Grid
The original Legend of Zelda game had an ingenious system that aligned players to a grid
yet still made them feel like they were able to roam freely. A player had largely free-
roaming movement, but the further she moved in the same direction, the more she would be
subtly aligned to a 0.5-unit grid. To help with this in Dungeon Delver, we can take
advantage of the InRoom script that you wrote earlier with a bit of an expansion to get

883

information about the nearest location in the room that is on this grid.

1. Attach the InRoom script to the Dray GameObject in the Hierarchy.
 Set keepInRoom to false for Dray.

2. Open the InRoom script in MonoDevelop and add the following method to the end of
the class definition. GetRoomPosOnGrid()will find the nearest location to the
GameObject that is in the room and on a grid (with the default grid size being 1m).

Click here to view code image

public class InRoom : MonoBehaviour {
 …
 // Which room is this character in?
 public Vector2 roomNum { … }

 // What is the closest grid location to this character?
 public Vector2 GetRoomPosOnGrid(float mult = -1) {
 if (mult == -1) {
 mult = gridMult;
 }
 Vector2 rPos = roomPos;
 rPos /= mult;
 rPos.x = Mathf.Round(rPos.x);
 rPos.y = Mathf.Round(rPos.y);
 rPos *= mult;
 return rPos;
 }

}

3. Save the InRoom script and return to Unity.

The IFacingMover Interface
In addition to Dray, you'll actually want all creatures in Dungeon Delver to align to the grid
as they move, and you will eventually apply the upcoming GridMove script to all of them.
Dray and the Skeletos have some of the same traits (e.g., a facing of 0-3, behavior where
they sometimes move or stand still, etc.), but the only common ancestor class that Dray and
Skeletos share is MonoBehaviour. This is exactly the kind of time when you should
consider using a C# interface. If you would like a deeper introduction to interfaces than the
one here, please read the Interfaces section of Appendix B, "Useful Concepts."

Briefly, an interface is a guarantee that declares specific methods or properties that will be
included in a class. Any class that implements the interface can then be referred to in code
as the interface type rather than as the specific class type. This differs from subclassing in
several ways, the two most important of which are:

884

 A class may implement several different interfaces simultaneously, whereas a class can
only extend a single superclass.
 Any class—regardless of superclass ancestry—can still implement the same interface.

You can think of an interface as a promise: Any class that implements the interface
promises to have specific methods or properties that can be called safely.

The IFacingMover interface that you'll implement here is very simple, and you can easily
apply it to both Skeletos and Dray.

1. Create a new C# script in the __Scripts folder named IFacingMover (interface names
often start with an I).

2. Open IFacingMover in MonoDevelop and enter the following code. Note that
IFacingMover does not extend MonoBehaviour and is not a class.

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public interface IFacingMover { // a
 int GetFacing(); // b
 bool moving { get; } // c
 float GetSpeed();
 float gridMult { get; } // d
 Vector2 roomPos { get; set; } // e
 Vector2 roomNum { get; set; }
 Vector2 GetRoomPosOnGrid(float mult = -1); // f
}

a. This is the public declaration of the IFacingMover interface.
b. Interfaces include methods and properties that must be publicly accessible on any

class that implements this interface. This line declares that there will be a public int
GetFacing() method on any class that implements IFacingMover.

c. In addition to methods, it is also possible to promise the implementation of properties
with an interface. This line declares that a read-only bool moving property will
be implemented on any class that implements IFacingMover.

d. The gridMult read-only property will allow IFacingMovers to pass the
gridMult field of InRoom to scripts like GridMove without GridMove requiring
direct access to InRoom.

e. The gridMult and roomPos properties and the GetRoomPosOnGrid()
method will require you to implement access to InRoom on both Dray and Skeletos.
However, although this requires Dray and Skeletos to have access to InRoom, it
allows anything treating Dray or Skeletos as an IFacingMover to not require access to

885

InRoom.
f. This interface method includes a default value for its mult parameter. If either no

value or a value of -1 is passed into GetRoomPosOnGrid(), it will look to the
gridMult property. Interestingly, if the default value for mult here disagrees with
the default value for mult in any script that implements IFacingMover, the value here
will override the default value in those implementing classes.

Implementing the IFacingMover Interface in the Dray Class
Next, follow these steps to implement the IFacingMover interface in the Dray class:

1. Open the Dray class and add the following code to make it properly implement the
IFacingMover interface.

Click here to view code image

public class Dray :
MonoBehaviour, IFacingMover { // a
 …
 private Rigidbody rigid;
 private Animator anim;
 private InRoom inRm; // b

 …

 void Awake () {
 rigid = GetComponent<Rigidbody>();
 anim = GetComponent<Animator>();
 inRm = GetComponent<InRoom>
(); // b
 }

 void Update () { … }

 // Implementation of IFacingMover
 public int GetFacing() { // c
 return facing;
 }

 public bool moving { // d
 get {
 return (mode == eMode.move);
 }
 }

 public float GetSpeed() { // e
 return speed;
 }

 public float gridMult {
 get { return inRm.gridMult; }

886

 }

 public Vector2 roomPos { // f
 get { return inRm.roomPos; }
 set { inRm.roomPos = value; }
 }

 public Vector2 roomNum {
 get { return inRm.roomNum; }
 set { inRm.roomNum = value; }
 }

 public Vector2 GetRoomPosOnGrid(float mult = -1) {
 return inRm.GetRoomPosOnGrid(mult);
 }
}

a. The ", IFacingMover" declares that this class implements the IFacingMover
interface.

b. inRm provides access to the attached InRoom class and is assigned in Awake().
c. The implementation of the public int GetFacing()method dictated by

IFacingMover.
d. Implementation of the public bool moving { get; } read-only property

from IFacingMover.
e. Implementation of float GetSpeed() from IFacingMover.
f. Implementation of roomPos works just like any other read-and-write property.

2. Save Dray and return to Unity to make sure that everything compiles without issue.

This might seem like a lot of extra work now, but watch what happens after you have
implemented the same interface for Skeletos.

3. Open the Skeletos script and enter the following bolded code.
Click here to view code image

public class Skeletos : Enemy, IFacingMover { // a
 …
 public float timeNextDecision = 0;

 private InRoom inRm; // b

 protected override void Awake () { // c
 base.Awake();
 inRm = GetComponent<InRoom>();
 }

 void Update () { … }

 void DecideDirection() { … }

887

 // Implementation of IFacingMover
 public int GetFacing() {
 return facing;
 }

 public bool moving { get { return true; } } // d

 public float GetSpeed() {
 return speed;
 }

 public float gridMult {
 get { return inRm.gridMult; }
 }

 public Vector2 roomPos {
 get { return inRm.roomPos; }
 set { inRm.roomPos = value; }
 }

 public Vector2 roomNum {
 get { return inRm.roomNum; }
 set { inRm.roomNum = value; }
 }

 public Vector2 GetRoomPosOnGrid(float mult = -1) {
 return inRm.GetRoomPosOnGrid(mult);
 }
}

a. Most of the implementation in Skeletos is the same.
b. inRm must also be declared and defined for Skeletos.
c. The Awake() in Skeletos must be declared protected override to work in

concert with the protected virtual Awake() method on the superclass
Enemy. The first line in this Awake() method calls the Awake() method on the
base class (Enemy:Awake()). Then Skeletos:Awake() proceeds to assign
the value of inRm.

d. Skeletos are always moving, so the implementation of bool moving { get; }
here just returns true, unlike the Dray class.

3. Save all scripts in MonoDevelop and return to Unity.

Now, either Dray or Skeletos can both be handled by the same code as an IFacingMover
rather than your having to write separate code for each class. Let's implement the
GridMove script to test this.

The GridMove Script

888

You will be able to apply GridMove to any GameObject with a class that implements
IFacingMover attached.

1. Create a new C# script named GridMove in the __Scripts folder and attach it to Dray.
2. Open the GridMove script in MonoDevelop and enter the following code.

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class GridMove : MonoBehaviour {
 private IFacingMover mover;

 void Awake() {
 mover = GetComponent<IFacingMover>
(); // a
 }

 void FixedUpdate() {
 if (!mover.moving) return; // If not moving, nothing to do here
 int facing = mover.GetFacing();

 // If we are moving in a direction, align to the grid
 // First, get the grid location
 Vector2 rPos = mover.roomPos;
 Vector2 rPosGrid = mover.GetRoomPosOnGrid();
 // This relies on IFacingMover (which uses InRoom) to choose grid spacing

 // Then move towards the grid line
 float delta = 0;
 if (facing == 0 || facing == 2) {
 // Horizontal movement, align to y grid
 delta = rPosGrid.y - rPos.y;
 } else {
 // Vertical movement, align to x grid
 delta = rPosGrid.x - rPos.x;
 }
 if (delta == 0) return; // Already aligned to the grid

 float move = mover.GetSpeed() * Time.fixedDeltaTime;
 move = Mathf.Min(move, Mathf.Abs(delta));
 if (delta < 0) move = -move;

 if (facing == 0 || facing == 2) {
 // Horizontal movement, align to y grid
 rPos.y += move;
 } else {
 // Vertical movement, align to x grid
 rPos.x += move;
 }

889

 mover.roomPos = rPos;
 }
}

a. GetComponent<IFacingMover>() finds any component attached to this
GameObject that implements the IFacingMover interface. This will return either a
Dray or Skeletos reference and would work equally well for any future class that
implements the IFacingMover interface.

GridMove is implemented as part of FixedUpdate() because that is when the physics
engine is updating and actually moving various GameObjects.

3. Save all scripts in MonoDevelop, return to Unity, and click Play.

As you move Dray around, you will see that they will progressively align themselves to a
one-unit grid. This makes it much easier to line up with the door.

4. Stop playback.
5. Select Dray and set the gridMult of the InRoom Inspector to 0.5.

Test again, and you'll see that you can now move on a half-grid just like in The Legend of
Zelda.

6. Attach GridMove to the Skeletos GameObject in the Hierarchy.
7. Save your scene, and click Play again.

If you watch carefully, you can see that the Skeletos now moves along a one-unit grid.

Moving from Room to Room
Now that Dray can line up well with doors, it's time for them to venture out into the rest of
the dungeon. Because Dray is the only one who will move from room to room, we can
attach most of this code to the Dray class; however, global room information like the
location of the doors and the overall size of the map should still be managed by InRoom.

1. Open the InRoom script in MonoDevelop and enter this code:
Click here to view code image

public class InRoom : MonoBehaviour {
 static public float ROOM_W = 16;
 static public float ROOM_H = 11;
 static public float WALL_T = 2;

 static public int MAX_RM_X = 9; // a
 static public int MAX_RM_Y = 9;

890

 static public Vector2[] DOORS = new Vector2[] { // b
 new Vector2(14, 5),
 new Vector2(7.5f, 9),
 new Vector2(1, 5),
 new Vector2(7.5f, 1)
 };

 [Header("Set in Inspector")]
 public bool keepInRoom = true;
 …
}

a. The static ints MAX_RM_X and MAX_RM_Y mark the maximum boundaries of the
map. The setting of 9 will work with the current maximum size of the Delver Level
Editor mentioned at the end of this chapter. If you need to make a larger map, you'll
have to change this.

b. The static DOORS Vector2 array stores room-relative positions of each possible
door.

2. Save the InRoom script.
3. Open the Dray class in MonoDevelop and enter the following code:

Click here to view code image

public class Dray : MonoBehaviour, IFacingMover {
 …
 [Header("Set in Inspector")]
 …
 public float attackDelay = 0.5f; // Delay between attacks
 public float transitionDelay = 0.5f;// Room transition delay // a

 [Header("Set Dynamically")]
 …

 private float timeAtkDone = 0;
 private float timeAtkNext = 0;
 private float transitionDone = 0; // a
 private Vector2 transitionPos;

 private Rigidbody rigid;
 …

 void Update () {
 if (mode == eMode.transition) { // b
 rigid.velocity = Vector3.zero;
 anim.speed = 0;
 roomPos = transitionPos; // Keeps Dray in place
 if (Time.time < transitionDone) return;
 // The following line is only reached if Time.time >= transitionDone
 mode = eMode.idle;
 }

891

 //————Handle Keyboard Input and manage eDrayModes————
 dirHeld = -1
 …
 }

 void LateUpdate() {
 // Get the half-grid location of this GameObject
 Vector2 rPos = GetRoomPosOnGrid(0.5f); // Forces half-
grid // c

 // Check to see whether we're in a Door tile
 int doorNum;
 for (doorNum=0; doorNum<4; doorNum++) {
 if (rPos == InRoom.DOORS[doorNum]) {
 break; // d
 }
 }

 if (doorNum > 3 || doorNum != facing) return; // e

 // Move to the next room
 Vector2 rm = roomNum;
 switch (doorNum) { // f
 case 0:
 rm.x += 1;
 break;
 case 1:
 rm.y += 1;
 break;
 case 2:
 rm.x -= 1;
 break;
 case 3:
 rm.y -= 1;
 break;
 }

 // Make sure that the rm we want to jump to is valid
 if (rm.x >= 0 && rm.x <= InRoom.MAX_RM_X) { // g
 if (rm.y >=0 && rm.y <= InRoom.MAX_RM_Y) {
 roomNum = rm;
 transitionPos = InRoom.DOORS[(doorNum+2) % 4]; // h
 roomPos = transitionPos;
 mode = eMode.transition; // i
 transitionDone = Time.time + transitionDelay;
 }
 }
 }

 // Implementation of IFacingMover
 public int GetFacing() { … }
 …
}

892

a. Be sure that you don't miss these lines.
b. These lines hold Dray in place for a short time whenever they transition from one

room to the next. This prevents the player from walking into a dangerous room until
the camera has had time to transition to the new room.

c. A half-grid setting of 0.5 is forced here because the InRoom.DOORS are on a half-
grid.

d. This loop iterates through each of the doors and breaks when it finds the one where
the player is standing. If the player is not standing at any door location, doorNum
finishes the for loop with a value of 4.

e. If either doorNum > 3 (i.e., Dray is not standing in a doorway) or if Dray is not
facing toward the doorway (i.e., doorNum != facing), then execution returns here.

f. Execution will only reach this point if Dray should move through a door. This
switch statement changes the Vector2 roomNum based on which door Dray is
passing through.

g. Here, validity is checked on the extents of the map. For instance, this keeps Dray
from walking out the entrance to the dungeon (which would set their roomNum.y to
-1).

h. The (doorNum+2) % 4 code picks the opposite door in the room (e.g., if Dray
exits DOORS[3], they will enter DOORS[1]). The transitionPos is then set to
that value, and on the next line, Dray's roomPos is set to the same location as well,
placing them in the doorway of the next room.

i. Dray is put into transition mode, which keeps them from moving for a moment,
giving the player time to see the new room before moving into it.

4. Save all scripts in MonoDevelop, switch back to Unity, and click Play.

The camera won't yet follow Dray into a new room, so you need to watch this in the Scene
pane, but you can now see Dray move through the doorway into another room.

Making the Camera Follow Dray
Now that Dray can move from one room to the next, it's time to make the camera follow
them.

1. Create a new C# script named CamFollowDray in the __Scripts folder.
2. Attach CamFollowDray to Main Camera in the Hierarchy.
3. Open CamFollowDray in MonoDevelop and enter the following code:

Click here to view code image

using System.Collections;

893

using System.Collections.Generic;
using UnityEngine;

public class CamFollowDray : MonoBehaviour {
 static public bool TRANSITIONING = false;

 [Header("Set in Inspector")]
 public InRoom drayInRm; // a
 public float transTime = 0.5f;

 private Vector3 p0, p1;

 private InRoom inRm; // b
 private float transStart;

 void Awake() {
 inRm = GetComponent<InRoom>();
 }

 void Update () {
 if (TRANSITIONING) { // c
 float u = (Time.time - transStart) / transTime;
 if (u >= 1) {
 u = 1;
 TRANSITIONING = false;
 }
 transform.position = (1-u)*p0 + u*p1;
 } else { // d
 if (drayInRm.roomNum != inRm.roomNum) {
 TransitionTo(drayInRm.roomNum);
 }
 }
 }
 void TransitionTo(Vector2 rm) { // e
 p0 = transform.position;
 inRm.roomNum = rm;
 p1 = transform.position + (Vector3.back * 10);
 transform.position = p0;

 transStart = Time.time;
 TRANSITIONING = true;
 }
}

a. You will need to assign the public field drayInRm in the Inspector.
b. CamFollowDray makes use of its own InRoom instance as well.
c. If CamFollowDray is transitioning, it moves the camera from the old room (p0) to the

new (p1) over the course of 0.5 seconds (by default).
d. If CamFollowDray is not transitioning, it watches for drayInRm to be in a different

room from this GameObject (the Main Camera).

894

e. When TransitionTo() is called, CamFollowDray caches its current position in
p0, then temporarily moves to the new room and caches that position in p1. The code
"+ (Vector3.back * 10)" is required because just setting the roomNum on
InRoom would set the Z position of the GameObject to 0. CamFollowDray then jumps
back to the original position, initializes the linear interpolation from p0 to p1, and
sets TRANSITIONING to true.

4. Save the CamFollowDray script and return to Unity.
5. Select Main Camera in the Hierarchy.
6. Attach an InRoom script to Main Camera.

 Set keepInRoom to false (unchecked).
7. Assign Dray to the drayInRoom field in the CamFollowDray Inspector of Main

Camera. This gives CamFollowDray a reference to the InRoom component attached to
Dray.

8. Save the scene, and click Play.

You should now be able to move anywhere within the bottom three rooms of the dungeon,
but the locked door in the middle room is now an issue.

Unlocking Doors
To unlock doors in this dungeon, you need a key, and you're going to have to swap out the
locked door tiles with open door tiles. The code will watch for a collision between Dray
and a locked door tile. If Dray has a key when they run into a locked door, the key count
will be decremented by one. This is made slightly more complicated by the up and down
doors (facings 1 and 3) because they are each a pair of tiles, but we'll handle that as well.

The IKeyMaster
Though Dray will be the only person opening doors in this dungeon, I've chosen to
implement an IKeyMaster interface to show you the implementation of multiple interfaces
in a single class.

1. Create a new C# script named IKeyMaster inside the __Scripts folder.
2. Open Keymaster in MonoDevelop and enter the following code:

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public interface IKeyMaster {

895

 int keyCount { get; set; } // a
 int GetFacing(); // b
}

a. keyCount will allow you to get and set the number of keys.
b. GetFacing() is already implemented in the Dray class (because of

IFacingMover).

3. Save IKeyMaster and open the Dray script. Enter this bolded code into Dray.
Click here to view code image

public class Dray : MonoBehaviour, IFacingMover, IKeyMaster { // a
 …
 [Header("Set Dynamically")]
 public int dirHeld = -1;// Direction of the held movement key
 public int facing = 1; // Direction Dray is facing
 public eMode mode = eMode.idle;
 public int numKeys = 0; // b

 private float timeAtkDone = 0;
 …
 // Implementation of IFacingMover
 public int GetFacing() { // c
 return facing;
 }
 …
 public Vector2 GetRoomPosOnGrid(float mult = -1) {
 return inRm.GetRoomPosOnGrid(mult);
 }

 // Implementation of IKeyMaster
 public int keyCount { // d
 get { return numKeys; }
 set { numKeys = value; }
 }
}

a. IKeyMaster is added to the list of interfaces implemented by the Dray class.
b. The public int numKeys field stores the number of keys in Dray's possession.

This is public to allow you to easily modify it in the Unity Inspector. A private field
with the attribute [SerializeField] would have been another good option.

c. GetFacing() is already implemented in the Dray class (because of
IFacingMover).

d. keyCount is implemented as a simple public property.

4. Save the Dray script. Now, you're ready to implement the GateKeeper class.

896

The GateKeeper
The GateKeeper class unlocks doors by replacing locked door tiles with open door tiles on
the TileCamera.MAP. The Tile.SetTile() method already has the ability to either
take two parameters (the x and y location of the tile as eX and eY) or three (an added
eTileNum parameter that allows a specific tile to be assigned in addition to the location).
You'll make a slight modification to this method to not only display the sprite of the
eTileNum that was passed in but also modify TileCamera.MAP to reflect the new tile.

Providing a Little Protection for TileCamera.MAP
This is a book on game prototyping, so in it I have been much more concerned about getting
the games running than properly protecting my classes, but I would like to point out here
that writing code that allows the Tile class to directly manipulate the static public MAP
array of the TileCamera class is not very good style, which is why TileCamera.MAP is
private and has two accessor methods, GET_MAP() and SET_MAP(), both of which have
the security of not allowing eX or eY values that are out of range for MAP, thereby
obviating any IndexOutOfRangeExceptions.

Another reason to have accessor methods like SET_MAP() is improved ability to track
down bugs. If, in the future, you find that something is modifying MAP in strange ways, you
can always place a debugger breakpoint in the SET_MAP() function and run the debugger.
Then, any time SET_MAP() is called, execution will pause on that breakpoint, and you can
look at the Call Stack pane in MonoDevelop to see what method is calling SET_MAP()
and what arguments are being passed in. If you see a method or arguments that you didn't
expect, you've found your culprit.

Using Tile.SetTile() to Modify TileCamera.MAP
Open the Tile script in MonoDevelop and make the following bolded modifications to the
SetTile() method:
Click here to view code image

public class Tile : MonoBehaviour {
 …
 public void SetTile(int eX, int eY, int eTileNum = -1) {
 …
 if (eTileNum == -1) {
 eTileNum = TileCamera.MAP[x,y];
 } else {
 TileCamera.SET_MAP(x, y, eTileNum); // Replace if non-
default tileNum
 }
 tileNum = eTileNum;
 …
 }

897

 …
}

Implementing the GateKeeper Script
Create the GateKeeper script by following these steps:

1. Create a C# script named GateKeeper in the __Scripts folder.
2. Attach GateKeeper to the Dray GameObject in the Hierarchy.
3. Open GateKeeper in MonoDevelop and enter this code:

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class GateKeeper : MonoBehaviour {
 // These consts are based on the default DelverTiles image.
 // If you rearrange DelverTiles you may need to change it!
 //————————
Locked Door tileNums // a
 const int lockedR = 95;
 const int lockedUR = 81;
 const int lockedUL = 80;
 const int lockedL = 100;
 const int lockedDL = 101;
 const int lockedDR = 102;

 //————————Open Door tileNums
 const int openR = 48;
 const int openUR = 93;
 const int openUL = 92;
 const int openL = 51;
 const int openDL = 26;
 const int openDR = 27;

 private IKeyMaster keys;

 void Awake() {
 keys = GetComponent<IKeyMaster>();
 }

 void OnCollisionStay(Collision coll) { // b
 // No keys, no need to run
 if (keys.keyCount < 1) return;

 // Only worry about hitting tiles
 Tile ti = coll.gameObject.GetComponent<Tile>();
 if (ti == null) return;

 // Only open if Dray is facing the door (avoid accidental key use)

898

 int facing = keys.GetFacing();
 // Check whether it's a door tile
 Tile ti2;
 switch (ti.tileNum) { // c
 case lockedR:
 if (facing != 0) return; // d
 ti.SetTile(ti.x, ti.y, openR);
 break;

 case lockedUR:
 if (facing != 1) return;
 ti.SetTile(ti.x, ti.y, openUR);
 ti2 = TileCamera.TILES[ti.x-1, ti.y];
 ti2.SetTile(ti2.x, ti2.y, openUL);
 break;

 case lockedUL:
 if (facing != 1) return;
 ti.SetTile(ti.x, ti.y, openUL);
 ti2 = TileCamera.TILES[ti.x+1, ti.y];
 ti2.SetTile(ti2.x, ti2.y, openUR);
 break;

 case lockedL:
 if (facing != 2) return;
 ti.SetTile(ti.x, ti.y, openL);
 break;

 case lockedDL:
 if (facing != 3) return;
 ti.SetTile(ti.x, ti.y, openDL);
 ti2 = TileCamera.TILES[ti.x+1, ti.y];
 ti2.SetTile(ti2.x, ti2.y, openDR);
 break;

 case lockedDR:
 if (facing != 3) return;
 ti.SetTile(ti.x, ti.y, openDR);
 ti2 = TileCamera.TILES[ti.x-1, ti.y];
 ti2.SetTile(ti2.x, ti2.y, openDL);
 break;
 default:
 return; // Return and avoid key decrement
 }

 keys.keyCount--;
 }
}

a. The const ints here are the tile numbers of the tiles for each possible locked door and
open door (e.g., lockedR is 95, and the 95th sprite of the DelverTiles Texture2D
shows the locked door heading to the right).

899

b. This OnCollisionStay() method will return (and avoid further execution) if
Dray has no keys, if the object collided with is not a Tile, or if Dray is not facing the
locked door. This keeps a key from getting decremented unless a door is actually
unlocked, and it allows the player to walk past a door without opening it.

c. The cases in a switch statement cannot be variables, which is one of the reasons
that all the ints were declared const at the top of the class.

d. If Dray is not facing toward the door the method returns.

4. Save All scripts in MonoDevelop and return to Unity.
5. Click Play in Unity and walk one room to the right. If you try to exit the locked door to

the north, you won't be able to (yet).
6. With Unity still playing, select Dray in the Hierarchy and set the numKeys field of the

Dray (Script) component to 6 (which should be enough keys to get through the whole
dungeon). Now if you approach the door, you should be able to walk through it and
explore the whole dungeon!11

Adding GUI to Track Key Count and Health
Your players won't be able to track the number of keys by viewing the Unity Inspector, so
you need to add some GUI elements.

1. Create a new Canvas by choosing GameObject > UI > Canvas from the Unity menu.
This creates both a Canvas and an Event System at the root level of the Hierarchy.

2. Select Canvas in the Hierarchy.
3. In the Canvas Inspector on the Canvas GameObject:

 Set Render Mode to Screen Space – Camera.
 Click the target icon to the right of Render Camera and choose GUI Camera from the
Scene tab in the box that appears.

When you imported the starter unitypackage for this chapter, a UI Panel named DelverPanel
was included in the _Prefabs folder of the Project pane.

4. Drag the DelverPanel from the _Prefabs folder onto Canvas in the Hierarchy, making
DelverPanel a child of Canvas. You should now see the panel appear on the right side
of the screen in the image of the GUI Camera. By default the GUI shows 0 keys and half
health.

Let's write a script to get this UI working.

900

Adding Health to Dray
Right now, the Dray class tracks the number of keys but doesn't yet have health tracking or
take damage. Let's fix the first part of that.

1. Open the Dray script in MonoDevelop and enter the following code:
Click here to view code image

public class Dray : MonoBehaviour, IFacingMover, IKeyMaster {
 public enum eMode { idle, move, attack, transition }

 [Header("Set in Inspector")]
 public float speed = 5;
 public float attackDuration = 0.25f; // Number of seconds to attack
 public float attackDelay = 0.5f; // Delay between attacks
 public float transitionDelay = 0.5f; // Delay during transition
 public int maxHealth = 10; // a

 [Header("Set Dynamically")]
 public int dirHeld = -1; // Direction of the held movement key
 public int facing = 1; // Direction Dray is facing
 public eMode mode = eMode.idle;
 public int numKeys = 0;

 [SerializeField] // b
 private int _health;

 public int health { // c
 get { return _health; }
 set { _health = value; }
 }

 private float timeAtkDone = 0;
 private float timeAtkNext = 0;
 …

 void Awake () {
 rigid = GetComponent<Rigidbody>();
 anim = GetComponent<Animator>();
 inRm = GetComponent<InRoom>();
 health = maxHealth; // d
 }
}

a. The GUI shows five circles, and each circle represents 2 health points, so it can
display 10 total health.

b. The [SerializeField] attribute allows Unity to show (and edit) the field
_health in the Inspector even though it's private.

c. This health property allows read and write access to the private int
_health from anywhere. This aids in debugging because you could put a breakpoint

901

on the set clause if _health were changing, and you weren't sure why.
d. When Dray is instantiated, health is set to the maximum value.

2. Save all scripts in MonoDevelop and return to Unity.

Connecting the GUI to Dray
You need to write a script for the UI to reflect the health and numKeys values of Dray.

1. Create a new script named GuiPanel in the __Scripts folder of the Project pane.
2. Attach the GuiPanel script to the DelverPanel GameObject (under Canvas in the

Hierarchy).
3. Open GuiPanel in MonoDevelop and enter the following code:

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;

public class GuiPanel : MonoBehaviour {
 [Header("Set in Inspector")]
 public Dray dray;
 public Sprite healthEmpty;
 public Sprite healthHalf;
 public Sprite healthFull;

 Text keyCountText;
 List<Image> healthImages;

 void Start () {
 // Key Count
 Transform trans = transform.Find("Key Count"); // a
 keyCountText = trans.GetComponent<Text>();
 // Health Icons
 Transform healthPanel = transform.Find("Health Panel");
 healthImages = new List<Image>();
 if (healthPanel != null) { // b
 for (int i=0; i<20; i++) {
 trans = healthPanel.Find("H_"+i);
 if (trans == null) break;
 healthImages.Add(trans.GetComponent<Image>());
 }
 }
 }

 void Update () {
 // Show keys
 keyCountText.text = dray.numKeys.ToString(); // c

902

 // Show health
 int health = dray.health;
 for (int i=0; i<healthImages.Count; i++) { // d
 if (health > 1) {
 healthImages[i].sprite = healthFull;
 } else if (health == 1) {
 healthImages[i].sprite = healthHalf;
 } else {
 healthImages[i].sprite = healthEmpty;
 }
 health -= 2;
 }
 }
}

a. This code relies entirely on the children of the DelverPanel transform being named
properly. Here, you search for a child of DelverPanel named Key Count. The Text
component of this child transform is then assigned to keyCountText. There is no
double-checking here, so if the name of Key Count changes, the GetComponent line
will throw a null reference exception.

b. First a child of DelverPanel named Health Panel is sought. If it is found, you
sequentially search for children of Health Panel named H_0 through H_19. As long
as they are found, the Image component of each is added to the healthImages List.
If a child transform is not found (e.g., when you search for H_5 in the current panel),
the for loop is exited.

c. The numKeys from dray is assigned to the text of keyCountText.
d. The health indicator is a bit more complex. The current health is read in from dray

and stored in a local int health. You iterate through a for loop once for each
healthImage, starting at the bottom (H_0). If health is greater than 1, then you
show the healthFull sprite. If health is 1, you show healthHalf, and if
health is less than 1, you show healthEmpty. After each loop, the local
health int is decremented by 2, and the next loop executes. This way, each
healthImage displays up to 2 units of health.

4. Save the GuiPanel script and return to Unity.
5. Select DelverPanel in the Hierarchy and set the following in the GuiPanel (Script)

Inspector:
 Assign Dray from the Hierarchy to the dray field.
 Assign the Health_0 Sprite from the Health image in the _Images folder of the Project
pane to healthEmpty.
 Assign Health_1 from the Health image in the Project pane to healthHalf.
 Assign Health_2 from the Health image in the Project pane to healthFull.

6. Click Play, and you should see the health indicator in the GUI jump to full.

903

7. Select Dray in the Hierarchy while Unity is playing and adjust their numKeys and
_health to various values in the Dray (Script) Inspector. You should see these
reflected in the GUI panel. Save your scene.

Enabling Enemies to Damage Dray
It's time to add some danger to the world by making enemies able to damage Dray on
contact. This will also knock Dray back a bit and make Dray invincible for a brief time.

Implementing DamageEffect
The DamageEffect script will be used to track how much damage an enemy will do to Dray
and whether contact with the enemy will cause knockback. Later, you'll apply this same
script to Dray's weapons to define how those weapons affect enemies.

1. Create a new C# script named DamageEffect in the __Scripts folder.
2. Attach the DamageEffect script to the Skeletos GameObject in the Hierarchy.
3. Open DamageEffect in MonoDevelop and enter the following code:

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class DamageEffect : MonoBehaviour {
 [Header("Set in Inspector")]
 public int damage = 1;
 public bool knockback = true;
}

4. Save DamageEffect in MonoDevelop and switch back to Unity. You can now see that
the DamageEffect (Script) Inspector on Skeletos has two public fields.

By default, the amount of damage done is 1, which is equal to one-half of a health indicator
in the GUI you just made. The default values are fine for Skeletos, so you don't need to
change anything in the Inspector.

Modifying the Dray Class
You must also make changes to Dray to enable use of the DamageEffect script that you just
attached to Skeletos.

1. Open the Dray script in MonoDevelop and make the following bolded code changes.
Click here to view code image

904

public class Dray : MonoBehaviour, IFacingMover, IKeyMaster {
 public enum eMode { idle, move, attack, transition, knockback } // a

 [Header("Set in Inspector")]
 …
 public float attackDelay = 0.5f; // Delay between attacks
 public float transitionDelay = 0.5f;// Delay during transition
 public int maxHealth = 10;
 public float knockbackSpeed = 10; // b
 public float knockbackDuration = 0.25f;
 public float invincibleDuration = 0.5f;

 [Header("Set Dynamically")]
 …
 public int numKeys = 0;
 public bool invincible = false; // c

 [SerializeField]
 private int _health;
 …

 private float transitionDone = 0;
 private Vector2 transitionPos;
 private float knockbackDone = 0; // d
 private float invincibleDone = 0;
 private Vector3 knockbackVel;

 private SpriteRenderer sRend; // e
 private Rigidbody rigid;
 …
 void Awake () {
 sRend = GetComponent<SpriteRenderer>
(); // e
 rigid = GetComponent<Rigidbody>();
 …
 }
 void Update () {
 // Check knockback and invincibility
 if (invincible && Time.time > invincibleDone) invincible = false; // f
 sRend.color = invincible ? Color.red : Color.white;
 if (mode == eMode.knockback) {
 rigid.velocity = knockbackVel;
 if (Time.time < knockbackDone) return;
 }

 if (mode == eMode.transition) { … }
 …
 }

 void LateUpdate() { … }

 void OnCollisionEnter(Collision coll) {
 if (invincible) return; // Return if Dray can't be damaged // g
 DamageEffect dEf = coll.gameObject.GetComponent<DamageEffect>();
 if (dEf == null) return; // If no DamageEffect, exit this method

905

 health -
= dEf.damage;// Subtract the damage amount from health // h
 invincible = true; // Make Dray invincible
 invincibleDone = Time.time + invincibleDuration;

 if (dEf.knockback) { // Knockback Dray // i
 // Determine the direction of knockback
 Vector3 delta = transform.position - coll.transform.position;
 if (Mathf.Abs(delta.x) >= Mathf.Abs(delta.y)) {
 // Knockback should be horizontal
 delta.x = (delta.x > 0) ? 1 : -1;
 delta.y = 0;
 } else {
 // Knockback should be vertical
 delta.x = 0;
 delta.y = (delta.y > 0) ? 1 : -1;
 }

 // Apply knockback speed to the Rigidbody
 knockbackVel = delta * knockbackSpeed;
 rigid.velocity = knockbackVel;

 // Set mode to knockback and set time to stop knockback
 mode = eMode.knockback;
 knockbackDone = Time.time + knockbackDuration;
 }
 }
 // Implementation of IFacingMover
 public int GetFacing() { … }
 …
}

a. A new eMode.knockback has been added to the enum eMode.
b. knockbackSpeed, knockbackDuration, and invincibleDuration can

all be set in the Inspector.
c. The public bool invincible is true when Dray is impervious to damage. It

is a bool rather than an eMode state because Dray can be invincible at the same time
as several different eModes (if Dray were only invincible when being knocked back,
this would not be necessary).

d. Several new private fields have been added to implement knockback and
invincibility.

e. To show the player both that Dray has been damaged and that they are invincible,
Dray will be colored red throughout the invincible time. To do this, you need a
reference to the Sprite Renderer component of Dray.

f. New code at the beginning of each Update() checks to see whether invincible or
knockback times have expired. If Dray is invincible, sRend is colored red. If Dray is
being knocked back, knockbackVel is assigned to rigid.velocity.

906

g. This OnCollisionEnter() method is called by Unity anytime Dray collides
with the collider of another GameObject.
This method will return before doing anything if Dray is invincible or if the thing that
collided with Dray does not have a DamageEffect component (i.e., Dray collides
with walls all the time, but walls don't cause damage). It would be fine to have
OnCollisionEnter() methods on several scripts on the same Dray
GameObject; Unity would call OnCollisionEnter() on each of them.

h. The damage amount of the DamageEffect is subtracted from health, and Dray is
made temporarily invincible.

i. If the DamageEffect that Dray collided with calls for a knockback, then the contents of
this if statement execute. This finds the positional difference between Dray and the
GameObject they collided with, locks the difference to either vertical or horizontal,
and converts that into the knockbackVelocity. Then, Dray is put into knockback
mode until Time.time is greater than knockbackDone.

2. Save all scripts in MonoDevelop, return to Unity, and click Play.

Now if you walk Dray into the Skeletos, you can see Dray take damage, be knocked back,
and turn invincible. If you want to test the invincibility, you can use the Dray (Script)
Inspector on the Dray GameObject to increase the invincibleDuration to ten
seconds and then walk into the Skeletos multiple times.

The plan is to use OnCollisionEnter() for damage on Dray and
OnTriggerEnter() for damage on the Skeletos and other enemies. This works because
all of Dray's weapons will have isTrigger set to true, and this distinction between triggers
and collisions enables you to use DamageEffects for both damage to Dray and enemies.

907

Making Dray's Attack Damage Enemies
Dray has been able to swing their sword for a while; now it's time to give that sword some
bite.

1. Select Sword in the Hierarchy (it is the grandchild of Dray).
2. Attach a DamageEffect script to Sword.

 Set the damage of the DamageEffect (Script) to 2. The sword should be reasonably
powerful.

3. Save the scene.

Modifying Enemy to Take Damage
Given the extensive use of interfaces in this chapter, you might be considering creating an
IDamageable interface that could work for both Dray and Enemies as well as a Damage
script that could be attached to both (as you did with the GridMove script). You certainly
could do that, but I have chosen not to do so for two main reasons:

 Dray collides with Enemies OnCollisionEnter(), whereas Enemies collide with
Dray's sword OnTriggerEnter() (because the Sword's collider is a trigger).
 All the enemies are intended to be subclasses of Enemy, so adding code to Enemy will
handle all of them.

1. Open the Enemy script in MonoDevelop and add the following code:
Click here to view code image

public class Enemy : MonoBehaviour {
 …
 [Header("Set in Inspector: Enemy")]
 public float maxHealth = 1;
 public float knockbackSpeed = 10; // a
 public float knockbackDuration = 0.25f;
 public float invincibleDuration = 0.5f;

 [Header("Set Dynamically: Enemy")]
 public float health;
 public bool invincible = false; // a
 public bool knockback = false;

 private float invincibleDone = 0; // a
 private float knockbackDone = 0;
 private Vector3 knockbackVel;

 …

 protected virtual void Awake() { … }

908

 protected virtual void Update() { // b
 // Check knockback and invincibility
 if (invincible && Time.time > invincibleDone) invincible = false;
 sRend.color = invincible ? Color.red : Color.white;
 if (knockback) {
 rigid.velocity = knockbackVel;
 if (Time.time < knockbackDone) return;
 }

 anim.speed = 1; // c
 knockback = false;
 }

 void OnTriggerEnter(Collider colld) { // d
 if (invincible) return; // Return if this can't be damaged
 DamageEffect dEf = colld.gameObject.GetComponent<DamageEffect>();
 if (dEf == null) return; // If no DamageEffect, exit this method

 health -= dEf.damage; // Subtract the damage amount from health
 if (health <= 0) Die(); // e

 invincible = true; // Make this invincible
 invincibleDone = Time.time + invincibleDuration;

 if (dEf.knockback) { // Knockback this
 // Determine the direction of knockback
 Vector3 delta = transform.position - colld.transform.root.position;
 if (Mathf.Abs(delta.x) >= Mathf.Abs(delta.y)) {
 // Knockback should be horizontal
 delta.x = (delta.x > 0) ? 1 : -1;
 delta.y = 0;
 } else {
 // Knockback should be vertical
 delta.x = 0;
 delta.y = (delta.y > 0) ? 1 : -1;
 }

 // Apply knockback speed to the Rigidbody
 knockbackVel = delta * knockbackSpeed;
 rigid.velocity = knockbackVel;

 // Set mode to knockback and set time to stop knockback
 knockback = true;
 knockbackDone = Time.time + knockbackDuration;
 anim.speed = 0;
 }
 }

 void Die() { // f
 Destroy(gameObject);
 }

a. Most of the added fields are the same between Enemy and the changes you recently
made to Dray. The only major difference is that knockback is a bool here, where it

909

was a Dray.eMode in the Dray script.
b. This Update() method is declared protected virtual so that it can be

overridden in subclasses like Skeletos. You'll do this in the next code listing.
c. These two lines only happen if the knockback has ended.
d. This OnTriggerEnter() method is used because Dray's sword has a trigger

collider. Note that OnTriggerEnter() is passed a Collider rather than a
Collision. Other than that, most of the script is very similar to what you wrote in the
Dray class.

e. If this Enemy's health drops to or below 0, the new Die() method will be called.
f. Die() is not much right now, but later modifications will allow enemies to drop

items when they are killed.
2. Save the Enemy script.
3. Open the Skeletos script in MonoDevelop and make the following small changes:

Click here to view code image

public class Skeletos : Enemy, IFacingMover {
 …
 protected override void Awake () { … }

 override protected void Update () { // a
 base.Update();
 if (knockback) return;

 if (Time.time >= timeNextDecision) {
 DecideDirection();
 }
 // rigid is inherited from Enemy, which defines it in Enemy.Awake()
 rigid.velocity = directions[facing] * speed;
 }
 …
}

a. You must add override protected to the beginning of the Update() method
declaration.

The first line of this Update() method calls the Enemy.Update() base class method.
If this Skeletos is being knocked back, then the code returns after calling the
base.Update() method, preventing the Skeletos from changing its direction or
adjusting its velocity until the knockback is done.

4. Save all scripts in MonoDevelop and switch back to Unity.
5. Select the Skeletos in the Hierarchy and set maxHealth in the Skeletos (Script)

Inspector to 4. This allows the Skeletos to take 2 hits from Dray's sword (which does 2
damage per hit) before being destroyed.

910

6. Save the scene and click Play in Unity.

Now Dray can attack the Skeletos, cause it damage, and knock it back.

Picking Up Items
Now that Dray can kill Enemies, you have somewhere that you can get both keys and health
items. Let's start with the key.

1. Drag the Key from the _Images folder of the Project pane into the Hierarchy. This
creates a GameObject with a Sprite Renderer that shows the Key sprite.

2. Set the following in the Key Inspector:
 Transform: P:[28, 3, 0]
 Sprite Renderer: Sorting Layer: Items

3. Add a Box Collider to the Key GameObject.
 Set Is Trigger to true on the Box Collider.

4. Save the scene.
5. Create a new C# script named PickUp in the __Scripts folder.
6. Attach the PickUp script to the Key GameObject in the Hierarchy.
7. Open the PickUp script in MonoDevelop and enter this code:

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class PickUp : MonoBehaviour {
 public enum eType { key, health, grappler }
 public static float COLLIDER_DELAY = 0.5f;

 [Header("Set in Inspector")]
 public eType itemType;

 // Awake() and Activate() disable the PickUp's Collider for 0.5 secs
 void Awake() {
 GetComponent<Collider>().enabled = false;
 Invoke("Activate", COLLIDER_DELAY);
 }
 void Activate() {
 GetComponent<Collider>().enabled = true;
 }
}

8. Save the PickUp script.

911

9. Open the Dray script and add the following bolded code:
Click here to view code image

public class Dray : MonoBehaviour, IFacingMover, IKeyMaster {
 …

 void OnCollisionEnter(Collision coll) { … }

 void OnTriggerEnter(Collider colld) {
 PickUp pup = colld.GetComponent<PickUp>
(); // a
 if (pup == null) return;

 switch (pup.itemType) {
 case PickUp.eType.health:
 health = Mathf.Min(health+2, maxHealth);
 break;

 case PickUp.eType.key:
 keyCount++;
 break;
 }

 Destroy(colld.gameObject);
 }

 // Implementation of IFacingMover
 public int GetFacing() { … }
 …
}

a. If the GameObject that collided with this trigger doesn't have a PickUp script
attached to it, this method returns without doing anything.

10. Save all scripts in MonoDevelop and return to Unity.
11. Select the Key in the Hierarchy and set the itemType to Key in the PickUp (Script)

component Inspector.
12. Save the scene and click Play.

You should now be able to pick up the key, see the key count increase in the GUI, and then
use the key to open the first door.

Enemies Dropping Items on Death
You want some enemies to always drop a key. You want other enemies to drop a health item
some of the time.

Dropping Keys

912

Follow these steps to make enemies drop keys:

1. Open the Enemy script in MonoDevelop and enter these code additions:
Click here to view code image

public class Enemy : MonoBehaviour {
 …
 [Header("Set in Inspector: Enemy")]
 …
 public float invincibleDuration = 0.5f;
 public GameObject guaranteedItemDrop = null;

 [Header("Set Dynamically: Enemy")]
 …
 void Die() {
 GameObject go;
 if (guaranteedItemDrop != null) {
 go = Instantiate<GameObject>(guaranteedItemDrop);
 go.transform.position = transform.position;
 }
 Destroy(gameObject);
 }
}

2. Save the Enemy script and return to Unity.
3. Make Key a prefab by dragging it from the Hierarchy into the _Prefab folder of the

Project pane.
4. Select Skeletos in the Hierarchy, and assign the Key prefab (from the _Prefabs folder)

to the guaranteedItemDrop field of the Skeletos (Script) Inspector on the Skeletos
GameObject.

5. Save the scene and click Play.

Now if you kill the Skeletos, it should drop a key that you can pick up.

Dropping Randomized Items
You also want to implement the possibility of Enemies dropping a randomized item. If there
is no guaranteedItemDrop,12 then a random item will be selected from an array of
possible items, and the list will include several null entries so that an item is not always
guaranteed.

First, you'll need to do some item prep work.

Creating the Health PickUp Item
To create the Health item, follow these steps:

913

1. In the Project pane, select the Health_2 and Health_3 sprites under the Health Texture
2D in the _Images folder.

2. Drag them into the Hierarchy to create a new GameObject and Animation.
3. Name the Animation that is created Health.anim and save it in the _Animations folder.
4. Select the Health_2 GameObject in the Hierarchy and do the following:

 Name: Change the name of Health_2 to Health.
 Transform: Set the position of Health to P:[28, 7, 0].
 Sprite Renderer: Set the Sorting Layer to Items.
 Add a Box Collider to Health.
 Box Collider: Set Is Trigger to true.
 Add a PickUp (Script) component to Health.
 PickUp (Script): Set itemType to Health.

5. With the Health GameObject in the Hierarchy still selected, open the Animation pane
(Window > Animation) and set the Samples of the Health animation to 4 (which makes
the Health item blink at a reasonable rate of four frames per second).

6. Drag the Health GameObject from the Hierarchy into the _Prefabs folder of the Project
pane to make a Health prefab.

7. Save the scene and click Play.
8. Walk Dray into the Skeletos a couple of times to take some damage. Then walk over the

Health item, and you should regain some health.

Implementing Code for Randomized Item Drops
Follow these steps to create the code for randomized item drops.

1. Open the Enemy script in MonoDevelop and make the bolded code changes:
Click here to view code image

public class Enemy : MonoBehaviour {
 …
 [Header("Set in Inspector: Enemy")]
 …
 public float invincibleDuration = 0.5f;
 public GameObject[] randomItemDrops; // a
 public GameObject guaranteedItemDrop = null;
 …
 void OnTriggerEnter(Collider colld) { … }

 void Die() {
 GameObject go;
 if (guaranteedItemDrop != null) {
 go = Instantiate<GameObject>(guaranteedItemDrop);

914

 go.transform.position = transform.position;
 } else if (randomItemDrops.Length > 0) { // b
 int n = Random.Range(0, randomItemDrops.Length);
 GameObject prefab = randomItemDrops[n];
 if (prefab != null) {
 go = Instantiate<GameObject>(prefab);
 go.transform.position = transform.position;
 }
 }
 Destroy(gameObject);
 }
}

a. The randomItemDrops array can hold any number of possible items (and null
None (GameObject) entries) to select from when the Enemy is killed.

b. If there is no guaranteedItemDrop and there are entries in the
randomItemDrops array, one of these entries will be chosen and assigned to
prefab. If prefab is not null, then an instance of prefab will be instantiated.

2. Save the Enemy script and return to Unity.
3. Select the Skeletos GameObject in the Hierarchy.

 Delete the Key from the guaranteedItemDrop, leaving None (Game Object) in
its place.
 Open the disclosure triangle next to randomItemDrops in the Skeletos (Script)
inspector.
 Set the Size of randomItemDrops to 1.
 Assign the Health prefab (from the _Prefabs folder) to Element 0 of
randomItemDrops.

4. Make Skeletos a prefab by dragging it from the Hierarchy into the _Prefabs folder of
the Project pane.

5. Save the scene and click Play in Unity.

Now when Dray kills the Skeletos, it will drop a Health item.

6. Select the Skeletos prefab in the _Prefabs folder of the Project pane (not the
Hierarchy).
 Set the Size of randomItemDrops in the Skeletos (Script) Inspector to 2.
 Delete the Health prefab from Element 1.
 Set the Size of randomItemDrops to 3. This gives you two total null (None (Game
Object)) entries, which will make the Skeletos (without a guaranteedItemDrop
set) drop Health 1/3 of the time.

These changes in the Skeletos prefab should automatically be reflected in the Skeletos

915

instance in the Hierarchy.

Implementing a Grappler
The last item that you'll implement is a grappling hook that enables you to pass over
previously impassable red tiles.

1. The unitypackage that you imported at the beginning of this chapter included a Grappler
prefab in the _Prefabs folder. Select that Grappler prefab in the _Prefabs folder of the
Project pane.
 Sprite Renderer: Set the Sorting Layer of the Grappler to Items.

2. Drag Grappler onto the Dray GameObject in the Hierarchy, making it a child of Dray
(and a sibling of SwordController).

3. Create a new C# script named Grapple in the __Scripts folder. (This script is named
Grapple—after the action, not the item—to differentiate it from the Grappler item; the
name difference is because the Grapple script will be attached to Dray, not to the
Grappler.)

4. Attach the Grapple script to Dray.
5. Open the Grapple script in MonoDevelop and enter the following code. This script is a

bit longer than the others in this chapter.
Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Grapple : MonoBehaviour {
 public enum eMode { none, gOut, gInMiss, gInHit } // a

 [Header("Set in Inspector")]
 public float grappleSpd = 10;
 public float grappleLength = 7;
 public float grappleInLength = 0.5f;
 public int unsafeTileHealthPenalty = 2;
 public TextAsset mapGrappleable;

 [Header("Set Dynamically")]
 public eMode mode = eMode.none;
 // TileNums that can be grappled
 public List<int> grappleTiles; // b
 public List<int> unsafeTiles;

 private Dray dray;
 private Rigidbody rigid;
 private Animator anim;
 private Collider drayColld;

916

 private GameObject grapHead; // c
 private LineRenderer grapLine;

 private Vector3 p0, p1;
 private int facing;

 private Vector3[] directions = new Vector3[] {
 Vector3.right, Vector3.up, Vector3.left, Vector3.down };

 void Awake() {
 string gTiles = mapGrappleable.text; // d
 gTiles = Utils.RemoveLineEndings(gTiles);
 grappleTiles = new List<int>();
 unsafeTiles = new List<int>();
 for (int i=0; i<gTiles.Length; i++) {
 switch (gTiles[i]) {
 case 'S':
 grappleTiles.Add(i);
 break;

 case 'X':
 unsafeTiles.Add(i);
 break;
 }
 }

 dray = GetComponent<Dray>();
 rigid = GetComponent<Rigidbody>();
 anim = GetComponent<Animator>();
 drayColld = GetComponent<Collider>();

 Transform trans = transform.Find("Grappler");
 grapHead = trans.gameObject;
 grapLine = grapHead.GetComponent<LineRenderer>();
 grapHead.SetActive(false);
 }

 void Update () {
 if (!dray.hasGrappler) return; // e

 switch (mode) {
 case eMode.none:
 // If the grapple button is pressed
 if (Input.GetKeyDown(KeyCode.X)) {
 StartGrapple();
 }
 break;
 }
 }

 void StartGrapple() { // f
 facing = dray.GetFacing();
 dray.enabled = false; // g

917

 anim.CrossFade("Dray_Attack_"+facing, 0);
 drayColld.enabled = false;
 rigid.velocity = Vector3.zero;

 grapHead.SetActive(true);

 p0 = transform.position + (directions[facing] * 0.5f);
 p1 = p0;
 grapHead.transform.position = p1;
 grapHead.transform.rotation = Quaternion.Euler(0,0,90*facing);

 grapLine.positionCount = 2; // h
 grapLine.SetPosition(0,p0);
 grapLine.SetPosition(1,p1);
 mode = eMode.gOut;
 }

 void FixedUpdate() {
 switch (mode) {
 case eMode.gOut: // Grappler shooting out // i
 p1 += directions[facing] * grappleSpd * Time.fixedDeltaTime;
 grapHead.transform.position = p1;
 grapLine.SetPosition(1,p1);

 // Check to see whether the grapple hit anything
 int tileNum = TileCamera.GET_MAP(p1.x,p1.y);
 if (grappleTiles.IndexOf(tileNum) != -1) {
 // We've hit a grappleable tile!
 mode = eMode.gInHit;
 break;
 }
 if ((p1-p0).magnitude >= grappleLength) {
 // The grapple reached its end and didn't hit anything
 mode = eMode.gInMiss;
 }
 break;

 case eMode.gInMiss: // Grappler missed; return at double speed // j
 p1 -= directions[facing] * 2 * grappleSpd * Time.fixedDeltaTime;
 if (Vector3.Dot((p1-p0), directions[facing]) > 0) {
 // The grapple is still in front of Dray
 grapHead.transform.position = p1;
 grapLine.SetPosition(1,p1);
 } else {
 StopGrapple();
 }
 break;

 case eMode.gInHit: // Grappler hit, pulling Dray to wall // k
 float dist = grappleInLength + grappleSpd * Time.fixedDeltaTime;
 if (dist > (p1-p0).magnitude) {
 p0 = p1 - (directions[facing] * grappleInLength);
 transform.position = p0;

918

 StopGrapple();
 break;
 }
 p0 += directions[facing] * grappleSpd * Time.fixedDeltaTime;
 transform.position = p0;
 grapLine.SetPosition(0,p0);
 grapHead.transform.position = p1;
 break;
 }

 }

 void StopGrapple() { // l
 dray.enabled = true;
 drayColld.enabled = true;

 // Check for unsafe tile
 int tileNum = TileCamera.GET_MAP(p0.x,p0.y);
 if (mode == eMode.gInHit && unsafeTiles.IndexOf(tileNum) != -1) {
 // We landed on an unsafe tile
 dray.ResetInRoom(unsafeTileHealthPenalty);
 }

 grapHead.SetActive(false);

 mode = eMode.none;
 }

 void OnTriggerEnter(Collider colld) { // m
 Enemy e = colld.GetComponent<Enemy>();
 if (e == null) return;

 mode = eMode.gInMiss;
 }
}

a. The four grapple modes are:
 none: Inactive
 gOut: The Grappler is extending
 gInMiss: The Grappler didn't hit anything and is retracting; Dray doesn't move
 gInHit: The Grappler hit something and is now pulling Dray towards it

b. grappleTiles stores a List of tile types that the Grappler can collide with to
score a gInHit. The List unsafeTiles stores the types of tiles that it is unsafe
for Dray to land on after a gInHit; this is important in rooms where grapple
movement could leave Dray over a red tile.

c. grapHead is a reference to the GameObject for the head of the Grappler.
grapLine is a reference to the LineRenderer on the Grappler.

d. On Awake() the mapGrappleable text file is read to generate the

919

grappleTiles and unsafeTiles Lists. Awake() also finds references to the
sundry components that need to be cached.

e. If the grapple mode is none, and Dray has the Grappler, the Update() method
watches for the grapple key (X) to be pressed. dray.hasGrappler is red because
you still need to add code to Dray to make use of the Grappler.

f. StartGrapple() aligns the grappler to Dray's position and orientation and sets it
up to launch.

g. StartGrapple() also disables the dray script on Dray, which prevents player
interaction with Dray until the grapple has finished. The anim is set to a specific
state, and Dray's collider is also disabled.

h. Here the grapLine LineRenderer is set up. The Grappler always flies in a straight
line, so the LineRenderer only needs two points.

i. When the Grappler is shooting out, it moves away from Dray at a fixed speed on
FixedUpdate(). The grapHead is moved, and p1 of the LineRenderer is moved
along with it. Rather than using a collider, the position of the grapHead is checked
directly against TileCamera.MAP to see whether it hits any grappleTiles. If
it does hit a grappleTile, the Grapple class changes into gInHit mode; if the
Grappler moves far enough without hitting anything, it changes into gInMiss mode.

j. In gInMiss mode, the Grappler retracts at double speed. A dot product test is used
to see if p1 is still in front of Dray (see Appendix B, "Useful Concepts" for more
information on using dot products in your coding).

k. In gInHit mode, Dray is brought toward the grapHead. Because Dray's collider
is disabled, they will pass through anything on the way there (allowing Dray to pass
over the normally impassable red floor tiles).

l. StopGrapple() will re-enable both the dray script and drayColld. Then, if
the Grapple script was in gInHit mode, it checks Dray's position, and if they are
over an unsafe tile, they will take some damage and their position in the room will be
reset to the last door through which they entered. The Dray.ResetInRoom()
method that does this has yet to be written.

m. This OnTriggerEnter() method causes the Grappler to retract with a
gInMiss if the grapHead comes into contact with an Enemy. You will shortly add
a DamageEffect script to the Grappler in the Hierarchy, which will cause it to also
damage the Enemy.

6. Save the Grapple script.

Modifying Dray to Enable Grappler
Follow these steps to enable Dray to use the Grappler:

920

1. Open the Dray script in MonoDevelop and make the following bolded changes:
Click here to view code image

public class Dray : MonoBehaviour, IFacingMover, IKeyMaster {
 …
 [Header("Set Dynamically")]
 …
 public bool invincible = false;
 public bool hasGrappler = false;
 public Vector3 lastSafeLoc; // a
 public int lastSafeFacing;

 [SerializeField]
 private int _health;
 …

 void Awake () {
 …
 health = maxHealth;
 lastSafeLoc = transform.position; // The start position is safe.
 lastSafeFacing = facing;
 }
 …

 void LateUpdate() {
 …
 // Make sure that the rm we want to jump to is valid
 if (rm.x >= 0 && rm.x <= InRoom.MAX_RM_X) {
 if (rm.y >=0 && rm.y <= InRoom.MAX_RM_Y) {
 roomNum = rm;
 transitionPos = InRoom.DOORS[(doorNum+2) % 4];
 roomPos = transitionPos;
 lastSafeLoc = transform.position; // b
 lastSafeFacing = facing;
 mode = eMode.transition;
 transitionDone = Time.time + transitionDelay;
 }
 }
 }
 …

 void OnTriggerEnter(Collider colld) {
 …
 switch (pup.itemType) {
 …
 case PickUp.eType.key:
 keyCount++;
 break;

 case PickUp.eType.grappler: // c
 hasGrappler = true;
 break;
 }
 …
 }

921

 public void ResetInRoom(int healthLoss = 0) { // d
 transform.position = lastSafeLoc;
 facing = lastSafeFacing;
 health -= healthLoss;

 invincible = true; // Make Dray invincible
 invincibleDone = Time.time + invincibleDuration;
 }

 // Implementation of IFacingMover
 …
}

a. hasGrappler is true when Dray has acquired the Grappler. lastSafeLoc and
last-SafeFacing store the location and facing Dray was at when they last
entered a room. If the Grappler lands them on an unsafe tile, they can reset to this
position and facing.

b. lastSafeLocation and lastSafeFacing are set any time Dray enters a new
room.

c. When Dray touches a PickUp of the grappler type, hasGrappler is set to true.
d. When Called, ResetInRoom()moves Dray to the last safe location and facing in

the current room. Health is also deducted.

You might have noticed that you didn't add anything to the Update() method in Dray to
make the Grappler fire. That's because the Update() method in the Grapple script is
handling this interaction. Whether this is good style or not is up for debate: on the one hand,
having all of your interaction code in the same place is often good; on the other hand,
making it part of Grapple means that you could later add other weapons and tools and map
keyboard presses to them without having to modify the interaction code in the Dray script.
This is the kind of thing that becomes an important consideration when you move from
prototyping a project to developing it.

2. Save all scripts in MonoDevelop and return to Unity.
3. Select Dray in the Hierarchy.

 Grapple (Script): Assign the DelverGrappleable text file from the Resources folder
of the Project pane to the mapGrappleable field. This text file is used to populate
both the grappleTiles and unsafeTiles lists of the Grapple script.

4. Save the scene.

Adding Damage to the Grappler
Attaching a DamageEffect script to the Grappler GameObject will cause it to damage
enemies. This will give Dray a weak ranged weapon that they can use.

922

1. Select Grappler in the Hierarchy (a child of Dray).
2. Attach a DamageEffect (Script) component to Grappler.

 Set damage to 1.
 Set knockback to false (unchecked).

3. Save your Scene.

Implementing a Grappler PickUp
Dray needs the ability to pick up the Grappler partway through a level. Luckily, a Grappler-
PickUp prefab was part of the unitypakage that you imported at the beginning of the chapter,
but you still need to add the PickUp script to it to make it work.

1. Drag GrapplerPickUp from the _Prefabs folder of the Project pane into the Hierarchy.
2. Give it a Transform of P:[19, 3, 0], R:[0, 0, 0], S:[2, 2, 2].
3. Add a PickUp (Script) component to GrapplerPickUp and set the itemType of the

PickUp (Script) component to Grappler.
4. Click the Apply button at the top of the GrapplerPickUp Inspector. This applies the

changes made to the GrapplerPickUp instance in the Hierarchy back to the
GrapplerPickUp prefab in the _Prefabs folder of the Project pane.

5. Select the GrapplerPickUp prefab in the Project pane to ensure that these changes did
get applied to it.

Testing the Grappler
To test the Grappler, follow these steps:

1. Click Play. Press the X key on your keyboard. Nothing happens at this point.
2. Move Dray over the Grappler pickup, which will set the hasGrappler field on Dray

to true.

Now you can press X to use the Grappler. It should attach to walls and pull you toward
them. The Grappler can also be used to pick up items like keys and health. Additionally, it
can do a little damage to the Skeletos—half the amount of the sword—but does not cause
knockback.

3. Pause the game (click the Pause button in the middle at the top of the screen), and set
Dray's transform.position to P:[39.5, 40, 0]. This places Dray directly below a room
with several red tiles next to the walls (in the neck of the Eagle dungeon from The
Legend of Zelda).

4. Unpause the game (click Pause again) and move Dray up through the door and into the

923

room with many red tiles (moving into the room sets lastSafeLocation and
lastSafeFacing).

5. Try grappling to the walls in this room so that Dray ends up on a red tile when the
grapple ends. You'll see that Dray loses some health and is reset back to the safe
doorway.

6. Pause again, set Dray's transform.position to P:[40, 49.5, 0], and unpause.
7. Face to the right, and fire the Grappler into the wall.

The y - 0.25f code in the GET_MAP(float, float) method of TileCamera
(marked // g in the TileCamera code listing much earlier in the chapter under the heading
TileCamera Class—Parsing Data and Sprite Files) makes this a safe location for Dray
(without subtracting 0.25f, Dray's location would have been rounded up into the red tile).

8. Stop playback and save your scene.

When you're done testing the Grappler, it's time to move on to another dungeon layout.

Implementing a New Dungeon—The Hat
Now you're going to implement the dungeon that was the example prototype in Chapter 9,
"Paper Prototyping." As part of this, you'll also implement a way of embedding enemies in
the DelverData file.

Preparing the Scene
Follow these steps to prepare the scene:

1. From the menu, choose File > Save Scene As to save a new copy of your scene as
_Scene_Hat.

2. When you Save Scene As, Unity sometimes keeps you in the old scene. Double-check
that the window title displays _Scene_Hat. If not, double-click _Scene_Hat in the
Project pane to open it.

3. Ensure that you have created prefabs of Skeletos, the Key pickup, and the Health
pickup. You should see them all in the _Prefabs folder of the Project pane. If any are not
there, drag them from the Hierarchy into the _Prefabs folder.

4. Delete the Skeletos, Key, Health, and GrapplerPickUp game objects from the
Hierarchy. There should now be only six GameObjects at the top level of your
Hierarchy: Main Camera, Directional Light,13 GUI Camera, Dray, Canvas, and Event
System (and Dray and Canvas will each have children).

5. Select Main Camera in the Hierarchy.

924

 Transform: Set the position to P:[55.5, 5, -10].
 TileCamera (Script): Assign the DelverData_Hat text file from the Resources folder
of the Project pane to the mapData field of the TileCamera (Script) component.

6. Select Dray in the Hierarchy.
 Transform: Set position to P:[55.5, 1, 0].
 Dray (Script): Ensure that hasGrappler is false (unchecked).

7. Save the scene and click Play.

You'll see that the game has loaded an entirely new dungeon for you to explore. In the first
room, you can see an image of an unreachable key. If you move one room to the left, you see
two images of Skeletos enemies, but they aren't moving. Right now, all of these are just
special floor tiles that look like enemies and items. You need to write some code to swap
these special tiles for the real thing, because you can't explore much of this dungeon without
Keys or a Grappler, and it's not very challenging without Enemies.

Swapping Map Tiles for Enemies and Items
This addition to the TileCamera script will swap special tiles in the map for an Enemy or
Item and a floor tile. If you look at the DelverTiles image in the Resources folder of the
Project pane, you can see that the lower quarter of the image includes tiles that look like
various items, enemies, and enemies with keys. These are the special tiles that will be
replaced in the final map by a normal ground tile with an item or enemy spawned on top.

1. Open the TileCamera script in MonoDevelop and make the following bolded code
changes:

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

[System.Serializable]
public class TileSwap { // a
 public int tileNum;
 public GameObject swapPrefab;
 public GameObject guaranteedItemDrop;
 public int overrideTileNum = -1;
}

public class TileCamera : MonoBehaviour {
 …
 [Header("Set in Inspector")]
 …
 public Tile tilePrefab;
 public int defaultTileNum; // b

925

 public List<TileSwap> tileSwaps; // c

 private Dictionary<int,TileSwap> tileSwapDict; // c
 private Transform enemyAnchor, itemAnchor;

 void Awake() {
 COLLISIONS = Utils.RemoveLineEndings(mapCollisions.text);
 PrepareTileSwapDict(); // d
 enemyAnchor = (new GameObject("Enemy Anchor")).transform;
 itemAnchor = (new GameObject("Item Anchor")).transform;
 LoadMap();
 }

 public void LoadMap() {
 …
 MAP = new int[W,H];
 for (int j=0; j<H; j++) {
 tileNums = lines[j].Split(' ');
 for (int i=0; i<W; i++) {
 if (tileNums[i] == "..") {
 MAP[i,j] = 0;
 } else {
 MAP[i,j] = int.Parse(tileNums[i], hexNum);
 }
 CheckTileSwaps(i,j); // e
 }
 }
 …
 }

 void ShowMap() { … }

 void PrepareTileSwapDict() { // d
 tileSwapDict = new Dictionary<int, TileSwap>();
 foreach (TileSwap ts in tileSwaps) {
 tileSwapDict.Add(ts.tileNum, ts);
 }
 }

 void CheckTileSwaps(int i, int j) { // e
 int tNum = GET_MAP(i,j);
 if (!tileSwapDict.ContainsKey(tNum)) return;

 // We do need to swap a tile
 TileSwap ts = tileSwapDict[tNum];
 if (ts.swapPrefab != null) { // f
 GameObject go = Instantiate(ts.swapPrefab);
 Enemy e = go.GetComponent<Enemy>();
 if (e != null) {
 go.transform.SetParent(enemyAnchor);
 } else {
 go.transform.SetParent(itemAnchor);
 }
 go.transform.position = new Vector3(i,j,0);
 if (ts.guaranteedItemDrop != null) { // g

926

 if (e != null) {
 e.guaranteedItemDrop = ts.guaranteedItemDrop;
 }
 }
 }
 // Replace with another tile
 if (ts.overrideTileNum == -1) { // h
 SET_MAP(i, j, defaultTileNum);
 } else {
 SET_MAP(i, j, ts.overrideTileNum);
 }
 }

 …
}

a. The serializable TileSwap class includes all the information necessary to swap out
special tiles in the map for a normal ground tile with an enemy or item on top of it.

 tileNum: The tile number of the special tile to replace
 swapPrefab: The prefab of the enemy or item to spawn on top of this special tile
 guaranteedItemDrop: Some special tiles indicate that a specific enemy
should be guaranteed to drop a key when killed. Anything placed in this
guaranteedItemDrop field will be placed in the guaranteedItemDrop
field of the spawned Enemy.
 overrideTileNum: Most special tiles should be replaced by the
defaultTileNum tile (which is the normal ground tile). Assign an int to this
field to replace the special tile with a specific other tile. You will implement this
for the Spiker enemies in the top-right room of the dungeon; they should sit over a
red floor rather than the standard floor tile.

b. defaultTileNum is the tile number of the floor tile that will usually be swapped
in for any special tiles. In this game, the defaultTileNum is 29, which refers to
the DelverTiles_29 sprite showing the yellow floor.

c. Lists are serializable, but Dictionaries are not. However, Dictionaries are easier to
search (their keys are built on hash tables, which allow very fast searching). You will
enter TileSwap information into the tileSwaps List, and then on Awake() the
PrepareTileSwapDict() method will parse it into the tileSwapDict.

d. PrepareTileSwapDict() iterates over all the entries in the tileSwaps List
and adds them to tileSwapDict, keyed on the tileNum of the special tile to be
swapped out.

e. CheckTileSwaps() takes a map location as input. It looks at that location in the
MAP and will swap the tile if it is included in tileSwapDict.
CheckTileSwaps() makes use of GET_MAP() and SET_MAP() to make later
debugging easier (putting a breakpoint in an accessor function like SET_MAP() is

927

always easier than tracking down a method that is changing a field directly).
f. If tileSwapDict contains an entry for the tileNum (tNum) at the specified

location, CheckTileSwaps() gets the appropriate instance of the TileSwap
class from tileSwapDict. Then, if there is a swapPrefab, it instantiates the
enemy or item prefab and positions it at the current tile's location.

g. If there is a guaranteedItemDrop and the swapPrefab has an Enemy
component, the guaranteedItemDrop from the TileSwap is placed into the
guaranteedItemDrop field of the instantiated Enemy.

h. Finally, TileCamera.MAP is modified, replacing the initial special tile number
with the defaultTileNum (the yellow floor). If the TileSwap ts includes an
overrideTileNum that is not -1, that tileNum will be assigned to the MAP
location instead of the default.

2. Save the TileCamera script and return to Unity.
3. Select Main Camera in the Hierarchy and set the following:

 TileCamera (Script): Set defaultTileNum to 29.
 TileCamera (Script): Set the Size of tileSwaps to 6.
 TileCamera (Script): Set the tileSwaps settings to those shown in Figure 35.10.

Figure 35.10 The settings for the tileSwaps List of the TileCamera (Script) component
on Main Camera

Elements 4 and 5 of the tileSwaps array use the Spiker prefab that was imported as part
of the original unitypackage. Right now, the Spiker enemy doesn't do much, but these two
entries do demonstrate the use of overrideTileNum to cause the special tile to be
replaced with a non-default floor tile (in this case, the red tile). You can see this in the top-
right room of the Hat dungeon.

928

4. Save the scene and click Play. Now you should be able to play through the entire level,
including picking up all the Keys (many from defeated enemies) and the Grappler!14

The Delver Level Editor
If you want to make your own Dungeon Delver levels, you can download the Delver Level
Editor from the website for this book: http://book.prototools.net. Look in Chapter 35. The
Delver Level Editor includes instructions for building your own levels and for importing
them into the Dungeon Delver game prototype that you just wrote.

Summary
That's it for the final tutorial! This prototype introduced you to a lot of new concepts like
interfaces and more extensive use of component-based thinking. This base can allow you to
create all sorts of action-adventure games, and I encourage you to explore it further.

Next Steps
If you do continue with this project, here are some additional things you can add to make it
a more interesting game:

1. Make your own levels! Try prototyping them as described in Chapter 9, "Paper
Prototyping."

2. Implement the Spiker enemy. The prefab is already there, but it needs a little work.
Instructions for implementing it are in a long comment at the top of the Spiker C# script
that was included in the unitypackage you imported at the beginning of this chapter.

3. Make more enemies. Several more sprites for enemies are included in the unitypackage
you imported at the beginning of the chapter than you implemented in this chapter. Try
adding some new enemies with new behaviors.

4. Make the Grappler stun Enemies when it hits them. This would make it very similar in
use to the boomerang in The Legend of Zelda.

5. Another element that could be borrowed from The Legend of Zelda is the magic sword
that shoots out when Link is at full health. There is a second sword image in the Swords
image file that could be used for this.

6. Design and implement a new weapon/item. You can look at many action-adventure
games for inspiration. The Hookshot from The Legend of Zelda has always been one of
my favorites, which is why I included it here as the Grappler.

7. Right now, if the Grappler is extending directly along the line between two tiles, it will
only check collision against one of them. You could modify the eMode.gOut case in
Grapple:FixedUpdate() so that it checked collision against either tile if it was on the

929

line between two (remember to check both horizontal and vertical cases).
8. Make whatever you want! You've worked through the whole book and gotten here. The

sky's the limit now!

Thank You!
Thank you again for reading this book. I sincerely hope that it helps you to achieve your
dreams.

–Jeremy Gibson Bond

1. Throughout this chapter, I’ll use they, them, their pronouns to refer to Dray. Everyone
deserves to be represented in game development and in this book.

2. Andrew’s faculty page is http://gamedev.msu.edu/andrew-dennis/.
3. This version of DelverData does not include any information about bombable walls

because that is not necessary for this chapter. However, after this chapter, you could
add them yourself. It also doesn’t include enemy or item placement, though you’ll see
how to add those to another dungeon later in the chapter.

4. Most people spell anti-aliasing with a hyphen, but the Unity setting in the
QualitySettings Inspector doesn’t.

5. Because we have not yet set the Sorting Layers of our sprites, it is possible that when
you press Play, your Dray is hidden behind the map tiles. If that is the case, you can
click TILE_ANCHOR in the Hierarchy and then click the checkbox next to
TILE_ANCHOR’s name in the Inspector. This will make TILE_ANCHOR and all of its
children inactive and allow you to see Dray.

6. If your Dray animations aren’t working, double-check that they are properly named:
Dray_Walk_0, Dray_Walk_1, Dray_Walk_2, and Dray_Walk_3. You also need to check
the animation names in the Animator pane because the names in the Animator can be
different from the names of the .anim files that you saved.

7. If the File > Save All option is grayed out, then you’ve already saved all of them. Yay!
8. If your Skeletos is dancing in place for a long time, make sure that you did step 2

(attaching the script). However, standing still is a legitimate action for a Skeletos, so
you might just need to wait a bit longer.

9. For example, if five GameObjects have an Update()method, and two of them have a
LateUp-date() method, Update() will be called on all five of them, and then
LateUpdate() will be called on the two that have a LateUpdate() method.

10. Unlike most GameObjects that have colliders, the Tile prefab does not require a
Rigidbody component because it will never be moved during the game. If you were to
make something later like a sliding block, then you would want to also add a Rigidbody
to the Tile prefab.

11. You still cannot enter the left-most room in this dungeon. That is a different kind of door

930

http://gamedev.msu.edu/andrew-dennis/

that cannot be opened by a key.
12. Although some data types like Vector3 are not allowed to be null in the Inspector, the

GameObject guaranteedItemDrop can be set to None (GameObject), a value that
Unity resolves to null.

13. Sometimes, when you create a new project in Unity, the initial scene doesn’t have a
Directional Light included. You can just add one here if you don’t have it, though the
presence or absence of a Directional Light has no effect on the Sprite Renderer shader
in this project (as of Unity 2017).

14. If you don’t have enough keys, make sure you’ve killed all the Skeletos enemies—some
are holding keys. If your health gets too low, don’t worry; you never implemented a lose
condition for when Dray’s health drops to 0. That’s something you can definitely do on
your own now.

931

PART IV

APPENDICES

Appendix A Standard Project Setup Procedure
Appendix B Useful Concepts
Appendix C Online Reference

932

APPENDIX A

STANDARD PROJECT SETUP PROCEDURE

Many times throughout the book, you are asked to create a new project and then
given code to try. This is the standard procedure that you should follow each time
to create a new project, set up a scene, create a new C# script, and attach that
script to the Main Camera of the scene. Instead of repeating these instructions
throughout this book, they are collected here.

Setting Up a New Project
Follow these steps to set up a new project. The screenshots show the procedure on both OS
X and Windows:

1. When you first launch Unity, you are presented with the start window shown in Figure
A.1. Here, you can click the New button to create a new project. Alternatively, if you
are already running Unity, you can choose File > New Project… from the menu bar.

Figure A.1 Creating a New project in the Unity start window

2. This opens the Unity New Project Screen shown in Figure A.2. After you have filled
out the form in A.2, Unity will create a new project folder with the name you set in the

933

Project name* field at the location you set in the Location* field. Clicking the ellipses
on the right side of the Location* field allows you to choose a location for your project
using your standard system file dialog box. In general, for this book, you should choose
the 3D radio button and set Enable Unity Analytics to Off. For more information on the
options, check out the New Project Options sidebar.

As an example, with the settings in Figure A.2, Unity would create a project folder named
ProtoTools Project on the Desktop of my Mac that was defaulted to a 3D layout.

Figure A.2 The New Project Screen

NEW PROJECT OPTIONS
Unity gives you several options on the new project screen.

3D / 2D (Choose 3D)— The 3D / 2D radio button sets up a default camera in
your project that is either perspective (3D) or orthographic (2D) and a default
Scene view. That's it.

Enable Unity Analytics (Choose Off)— Unity Analytics is a way to get
information on how many people are playing your game, what they're doing, etc.
It's a fantastic tool, but it's not needed for the projects that you make in this book.

Add Asset Package (Don't)— Unity comes with a number of Asset Packages that
provide things such as terrain tools, particle effects, etc. Many of them are pretty
cool, but for this book, there's no reason to add them to your project during project
creation. I generally avoid adding them for three reasons:

934

 Project bloat: If you import every possible package, the size of the project
will bloat to 1,000 times its original size (from ≈300Kb to ≈300MB)!
 Project pane clutter: Importing all the packages will also add a huge number
of items and folders to your Assets folder and Project pane.
 You can always import them later: At any time in the future, you can choose
Assets > Import Package from the menu bar to import any of the packages
available here.

3. On the New Project Screen, click the Create project button (shown in Figure A.2).
Unity will then appear to close and relaunch, presenting you with the blank canvas of
your new project. This relaunch might take a few seconds, so be patient.

Getting the Scene Ready for Development
The new project you just created comes with a default scene. To get ready for coding,
follow these instructions:

1. Save the scene. The first thing you do in a project should always be to save the scene.
Choose File > Save Scene As… from the Unity menu bar and choose a name. (Unity will
automatically save the scene in the correct folder.) I tend to choose a name like
_Scene_0, which is easily enumerable as I create more scenes in the future. The
underscore at the beginning of the name sorts the scene to the top of the Project pane (on
macOS).

2. Create a new C# script (optional). Some chapters ask you to create one or more C#
scripts before beginning the project. To do so, click the Create button in the Project
pane and choose Create > C# Script. A new script is then added to the Project pane,
and its name highlighted for you to change. Do this for each script specified at the
beginning of the chapter, and pay careful attention to capitalization when naming the
scripts. When you have entered the name of the script into this field, press the Return or
Enter key to save the name. The example script in Figure A.3 is named HelloWorld.

935

Figure A.3 Creating a new C# script and viewing that script in MonoDevelop

warning
CHANGING A SCRIPT NAME AFTER IT HAS BEEN CREATED CAN
CAUSE PROBLEMS When you set the name of a script as part of the creation
process, Unity automatically sets the name of the class in the class declaration as
well (on line 4 in Figure A.3). However, if you choose to change the name of
your C# script after that initial process, you need to change its name not only in
the Project pane but also in the class declaration line of the script itself. In Figure
A.3, this class declaration is on line 4, where HelloWorld would need to be
changed to the new script name.

3. Attach the C# script to the scene's Main Camera (optional). Some chapters request
that you attach one or more of the new scripts to the Main Camera. Attaching a script to
a GameObject like Main Camera makes that script a component of the GameObject. All
scenes start with a Main Camera already included, so that's a fantastic place to attach
any basic script that you want to run. Generally, if a C# script is not attached to a
GameObject in the scene, it will not run.

Attaching a script to a GameObject is a bit tricky, but you'll soon be used to it because it is
so frequently done in Unity. Click down on the name of the new script (in the Project pane),
drag it over on top of the Main Camera in Hierarchy pane, and release the mouse button. It
should look like what is shown in Figure A.4.

936

Figure A.4 Dragging the C# script from the Project pane onto the Main Camera in the
Hierarchy pane to attach the HelloWorld script to the Main Camera GameObject

The C# script is now attached to the Main Camera and will appear in the Inspector if the
Main Camera is selected. You are now all set to start work on any of the projects in the
book.

937

APPENDIX B

USEFUL CONCEPTS

This appendix is full of concepts that will help you be a better and more effective
prototyper and programmer. Some of these are code concepts, and others are
methodologies. These are collected here in an appendix to make them easier for
you to reference later when you look back at this book in the coming years.

Topics Covered
This appendix covers several different topics, categorized into four distinct groups and
sorted alphabetically (rather than attempting to sort them conceptually). Many of these
include Unity code examples, and others point you to specific parts of the book where the
concept is used.

 C# and Unity Coding Concepts
 Bitwise Operations
 Coroutines
 Enums
 Function Delegates
 Interfaces
 Naming Conventions
 Operator Precedence and Order of Operations
 Race Conditions
 Recursive Functions
 Software Design Patterns

 Singleton
 Component
 Strategy

 Variable Scope
 XML

 Math Concepts

938

 Cosine and Sine
 Dice Probability
 Dot Products

 Interpolation
 Linear Interpolation
 Time-Based Linear Interpolations
 Linear Interpolations Using Zeno's Paradox
 Interpolating More Than Just Position
 Linear Extrapolation
 Easing for Linear Interpolations
 Bézier Curves
 A Recursive Bézier Curve Function

 Role-Playing Games
 Tips for Running a Good Role-Playing Game

 User Interface Concepts
 Axis and Button Mapping for Microsoft Controllers
 Right-Click on macOS

C# and Unity Coding Concepts
This section covers elements of C# coding that you might want to look back at for a
refresher after you've finished the book. There are also some concepts here that, though
important, didn't fit well into one of the regular chapters.

Bitwise Boolean Operators and Layer Masks
As you learned in Chapter 21, "Boolean Operations and Conditionals," a single pipe (|)
can be used as a non-shorting conditional OR operator, and a single ampersand (&) can be
used as a non-shorting conditional AND operator. However, | and & can also be used to
perform bitwise operations on unsigned ints (uints), and are therefore sometimes referred
to as bitwise OR and bitwise AND.

In a bitwise operation, the individual bits of an integer are compared using using one of the
six different bitwise operators included in C#. The following list of them includes the effect
that they would have on an 8-bit byte (a simple integral type of data that can hold numbers
from 0 to 255). The operations work the same way on a 32-bit unit, but 32-bits wouldn't

939

have fit on this page.

& AND 00000101 & 01000100
returns 00000100
| OR 00000101 | 01000100 returns
01000101
^ Exclusive
OR 00000101 ^ 01000100 returns 01000001
~ Complement (bitwise
NOT) ~00000101 returns11111010
<< Shift Left 00000101
<<1 returns 00001010
>> Shift Right 01000100 >>
2 returns 00010001

In Unity, bitwise operations are most often used to manage LayerMasks. Unity allows
developers to define up to 32 different layers, and a LayerMask is a 32-bit unsigned integer
representation of which layers to consider in any physics engine or raycast operation. In
Unity, the variable type LayerMask is used for LayerMasks, but it is just a wrapper for a
32-bit uint with a little additional functionality. When using a LayerMask, any bit that is a 1
represents a layer that is seen, and any bit that is a 0 represents a layer that is ignored (that
is, masked). This can be very useful if you want to check collision against only a specific
layer of objects or if you want to specify a layer to ignore. (E.g., the built-in layer 2, named
Ignore Raycast, is automatically masked out for all raycast tests.)

Unity has eight reserved "built-in" layers, and all GameObjects are initially placed in the
zeroth (0th) layer, which is named Default. The remaining layers, numbered 8 through 31,
are referred to as user layers, and giving one of these a name places it in any pop-up menu
of layers (e.g., the Layer pop-up menu at the top of each GameObject Inspector).

Because the layer numbers start at zero, the bitwise LayerMask representation of not
masking the zeroth layer is a 1 in the farthest-right position of the LayerMask. (See the
variable lmZero in the following code listing.) This can be a bit confusing (because the
integer value of this representation is 1, not 0), so many Unity developers use the bitwise
shift left operator (<<) to assign LayerMask values. (E.g., 1<<0 generates the value 1,
which is the zeroth layer, and 1<<4 generates a 1 in the proper place to mask all but the
fourth physics layer.) The following code listing includes more examples:

Click here to view code image

LayerMask lmNone = 0; // 00000000000000000000000000000000 bitwise //
a
LayerMask lmAll = ~0; // 11111111111111111111111111111111 bitwise //
b
LayerMask lmZero = 1; // 00000000000000000000000000000001 bitwise
LayerMask lmOne = 2; // 00000000000000000000000000000010 bitwise //
c
LayerMask lmTwo = 1<<2; // 00000000000000000000000000000100 bitwise //

940

d
LayerMask lmThree = 1<<3; // 00000000000000000000000000001000 bitwise

LayerMask lmZeroOrTwo = lmZero | lmTwo; //
e
 // Results in 00000000000000000000000000000101 bitwise

LayerMask lmZeroThroughThree = lmZero | lmOne | lmTwo | lmThree;
 // Results in 00000000000000000000000000001111 bitwise

lmZero = 1 << LayerMask.NameToLayer("Default"); //
f
 // Results in 00000000000000000000000000000001 bitwise

LayerMask lmZeroOrOne = LayerMask.GetMask("Default", "TransparentFX"); //
g
 // Results in 00000000000000000000000000000011 bitwise

a. When all bits are set to 0, the LayerMask will ignore all layers.
b. When all bits are set to 1, the LayerMask will interact with all layers.
c. 2 is the integer value of the LayerMask for layer one, which demonstrates how it can

get confusing to assign LayerMask values using integers. Layer one is the predefined
"TransparentFX" layer in Unity.

d. Using the shift left operator (<<) makes more sense in this case because the 1 is shifted
two places to the left to create a LayerMask for the second layer.

e. A bitwise OR is used to create a LayerMask that will interact with layers 0 and 2.
f. The static method LayerMask.NameToLayer()returns a layer number—an int

number, not a LayerMask—when it is passed a layer name. For example,
LayerMask. NameToLayer("TransparentFX") returns the int 1.

g. You can also go directly from a list of layer names to a LayerMask using GetMask().

Coroutines
A coroutine is a feature of C# that enables a method to pause execution in the middle of the
method, allow other processes to execute, and then return to execution of the paused method
from exactly where it left off. In Unity, coroutines are often used when the execution of a
single function could take a very long time (and make the game look like it had frozen). One
example of this is the Dice Probability section later in this appendix; the function to
calculate all the possible outcomes of rolling many dice could take minutes or even hours to
run, so pausing in the middle to let the screen update is very helpful. You can also use
coroutines as timers for tasks that you want to happen on a repeating schedule (as an
alternative to using an InvokeRepeating call).

Unity Example
This example coroutine prints the time once every second. A call to print the time in the

941

Update() method would print it dozens of times per second, which is far too many.

Create a new Unity Project, create a C# script named Clock that is attached to Main
Camera, and then enter this code:

Click here to view code image

using UnityEngine;
using System.Collections;

public class Clock : MonoBehaviour {

 // Use this for initialization
 void Start () {
 StartCoroutine(Tick());
 }

 // All coroutines have a return type of IEnumerator
 IEnumerator Tick() {
 // This infinite while loop will keep the print happening until the
 // coroutine is halted or the program is stopped
 while(true) {
 print(System.DateTime.Now.ToString());
 // This yield statement tells the coroutine to wait about 1 second
 // before continuing. Coroutine timing is not perfectly exact.
 yield return newWaitForSeconds(1);
 }
 }
}

Unlike a normal function, it is okay to use the while(true) infinite loop within a
coroutine as long as there is also a yield within the while loop.

There are a few different kinds of yield statements:

Click here to view code image

yield return null; // Continue as soon as possible, usually on the next
frame

yield return new WaitForSeconds(10); // Wait 10 seconds

yield return new WaitForEndOfFrame(); // Wait until the next frame

yield return new WaitForFixedUpdate(); // Wait until the next fixed update

Another example of using a coroutine is the parsing of the very large dictionary text file in
Chapter 34, "Word Game."

Enums

942

An enum is a simple way to declare a type of variable that only has a few specific options,
and it is used throughout the book. Enums in this book are usually declared outside of class
definitions. Enum names often begin with an e.
Click here to view code image

public enum ePetType {
 none,
 dog,
 cat,
 bird,
 fish,
 other
}

public enum eLifeStage {
 baby,
 teen,
 adult,
 senior,
 deceased
}

Later, a variable can be declared using the enum's type (e.g., public ePetType). The
various options for an enum are referred to by the enum type, a dot, and the enum value (for
example, ePetType.dog):

Click here to view code image

public class Pet {
 public string name = "Flash";
 public ePetType pType = ePetType.dog;
 public eLifeStage age = eLifeStage.baby;
}

Enums are actually integers masquerading as other values, so they can be cast to or from int
(as shown on lines 7 and 8 in the following code listing). This also means that an enum
defaults to the 0th option if not explicitly set. For example, using the preceding definition of
the enum eLifeStage, declaring a new variable eLifeStage age (as on line 4 in
the following code) would automatically assign age the default value of
eLifeStage.baby.

Click here to view code image

 1 public class Pet {
 2 public string name = "Flash";
 3 public ePetType pType = ePetType.dog;
 4 public eLifeStage age; // By default, age is eLifeStage.baby //
a
 5
 6 void Awake() {
 7 int i = (int) ePetType.cat; // i is now 2 //

943

b
 8 ePetType pt = (ePetType) 4; // pt is now ePetType.fish //
c
 9 }
10 }

a. age receives the default value of eLifeStage.baby.
b. The code (int) shown on line 7 is an explicit typecast that forces ePetType.cat

to be interpreted as an int.
c. Here, the int literal 4 is explicitly typecast to a ePetType by the code(ePetType).

Enums are often used in switch statements (as you've seen throughout this book).

Function Delegates
A function delegate is most simply thought of as a container for similar functions (or
methods) that can all be called at once. You can see delegates used in Chapter 31, "Space
SHMUP Plus," to enable a single call to the fireDelegate() delegate to fire all
weapons attached to a player's ship. Delegates are frequently used to implement Strategy
Pattern for use in game AIs. You can learn more about Strategy Pattern in the Software
Design Patterns section of this appendix.

The first step of using a function delegate is to define the delegate type
(FloatOpDelegate in the example that follows). This definition sets the parameters
and return type for any instance of this delegate type (e.g., the delegate field fod further
down in this section). This also dictates the parameters and return type required for any
function to be assigned to an instance of this delegate type.

Click here to view code image

public delegate float FloatOpDelegate(float f0, float f1);

The preceding line creates a FloatOpDelegate (short for Float Operation Delegate)
delegate definition that requires two floats as input and a single float as the return type.
After the definition is set, you can define target methods that fit this delegate definition
(e.g., FloatAdd() and FloatMultiply() that follow):

Click here to view code image

using UnityEngine;
using System.Collections;

public class DelegateExample : MonoBehaviour {
 // Create a delegate definition named FloatOpDelegate
 // This defines the parameter and return types for target functions
 public delegate float FloatOpDelegate(floatf0,floatf1);
 // FloatAdd must have the same parameter and return types as FloatOpDelegate

944

 public floatFloatAdd(floatf0,floatf1) {
 floatresult = f0+f1;
 print("The sum of "+f0+" & "+f1+" is "+result+".");
 return(result);
 }

 // FloatMultiply must have the same parameter and return types as well
 public floatFloatMultiply(floatf0,floatf1) {
 floatresult = f0 * f1;
 print("The product of "+f0+" & "+f1+" is "+result+".");
 return(result);
 }
 …
}

Now, a variable of the type FloatOpDelegate can be created, and either of the target
functions can be assigned to it. Then, this delegate variable can be called just like a
function (see the delegate field fod in the following syntax).

Click here to view code image

using UnityEngine;
using System.Collections;

public class DelegateExample : MonoBehaviour {
 // Create a delegate definition named FloatOpDelegate
 // This defines the parameter and return types for target functions
 public delegate float FloatOpDelegate(float f0, float f1);

 // FloatAdd must have the same parameter and return types as FloatOpDelegate
 public float FloatAdd(float f0, float f1) { … }

 // FloatMultiply must have the same parameter and return types as well
 public float FloatMultiply(float f0, float f1) { … }

 // Declare a field "fod" of the type FloatOpDelegate
 public FloatOpDelegate fod; // A delegate field

 void Awake() {
 // Assign the method FloatAdd to fod
 fod = FloatAdd;

 // Call fod as if it were a method; fod then calls FloatAdd()
 fod(2, 3); // Prints: The sum of 2 & 3 is 5.

 // Assign the method FloatMultiply to fod, replacing FloatAdd
 fod = FloatMultiply;

 // Call fod(2,3); it calls FloatMultiply(2,3), returning 6
 fod(2, 3); // Prints: The product of 2 & 3 is 6
 }
 …
}

945

Delegates can also be multicast, which means that more than one target method can be
assigned to the delegate at the same time. This is the ability that allows a single call to one
function delegate to fire all five Weapons in the Chapter 31, "Space SHMUP Plus,"
prototype. There, a single call to the fireDelegate() delegate in turn calls all of the
Fire() methods of the various Weapons on the player's ship. If the multicast delegate has
a return type that is not void (as in the FloatOpDelegate example), the return value of the
final target method called will be returned by the call to the delegate. Beware that if a
delegate is called without having any functions attached, it will throw an error. Prevent this
by first checking to see whether it is null.

Click here to view code image

// This Start() method should be added to the DelegateExample class
void Start() {
 // Assign the method FloatAdd() to fod
 fod = FloatAdd;

 // Add the method FloatMultiply(), now BOTH are called by fod
 fod += FloatMultiply;

 // Check to see whether fod is null before calling
 if (fod != null) {
 // Call fod(3,4); it calls FloatAdd(3,4) & then FloatMultiply(3,4)
 float result = fod(3, 4);
 // Prints: The sum of 3 & 4 is 7.
 // Then Prints: The product of 3 & 4 is 12.

 print(result);
 // Prints: 12
 // The result is 12 because the last target method to be called
 // is the one that returns a value via the delegate.
 }
}

Interfaces
An interface declares methods and properties that will then be implemented by a class. Any
class that implements the interface can be referred to in code as that interface type rather
than as the specific class. This differs from subclassing in several ways, one of the most
interesting of which is that a class may implement several different interfaces
simultaneously, whereas a class can only extend a single superclass. Interface names often
begin with a capital I to distinguish them from class names. Interfaces are demonstrated in
Chapter 35, "Dungeon Delver."

Unity Example—Interfaces
Create a new project in Unity. In that project, create a C# script named Menagerie and
enter the code that follows:

946

Click here to view code image

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

 // Two enums to set specific options for fields in classes
 public enum ePetType {
 none,
 dog,
 cat,
 bird,
 fish,
 other
 }

 public enum eLifeStage {
 baby,
 teen,
 adult,
 senior,
 deceased
 }

 // The IAnimal interface declares three public properties and two public
methods
 // that all IAnimals must have.
 public interface IAnimal {
 // Public Properties
 ePetType pType { get; set; }
 eLifeStage age { get; set; }
 string name { get; set; }

 // Public Methods
 void Move();
 string Speak();
 }

 // Fish implements the interface IAnimal
 public class Fish : IAnimal {
 private ePetType _pType =
ePetType.fish; // a
 public ePetType pType {
 get { return(_pType); }
 set { _pType = value; }
 }

 public eLifeStage age { get; set;
} // b
 public string name { get; set;
} // c

 public void Move() {
 Debug.Log("The fish swims around.");
 }

947

 public string Speak() {
 return("...!");
 }
 }

 // Mammal is a superclass that will be extended by Dog and Cat subclasses //
d
 public class Mammal {
 protected eLifeStage _age;
 public eLifeStage age {
 get { return(_age); }
 set { _age = value; }
 }
 public string name { get; set; } //
c
 }

 // Dog is a subclass of Mammal AND implements IAnimal
 public class Dog : Mammal, IAnimal { //
e
 private ePetType _pType = ePetType.dog;

 public ePetType pType {
 get { return(_pType); }
 set { _pType = value; }
 }

 public void Move() {
 Debug.Log("The dog walks around.");
 }

 public string Speak() {
 return("Bark!");
 }
 }

 // Cat is a subclass of Mammal AND implements IAnimal
 public class Cat : Mammal, IAnimal {
 private ePetType _pType = ePetType.cat;

 public ePetType pType {
 get { return(_pType); }
 set { _pType = value; }
 }

 public void Move() {
 Debug.Log("The cat stalks around.");
 }

 public string Speak() {
 return("Meow!");
 }
 }

 // Menagerie is a subclass of MonoBehaviour
 public class Menagerie : MonoBehaviour {

948

 // This list can take instances of ANY class that implements IAnimal
 public List<IAnimal> animals;

 void Awake () {
 animals = new List<IAnimal>();

 Dog d = new Dog();
 d.age = eLifeStage.adult;
 // When d is added to IAnimal, it is added as an IAnimal, not a Dog
 animals.Add(d);
 animals.Add(new Cat());
 animals.Add(new Fish());

 animals[0].name = "Wendy";
 animals[1].name = "Caramel";
 animals[2].name = "Nemo";

 string[] types = new string[] {"none", "dog", "cat", "bird",
 "fish", "other"}; //
f
 string[] ages = new string[] {"baby", "teen", "adult", "senior",
 "deceased"};
 // In this loop, all IAnimals are treated the same way, even though they
 // are actually different classes with differing superclasses
 stringaName;
 IAnimal animal;
 for (int i= 0; i<animals.Count; i++) {
 animal = animals[i]; //
g
 aName = animal.name;
 print("Animal #" + i + " is a " + types[(int) animal.pType]
 + " named " + aName + "."); //
h
 animal.Move();
 print(aName + " says: "+animal.Speak());

 switch (animal.age) {
 case eLifeStage.baby:
 case eLifeStage.teen:
 case eLifeStage.senior:
 print(aName + " is a " + ages[(int) animal.age] + ".");
 break;
 case eLifeStage.adult:
 print(aName + " is an adult.");
 break;
 case eLifeStage.deceased:
 print(aName + " is deceased.");
 break;
 }
 }
 }
 }

a. _pType is a private, hidden field with the pType property as its visible, public
accessor.

949

b. This is an automatic property. When a property like age here has just get; set;
between its braces, the compiler automatically creates a private variable to be
accessed by the property.

c. name here is another automatic property.
d. Note that Mammal does not implement IAnimal. It certainly could do so, but I wanted

to show that subclasses can implement an interface even when their superclass does
not.

e. Dog is a subclass of Mammal and implements IAnimal. Because Dog is a subclass of
Mammal, it inherits the protected field _age and the public properties age and name.
If _age were private, Dog would not inherit _age from Mammal and could not access
it directly. Because Dog can access the public property age, and age is defined in
Mammal (not Dog), age can be used to set and retrieve _age. This inheritance of age
fulfills the requirement that IAnimals have a public age property. For more information
on protected fields and class inheritance, see the Variable Scope.

f. Remember that is the code completion character, so "fish", "other"}; is a
continuation of the previous line. You should not type the character.

g. Regardless of its initial type, the ith element of animals is assigned to the local
variable IAnimal animal and treated as an IAnimal.

h. animal.pType returns the type of the IAnimal as an ePetType. (int) then casts
that ePetType to an int, which is then used to access an element of the types string
array.

As you can see in the code, having the IAnimal interface allows the Cat, Dog, and
Fish classes to all be treated in the same way and stored in the same List<IAnimal>
and assigned to the same local variable IAnimal animal.

Naming Conventions
I initially covered naming conventions in Chapter 20, "Variables and Components," but
they're important enough to repeat here. The code in this book follows a number of rules
governing the naming of variables, functions, classes, and so on. Although none of these
rules are mandatory, following them makes your code more readable not only to others who
try to decipher it but also to yourself if you ever need to return to it months later and hope to
understand what you wrote. Every coder follows slightly different rules—my personal
rules have even changed over the years—but the rules I present here have worked well for
both me and my students, and they are consistent with most C# code that I've encountered in
Unity:

1. Use camelCase for pretty much everything. In a variable name that is composed of
multiple words, camelCase capitalizes the initial letter of each word (except for the
first word, in the case of variable names).

950

2. Variable names should start with a lowercase letter (e.g., someVariableName).
3. Function names should start with an uppercase letter (e.g., Start(),
FunctionName()).

4. Class names should start with an uppercase letter (e.g., GameObject,
ScopeExample).

5. Interface names often start with a capital I (e.g., IAnimal).
6. Private variable names often start with an underscore (e.g., _hiddenVariable).
7. Static variable names are often all caps with snake_case (e.g., NUM_INSTANCES).

As you can see, snake_case combines multiple words with an underscore in between
them.

8. Enum type names often start with a lowercase e (e.g., ePetType, eLifeStage).

Operator Precedence and Order of Operations
Just as in algebra, some operators in C# take precedence over others. One example that you
are probably familiar with is the precedence of * over + (e.g., 1 + 2 * 3 = 7 because the 2
and 3 are multiplied before the 1 is added to them). Here is a list of common operators and
their precedence. An operator that is higher in this list will happen before one that is lower.

() Operations grouped by parentheses always take precedence
F() The calling of a function
a[] The access of an array
i++ Post-increment
i-- Post-decrement
! NOT
~ Bitwise NOT (complement)
++i Pre-increment
--i Pre-decrement
* Multiply
/ Divide
% Modulus
+ Add
- Subtract
<< Bit shift left
>> Bit shift right
< Less than

951

> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to (the comparison operator)
!= Not equal to
& Bitwise AND
^ Bitwise exclusive OR (XOR)
| Bitwise OR
&& Conditional, shorting AND
|| Conditional, shorting OR
= Assignment

Race Conditions
Unlike many of the other topics in this section, a race condition is something that you
definitely don't want in your code. A race condition occurs when it is necessary in your
code for one thing to happen before another, but it's possible that the two things could
happen out of order and cause unexpected behavior or even a crash. Race conditions are a
serious consideration when designing any code that is intended for multiprocessor
computers, multithreaded operating systems, or networked applications (where different
computers around the world could possible end up in a race condition with each other), but
it is also an issue for Unity games because they involve so many different GameObjects,
each receiving Awake(), Start(), and Update() calls at roughly the same time as all
the others. Race conditions are also explored in Chapter 31, "Space SHMUP Plus."

Let's create an example.

Unity Example—Race Conditions
Follow these steps:

1. Create a new Unity project named Unity-RaceCondition.
2. Create a C# script named SetValues and enter this code:

Click here to view code image

using UnityEngine;
using System.Collections;

public class SetValues : MonoBehaviour {
 static public int[] VALUES;

 void Start() {

952

 VALUES = new int[] { 0, 1, 2, 3, 4, 5 };

 }
}

3. Create a second script named ReadValues and enter this code:
Click here to view code image

using UnityEngine;
using System.Collections;

public class ReadValues : MonoBehaviour {
 void Start() {
 print(SetValues.VALUES[2]);
 }
}

4. Be sure that you have saved both scripts before returning to Unity.
5. Attach both scripts to Main Camera and click Play. When you do so, you'll receive one

of two possible outputs in the Console:
 2
 NullReferenceException : Object reference not set to an instance of an object

The difference between these two outcomes is which of the two Start() functions
happens to be called first. If SetValues.Start() is called before
ReadValues.Start(), everything works great. However, if
ReadValues.Start() is called before SetValues.Start(), you get a null
reference exception because ReadValues.Start() is trying to access SetValues.
VALUES[2] while SetValues.VALUES is still null.

Before Unity 5, it was extremely difficult to know which of these Start() methods
would be called first. Happily, one of the improvements in recent versions of Unity allows
you to choose the order in which scripts execute.

6. From the Unity menu bar, choose Edit > Project Settings > Script Execution Order.
The Script Execution Order (SEO) Inspector opens, as shown in Figure B.1.

953

Figure B.1 The Script Execution Order Inspector

7. Add the ReadValues class to the SEO Inspector by clicking the + button that the cursor
is pointing to in the left image of Figure B.1.

8. Do the same to also add SetValues class to the SEO Inspector.

By default, ReadValues and SetValues will get the execution order values 100 and 200 as
shown in the left image of Figure B.1.

9. Click the Apply button in the SEO Inspector, and click Play in Unity. This execution
order will guarantee that a NullReferenceException appears in the Console.

10. Stop Unity playback.
11. Use the double-line handle on the SetValues bar in the SEO Inspector (pointed at by the

arrow on the right image of Figure B.1) to drag SetValues up above Default Time. Now
your Inspector should look like the right image of Figure B.1.

12. Click Apply in the SEO Inspector and click Play in Unity.

Now that SetValues.Start() is guaranteed to be called before
ReadValues.Start(), the "2" result is guaranteed to appear in the Console.

When dealing with two scripts that both use Start(), Awake(), or any other
MonoBehaviour call that is managed by Unity, the Script Execution Order Inspector is the
only way to guarantee that one will run before the other. All unspecified scripts run at
Default Time, so you would have gotten the same results if you never explicitly added
ReadValues to the SEO.

Recursive Functions
Sometimes a function is designed to call itself, this is known as a recursive function. One
simple example of this could be a function to calculate the factorial of a number.

In math, 5! (5 factorial) is the multiplication of five and every other natural number below
it:

954

5! = 5 * 4 * 3 * 2 * 1 = 120

It is a special case that 0! = 1, and for our purposes, the factorial of a negative number will
be 0:

0! = 1

-123! = 0

Knowing this, you can write a recursive function to calculate the factorial of any integer:

Click here to view code image

1 using UnityEngine;
2 using System.Collections;
3
4 public class Factorial : MonoBehaviour {
5
6 void Awake() {
7 print(fac (-1)); // Prints 0
8 print(fac (0)); // Prints 1
8 print(fac (5)); // Prints 120
9
10 }
11
12 int fac(int n) {
13 if (n < 0) { // This keeps it from breaking if n<0
14 return(0);
15 }
16 if (n == 0) { // This is the "terminal case"
17 return(1);
18 }
19 int result = n * fac(n-1); // Here is the recursion
20 return(result);
21 }
22
23 }

When fac(5) is called in the preceding code, and the code reaches line 19, fac(n-1)
is called, which results in the call fac(4). This process continues with fac(n-1)
called four more times until it reaches the case where fac(0) is called. On line 16 of the
fac(0) recursion, n == 0 is true, so a 1 is returned. This is the terminal case of the
recursion, the case where the function starts returning values. This 1 is returned to line 19
of the fac(1) recursion, and fac(1) can then return 1 (the result of n * 1) on line 20.
Each recursive call is then able to return up the chain and unwind the recursions. The chain
of recursion resolves like this:

Click here to view code image

fac(5)

955

fac(5) * fac(4)
fac(5) * fac(4) * fac(3)
fac(5) * fac(4) * fac(3) * fac(2)
fac(5) * fac(4) * fac(3) * fac(2) * fac(1)
fac(5) * fac(4) * fac(3) * fac(2) * fac(1) * fac(0)
fac(5) * fac(4) * fac(3) * fac(2) * fac(1) * 1
fac(5) * fac(4) * fac(3) * fac(2) * 1
fac(5) * fac(4) * fac(3) * 2
fac(5) * fac(4) * 6
fac(5) * 24
120

The best way to really understand what's happening in this recursive function is to place a
breakpoint at line 19, connect the MonoDevelop debugger to the Unity Process, and use
Step In to watch the recursion happen step by step. If you need a refresher on the debugger,
read Chapter 25, "Debugging."

A Recursive Function for Bézier Curves
Another fantastic example of a recursive function is the Bézier curve interpolation static
method (named Bezier) that is included in the ProtoTools Utils class as part of the
unitypackage imported at the beginning of Chapters 32 and beyond. This function can
interpolate the position of a point along a Bézier curve composed of any number of points.
The code for the Bezier function is listed at the end of the Interpolation section of this
appendix.

Software Design Patterns
In 1994, the "Gang of Four" (Erich Gamma, Richard Helm, Ralph Johnson, and John
Vissides) released the book Design Patterns: Elements of Reusable Object-Oriented
Software,1 which described various patterns that could be used in software development to
create effective, reusable code. This book uses two of those patterns and refers to a third.

Singleton Pattern
The Singleton Pattern is the most commonly used in this book and can be found in several
chapters. If you know that there will only ever be a single instance of a given class in the
game, you can create a singleton for that class, which is a static variable of that class type
that can be used to reference it from anywhere in code. The following code listing shows an
example:
Click here to view code image

public class Hero : MonoBehaviour {
 static public Hero S; // a

 void Awake() {

956

 if (S == null) { // c
 S = this; // b
 } else {
 Debug .LogError("The singleton S of Hero has already been set!");
 }
 }
}

public class Enemy : MonoBehaviour {
 void Update() {
 public Vector3 heroLoc = Hero .S.transform.position; // d
 }
}

a. The static public field S is the singleton for hero. I usually name all of my singletons S.
b. Because there will only ever be one instance of the Hero class, it is assigned to S on
Awake(), when the instance is created.

c. The if (S == null) statement protects you from accidentally having a second
Hero instance somewhere in the code. If a second instance of Hero exists and tries to
assign itself to S, then the error message will be thrown.

d. Because S is both public and static, it can be referenced anywhere in code via the class
name as Hero.S.

If you search online, you're likely to find a lot of hate out there for the Singleton Pattern.
This is largely because of two things:

 Singletons are unsafe in a production environment : Singletons are static and public,
meaning that ANY class or function in your codebase could potentially access them. The
danger here is that some random class written by someone else could change a public
field of your singleton class instance, and you would have no idea who did it!

Luckily, you can avoid this danger in several ways. One that I like is making the singleton
static and private, so that only class instances (and there will only be one because it's a
singleton) can access it. You then write static public accessor properties through which
other classes and functions can alter singleton fields. If you find that something unknown in
your code is changing a property, then you can place a debugger breakpoint in the setter of
the property and use the Call Stack in the debugger to see what method is setting the
property.

 Singleton Pattern is very simple to implement and therefore often overused : As the
simplest design pattern to implement, singleton was quickly used by a lot of people, and
soon caused problems due to the preceding point. This meant that a lot of people used it
in places where it wasn't really appropriate.

When you write prototypes, development speed is often more important than safety, so my

957

recommendation is that you should feel free to use singletons when you need them while
prototyping, but you should generally avoid using them in production code.

Component Pattern
Component Pattern is first covered in Chapter 27, "Object-Oriented Thinking," and it is
used throughout Unity. The core idea of the Component Pattern is to group closely related
functions and data into a single class while at the same time keeping each class as small
and focused as possible.2

The components that are attached to GameObjects in Unity are all based on this pattern.
Each GameObject in Unity is a very small class that can act as a container for several
components that each do a specific—and isolated—job. For example:

 Transform handles position, rotation, scale, and hierarchy
 Rigidbody handles motion and physics
 Colliders handle actual collision and the shape of the collision volume

Although each of these jobs are related, they are separate enough to warrant their own
component. Making each a separate component also enables easy expansion in the future:
separating Colliders from the Rigidbody means that you could easily add a new kind of
Collider—a ConeCollider for instance—and Rigidbody would be able to use it without any
changes to the Rigidbody code.

This is certainly important for game engine developers, but what does it mean to game
designers and prototypers? The most important thing that thinking in a component-oriented
way gives you is smaller, shorter classes. When your scripts are shorter, they are easier to
code, easier to share with other people, easier to reuse, and easier to debug—all of which
are very noble goals.

The only real negative of component-oriented design is that implementing it well takes a
decent amount of forethought, which somewhat flies in the face of the prototyper's
philosophy of getting things working as quickly as possible. As a result of this dilemma,
Part III of this book covers both a more traditional prototyping style of just writing what
works in the first several chapters and a more component-oriented approach in the last
chapters. The best use of components in this book is Chapter 35, "Dungeon Delver," a
brand new chapter written from scratch for the second edition of the book.

Strategy Pattern
As mentioned in the Function Delegates section of this appendix, the Strategy Pattern is
often used in AI and other areas where you might want to change behavior based on

958

conditions yet still only call a single function delegate. In Strategy Pattern, a function
delegate is created for a type of action that the class can perform (e.g., taking an action in
combat), and an instance of that delegate is given different functions to call based on the
situation. This avoids complicated switch statements in the code, because the delegate can
be called in a single line:
Click here to view code image

using UnityEngine;
using System.Collections;

public class Strategy : MonoBehaviour {
 public delegate void ActionDelegate(); // a

 public ActionDelegate act; // b

 public void Attack() { // c
 // Attack code would go here
 }

 public void Wait() { … } // These two methods would be defined too
 public void Flee() { … } // The ellipses (…) are placeholders

 void Awake() {
 act = Wait; // d
 }

 void Update() {
 Vector3 hPos = Hero.S.transform.position;
 if ((hPos - transform.position).magnitude < 100) { // e
 act = Attack;
 }

 if (act != null) act(); // f
 }
}

a. The ActionDelegate delegate type is defined. It has no parameters and a return
type of void.

b. act is created as an instance of ActionDelegate.
c. The Attack(), Wait(), and Flee() functions here are placeholders that are

meant to show that various actions would be defined matching the parameters and return
type of the ActionDelegate delegate type.

d. The initial strategy for this agent is to Wait, so Wait is assigned as the target method
of act.

e. If the Hero singleton comes within 100 meters of this agent, it will switch its strategy to
Attack by replacing the target method of act.

f. Regardless of which strategy is selected, act() is called to execute it. Checking that
act != null before calling it is useful because calling a null function delegate (that

959

is, one that has not yet had a target function assigned to it) will cause a runtime error.

More Information on Software Design Patterns
Game Programming Patterns3 by Robert Nystrom is a fantastic book that covers the most
common software design patterns used in games. You can purchase a print or electronic
copy of it from most online retailers, or you can just read the web version for free on his
website: http://gameprogrammingpatterns.com. It's a great resource for improving your
coding.

Variable Scope
The scope of variables is an important concept in any programming language. A variable's
scope refers to how much of the code is aware of the variable's existence. Global scope
would mean that any code anywhere could see and reference the variable, whereas local
scope means that the variable's scope is limited in some way, and it can not be seen by
everything else in the code. If a variable is local to a class, then only other things within the
class can see it. If a variable is local to a function, then it only exists within that function
and is destroyed when the function has completed.

The following code demonstrates several different levels of scope for different variables
within a single class. Lettered comments after the code explain what is happening on
important lines. A variable that is red in the code indicates that it is out of scope in that
section of the code.

This is the code for the class ScopeExample, which extends MonoBehaviour:

Click here to view code image

using UnityEngine;
using System.Collections;

public class ScopeExample : MonoBehaviour {

 // public fields (public class variables)
 public bool trueOrFalse =false; //
a
 public int graduationAge =18;
 public float goldenRatio =1.618f;

 // private fields (private class variables)
 private bool _hiddenVariable =true; //
b
 private float _anotherHiddenVariable =0.5f;

 // protected fields (protected class variables)

960

http://gameprogrammingpatterns.com

 protected int partiallyHiddenInt =1; //
c
 float anotherProtectedVariable =1.0f;

 // static fields (static class variables)
 static public int NUM_INSTANCES =0; //
d
 static private int NUM_TOO =0; //
e

 public bool hiddenVariableAccessor { //
f
 get{ return_hiddenVariable; }
 }

 void Awake() {
 trueOrFalse =true;// Works: assigns "true" to trueOrFalse //
g
 print("tOF: "+trueOrFalse);// Works: prints "tOF: True"

 intageAtTenthReunion = graduationAge +10;// Works //
h
 print("_aHV: "+_anotherHiddenVariable);// Works: prints "_aHV: 0.5" //
i
 NUM_INSTANCES +=1;// Works //
j
 NUM_TOO++;// Works //
k
 }

 void Update() {
 print(ageAtTenthReunion);// ERROR //
l
 floatratioed =1f;// Works
 for(inti=0; i<10; i++) {// Works //
m
 ratioed *= goldenRatio;// Works
 }
 print("ratioed: "+ratioed);// Works: prints "ratioed: 122.9661"
 print(i);// ERROR //
n
 }
}

This is the code for the class ScopeExampleChild, which extends ScopeExample:

Click here to view code image

using UnityEngine;
using System.Collections;

public class ScopeExampleChild : ScopeExample { //
o

961

 void Start() {
 print("tOF: "+trueOrFalse); // Works: prints "tOF: True" //
p
 print("pHI: "+partiallyHiddenInt); // Works: prints "pHI: 1" //
q
 print("_hV: "+_hiddenVariable); // ERROR //
r
 print("NI: " +NUM_INSTANCES); // Works: prints "NI: 1" //
s
 print("NT: " +NUM_TOO); // ERROR //
t
 print("hVA: "+hiddenVariableAccessor); // Works: prints "hVA: True" //
u
 }
}

a. Public fields: The variables trueOrFalse, graduationAge, and
goldenRatio are all public fields. Fields are class instance variables, meaning
that they are declared as part of the class and are visible to all functions within any
instance of that class. Because these fields are public, they are inherited by the subclass
ScopeExampleChild, which means that ScopeExampleChild also has a bool
trueOrFalse. Public variables can also be seen by any other code that has a
reference to an instance of the class. This would allow a function with the variable
ScopeExample se to see and set the field se.trueOrFalse.

b. Private fields: These two variables are private fields. Private fields can only be
seen by this instance of ScopeExample (meaning that an instance of ScopeExample can
access and modify its own private fields, but no other instance can see them).
Subclasses do not inherit private fields, so the subclass ScopeExampleChild does not
have a bool _hidden-Variable. A function with the variable ScopeExample
se would not be able to see or access the private field se._hiddenVariable.

c. Protected fields: A field marked protected is between public and private.
Subclasses do inherit protected fields, so the ScopeExampleChild subclass does inherit
the int partiall yHiddenInt that is declared in ScopeExample. However,
protected fields are not accessible outside the class or its subclasses, so a function with
a variable ScopeExample se would not be able to see or access the protected field
se.partiallyHiddenVariable. Fields not explicitly marked private or public
are protected by default.

d. Static fields: A static field is a field of the class itself, not the instances of the class.
This means that NUM_INSTANCES is accessed as
ScopeExample.NUM_INSTANCES. Public static fields are the closest thing to
global scope that I use in C#. Any script in the codebase can access the public
static field ScopeExample.NUM_INSTANCES, and NUM_INSTANCES is the
same for all instances of ScopeExample. A function with the variable
ScopeExample se could not access se.NUM_INSTANCES (because it doesn't
exist), but it could access ScopeExample.NUM_INSTANCES. The

962

ScopeExampleChild subclass of ScopeExample can also access NUM_INSTANCES.
Within an instance of ScopeExample, NUM_INSTANCES can be accessed directly
(without the ScopeExample. prefix).

e. NUM_TOO is a private static field, which means that all instances of
ScopeExample share the same value of NUM_TOO, but no other class can see it or
access it. The ScopeExampleChild subclass cannot access NUM_TOO.

f. hiddenVariableAccessor is a read-only public property that allows other
classes access to _hiddenVariable. Because there is no set clause, it is read-only.

g. The // Works comment means that this line executes without any errors.
trueOrFalse is a public field of ScopeExample, so this method of ScopeExample
can access it.

h. This line declares and defines a variable named ageAtTenthReunion that is
locally scoped to the method ScopeExample.Awake(). This means that when the
ScopeExample.Awake() function has finished executing, the variable
ageAtTenthReunion will cease to exist. Also, nothing outside of this function can
access or modify ageAtTenthReunion.

i. As a private field _anotherHiddenVariable can only be seen by methods within
instances of this class.

j. Within a class, static public fields can be referred to by their name, meaning that the
ScopeExample.Awake() method can reference NUM_INSTANCES without
needing the class name before it.

k. NUM_TOO can also be accessed anywhere within the ScopeExample class.
l. The // ERROR comment means that this line will not run properly. This line throws an

error because ageAtTenthReunion was a local variable of the method
ScopeExample. Awake() so it has no meaning in the
ScopeExample.Update() method.

m. The variable int i is declared and defined in this for loop and is locally scoped to
the for loop. This means that i ceases to have meaning when the for loop has
completed.

n. This line throws an error because i has no meaning outside of the preceding for loop.
o. This line declares and defines ScopeExampleChild as a subclass of ScopeExample. As

a subclass, ScopeExampleChild has access to the public and protected fields and
methods of ScopeExample but not to the private fields or methods. Because the
Awake() and Update() methods of ScopeExample were not declared public or
private, they are by default protected and therefore inherited by ScopeExampleChild.
Because ScopeExampleChild does not have its own Awake() or Update()
functions defined, it will run the versions defined in its base class, ScopeExample.

p. trueOrFalse is public, so ScopeExampleChild has inherited a trueOrFalse
field. Additionally, because the base class (ScopeExample) version of Awake() has
already run by the time Start() is called on ScopeExampleChild, trueOrFalse

963

has already been set to true by the Awake() method of the base class
(ScopeExample).

q. ScopeExampleChild also has a protected partiallyHiddenInt field that it
inherited from ScopeExample.

r. _hiddenVariable is not inherited from ScopeExample because it is private.
s. NUM_INSTANCES is accessible by ScopeExampleChild because as a public variable,

it is inherited from the base class ScopeExample. The two classes share the same value
for NUM_ INSTANCES, so if one instance of each class were instantiated,
NUM_INSTANCES would be 2 regardless of whether it was accessed from
ScopeExample or ScopeExampleChild.

t. As a private static variable, NUM_TOO is not inherited by ScopeExampleChild.
However, it's worth noting that even though NUM_TOO is not inherited, when
ScopeExampleChild is instantiated and calls the base class version of Awake()—that
is, the Awake() method that is defined in the ScopeExample base class—that call to
the Awake() method can access NUM_TOO without errors, because the base class
version is running within the scope of the ScopeExample base class even though it's
actually running on an instance of ScopeExampleChild.

u. In our most esoteric example, ScopeExampleChild can read the public property
hiddenVariableAccessor, which easily makes sense until you look a bit deeper.
Inside of the get clause of hiddenVariableAccessor, it reads the private field
_hiddenVariable. This is a subtle but important aspect of variable scope. Because
ScopeExampleChild extends ScopeExample, all the private fields of ScopeExample are
created for a ScopeExampleChild instance, even though the ScopeExampleChild
instance can't access them directly. The ScopeExampleChild instance can use public
accessors like hiddenVariableAccessor—which is scoped to the
ScopeExample base class—to access private fields—like _hiddenVariable—that
are also scoped to the ScopeExample base class. Inherited methods like the Awake()
that ScopeExampleChild inherited from ScopeExample can also access private fields
of the base class.

These many notes have included both very simple and very complex examples of variable
scope. If some if it didn't make sense to you, that's okay. You can come back and read it
later after you've used C# some more and have more specific scope questions.

XML
XML (eXtensible Markup Language) is a file format that is designed to be both flexible and
human-readable. Here is an example of some XML from Chapter 32, " Prototype 4:
Prospector Solitaire." Additional spaces have been added to make it a little more
readable, but that is okay because XML generally treats any number of spaces or line
breaks as a single space.

964

Click here to view code image

<xml>
 <!-- decorators are the suit and rank in the corners of each card. -->
 <decorator type="letter" x="-1.05" y="1.42"z="0" flip="0" scale="1.25"/>
 <decorator type="suit" x="-1.05" y="1.03"z="0" flip="0" scale="0.4"/>
 <decorator type="suit" x="1.05"y="-1.03" z="0" flip="1" scale="0.4"/>
 <decorator type="letter" x="1.05"y="-1.42" z="0" flip="1" scale="1.25"/>
 <!-- A list of all cards that defines where pips are placed. -->
 <card rank="1">
 <pip x="0" y="0" z="0" flip="0" scale="2"/>
 </card>
 <card rank="2">
 <pip x="0" y="1.1"z="0" flip="0"/>
 <pip x="0" y="-1.1" z="0" flip="1"/>
 </card>
</xml>

Even without knowing much at all about XML, you should be able to read this somewhat.
XML is based on tags (also known as the markup of the document), which are the words
between the two angle brackets (e.g., <xml>, <card rank="2">). Most XML
elements have an opening tag (e.g., <card rank="2">) and a closing tag that contains
a forward slash immediately after the opening angle bracket (e.g., </card>). Anything
between the opening and closing tags of an element (e.g., the <pip …/> tags between the
<card> and </card> in the XML listing) is said to be the content of that element. There
are also empty-element tags, which are tags that serve as both the opening and closing tag
with no content between them. For example, in the XML listing, the tag <pip x="0"
y="1.1" z="0" flip="0" /> is an empty-element tag that requires no matching
</pip> tag because it ends in />. In general, XML files should start with <xml> and end
with </xml>, so everything in the XML document is content of the <xml> element.

XML tags can have attributes, which are like fields in C#. The empty-element <pip
x="0" y="1.1" z="0" flip="0"/> that is seen in the XML listing includes x, y,
z, and flip attributes.

In an XML file, anything between <!-- and --> is a comment and is therefore ignored by
any program that is reading the XML file. In the preceding XML listing, you can see that I
use them the same way that I use comments in C# code.

A robust XML reader is included in C# .NET, but I have found it to be very large (it adds
about 1 MB to the size of your compiled application, which is a lot if you're making
something for mobile) and unwieldy (using it is not simple). So, I've included a much
smaller (though not at all as robust) XML interpreter called PT_XMLReader in the
ProtoTools scripts that are part of the unitypackage imported at the beginning of the later
prototyping chapters. For an example of its use, take a look at the Chapter 32, "Prototype 4:
Prospector Solitaire."

965

Math Concepts
A lot of people cringe when they hear the word math, but that really doesn't need to be the
case. As you'll see throughout this book, it can do some really cool things for you. Below I
cover just a few cool math concepts that can help you in game development.

Cosine and Sine (Cos and Sin)
Sine and cosine are functions that convert an angle value Θ (theta) into a point along a
wave shape that ranges from -1 to 1. They are shown in Figure B.2.

Figure B.2 The traditional representations of sine and cosine

However, sine and cosine are much more than just waves; they're descriptions of the
relationship of X and Y when going around a circle. I'll demonstrate what I mean with some
code.

Unity Example—Sine and Cosine
Follow these steps:

966

1. Open Unity and create a new scene. At the top of the Scene pane, look for a button that
looks like a sine wave mountain in a box (it's to the right of the speaker icon). Click that
mountain button; the background of the Scene pane changes from a skybox to a dark gray,
making the elements in the Scene pane easier to see (you may need to click it more than
once).

2. Create a new sphere in the scene (GameObject > 3D Object > Sphere). Set Sphere's
transform to P:[0, 0, 0], R:[0, 0, 0], S:[0.1, 0.1, 0.1].

3. Add a TrailRenderer to Sphere. (Select Sphere in the Hierarchy and choose
Component > Effects > Trail Renderer from the menu bar.) Open the disclosure
triangle next to Materials in the Sphere's TrailRenderer Inspector and click the circle to
the right of Element 0 to select Default-Particle as the texture for the TrailRenderer. Set
Time = 1 and Width = 0.1.

4. Create a new C# script named Cyclic. Attach it to Sphere in the Hierarchy. Open the
Cyclic script in MonoDevelop, and enter this code:

Click here to view code image

using UnityEngine;
using System.Collections;

public class Cyclic : MonoBehaviour {
 [Header("Set in Inspector")]
 public float theta = 0;
 public bool showCosX = false;
 public bool showSinY = false;

 [Header("Set Dynamically")]
 public Vector3 pos;

 void Update () {
 // Calculate radians based on time
 float radians = Time.time * Mathf.PI;
 // Convert radians to degrees to show in the Inspector
 // The "% 360" limits the value to the range from 0-359.9999
 theta = Mathf.Round(radians * Mathf.Rad2Deg) % 360;
 // Reset pos
 pos = Vector3.zero;
 // Calculate x & y based on cos and sin respectively
 pos.x = Mathf.Cos(radians);
 pos.y = Mathf.Sin(radians);

 // Use sin and cos if they are checked in the Inspector
 Vector3 tPos = Vector3.zero;
 if (showCosX) tPos.x = pos.x;
 if (showSinY) tPos.y = pos.y;
 // Position this.gameObject (the Sphere)
 transform.position = tPos;
}

967

void OnDrawGizmos() {
 if (!Application.isPlaying) return; // Only show when Playing

 // Draw wavy colored lines (you can leave this for loop out if you like)
 int inc = 10;
 for (int i=0; i<360; i+=inc) {
 int i2 = i+inc;
 float c0 = Mathf.Cos(i*Mathf.Deg2Rad);
 float c1 = Mathf.Cos(i2*Mathf.Deg2Rad);
 float s0 = Mathf.Sin(i*Mathf.Deg2Rad);
 float s1 = Mathf.Sin(i2*Mathf.Deg2Rad);
 Vector3 vC0 = new Vector3(c0, -1f-(i/360f), 0);
 Vector3 vC1 = new Vector3(c1, -1f-(i2/360f), 0);
 Vector3 vS0 = new Vector3(1f+(i/360f), s0, 0);
 Vector3 vS1 = new Vector3(1f+(i2/360f), s1, 0);

 Gizmos.color = Color.HSVToRGB(i/360f, 1, 1);
 Gizmos.DrawLine(vC0, vC1);
 Gizmos.DrawLine(vS0, vS1);
 }

 // Draw the lines and circles relative to the Sphere GameObject
 Gizmos.color = Color.HSVToRGB(theta/360f, 1, 1);
 // Show individual Sin and Cos aspects using Gizmos
 Vector3 cosPos = new Vector3(pos.x, -1f-(theta/360f), 0);
 Gizmos.DrawSphere(cosPos, 0.05f);
 if (showCosX) Gizmos.DrawLine(cosPos, transform.position);

 Vector3 sinPos = new Vector3(1f+(theta/360f), pos.y, 0);
 Gizmos.DrawSphere(sinPos, 0.05f);
 if (showSinY) Gizmos.DrawLine(sinPos, transform.position);
 }
}

5. Before clicking Play, set the Scene view to 2D by clicking the 2D button at the top of
the Scene pane. Click Play.

You can see that the sphere doesn't initially move, but colored dots move along paths below
and to the right of the sphere. (You might need to zoom out or in to see them.) The dot on the
right follows the wave defined by Mathf.Sin(theta), and the dot below follows the
Mathf. Cos(theta) wave.

If you check showCosX in the Sphere:Cyclic (Script) Inspector, Sphere will start moving
in the X direction following a cosine wave. You can see how the X motion of Sphere is
connected directly to the cosine motion of the bottom wave. Uncheck showCosX and
check showSinY. Now you can see how the Y motion of Sphere is connected to the sine
wave. If you check both showCosX and showSinY, Sphere will move in the circle
defined by combining X = cos(theta) and Y = sin(theta). A full circle is 360°, or 2π radians
(that is, 2 * Mathf.PI).

968

This connection is also shown in Figure B.3, which uses similar colors to those in the Unity
example.

Figure B.3 The relationship of sine and cosine to a circle

This means that you can use sine and cosine for all sorts of circular or cyclic behavior!

These properties of sine and cosine are used in the Chapter 31, "Prototype 3.5: Space
SHMUP Plus," prototype to define wavy movement for the Enemy_1 enemy type and to
adjust the linear interpolation easing of the Enemy_2 type (see the Interpolation section in
this appendix for information about linear interpolation and easing).

969

Dice Probability
Chapter 11, "Math and Game Balance," covered Jesse Schell's Rule 4 of probability:
Enumeration can solve difficult math problems. Here is a quick Unity program that can
enumerate all the possibilities for any number of dice with any number of sides. However,
beware that each die you add drastically increases the number of calculations that must be
done (e.g., 5d6 [five six-sided dice] take six times longer to calculate than 4d6 and 36
times longer to calculate than 3d6.)

Unity Example—Dice Probability
Follow these steps to create a program that will enumerate all possibilities for any number
of dice with any number of sides. The default for this code is 2d6 (two six-sided dice).
With these default values, the program will run through all possible rolls of the two dice
(e.g., 1|1, 1|2, 1|3, 1|4, 1|5, 1|6, 2|1, 2|2, … 6|5, 6|6) and track the sum of the dice for each
possibility.

1. Start a new Unity project. Create a new C# script named DiceProbability and attach it
to the Main Camera in the Scene pane. Open DiceProbability in MonoDevelop and
enter this code:

Click here to view code image

using UnityEngine;
using System.Collections;

public class DiceProbability : MonoBehaviour {
 [Header("Set in Inspector")]
 public int numDice = 2;
 public int numSides = 6;
 public bool checkToCalculate = false;
 // ^ When you set checkToCalculate to true, this will start calculating
 public int maxIterations = 10000;
 // ^ The maximum number of iterations to perform in a single cycle of the
 // CalculateRolls() coroutine
 public float width = 16;
 public float height = 9;

 [Header("Set Dynamically")]
 public int[] dice; // An array of the values of each die
 public int[] rolls; // An array storing how many times a roll has come up
 // rolls for 2d6 would be [0, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1].
 // The 1 in the second element of the array means that a 2 was rolled 1
time.
 // The 6 in the 7th element of the array means that a 7 was rolled 6 times.

 void Awake() {
 // Set up the main camera to properly display the graph
 Camera cam = Camera.main;

970

 cam.backgroundColor = Color.black;
 cam.orthographic = true;
 cam.orthographicSize = 5;
 cam.transform.position = new Vector3(8, 4.5f, -10);
 }

 void Update() {
 if (checkToCalculate) {
 StartCoroutine(CalculateRolls());
 checkToCalculate = false;
 }
 }

 void OnDrawGizmos() {
 float minVal = numDice;
 float maxVal = numDice*numSides;

 // If the rolls array is not ready, return
 if (rolls == null || rolls.Length == 0 || rolls.Length != maxVal+1) {
 return;
 }

 // Draw the rolls array
 float maxRolls = Mathf.Max(rolls);
 float heightMult = 1f/maxRolls;
 float widthMult = 1f/(maxVal-minVal);

 Gizmos.color = Color.white;
 Vector3 v0, v1 = Vector3.zero;
 for (int i=numDice; i<=maxVal; i++) {
 v0 = v1;
 v1.x = ((float) i - numDice) * width * widthMult;
 v1.y = ((float) rolls[i]) * height * heightMult;
 if (i != numDice) {
 Gizmos.DrawLine(v0,v1);
 }
 }
 }

 public IEnumerator CalculateRolls() {
 // Calculate max value (the maximum possible value that could be
 // rolled on the dice (for example, for 2d6 maxValue = 12)
 int maxValue = numDice*numSides;
 // Make the array large enough to hold all possible values
 rolls = new int[maxValue+1];

 // Make an array with an element for each die. All are preset to a
 // value of 1 except for the zeroth die which is set to 0 (to make the
 // method RecursivelyAddOne() work properly)
 dice = new int[numDice];
 for (int i=0; i<numDice; i++) {
 dice[i] = (i==0) ? 0 : 1;
 }

971

 // Iterate on the dice.
 int iterations = 0;
 int sum = 0;

 // Usually, I avoid while loops because they can lead to infinite
 // loops,but because this is a coroutine with a yield in the while
 // loop, it's not as big of a problem.
 while (sum != maxValue) {
 // ^ the sum will == maxValue when all dice are at their max
value

 // Increment the 0th die in the dice Array
 RecursivelyAddOne(0);

 // Sum all the dice together
 sum = SumDice();
 // and add 1 to that position in the rolls array
 rolls[sum]++;

 // add to iterations and yield
 iterations++;
 if (iterations % maxIterations == 0) {
 yield return null;
 }
 }
 print("Calculation Done");

 string s = "";
 for (int i=numDice; i<=maxValue; i++) {
 s += i.ToString()+"
"+rolls[i].ToString("N0")+"\n"; // a
 }

 int totalRolls = 0;
 foreach (int i in rolls) {
 totalRolls += i;
 }
 s += "\nTotal Rolls:
"+totalRolls.ToString("N0")+"\n"; // a

 print(s);

 }

 // This is a recursive method, meaning that it calls itself. You can
read
 // about recursive functions elsewhere in this appendix.
 public void RecursivelyAddOne(int ndx) {
 if (ndx == dice.Length) return; // We've exceeded the length of
dice
 // Array, so just return

 // Increment the die at position ndx
 dice[ndx]++;

972

 // If this exceeds the capacity of the die...
 if (dice[ndx] > numSides) {
 dice[ndx] = 1; // then set this die to 1...
 RecursivelyAddOne(ndx+1); // and increment the next die
 }
 return;
 }
 public int SumDice() {
 // Sum the values of all the dice in the dice array
 int sum = 0;
 for (int i=0; i<dice.Length; i++) {
 sum += dice[i];
 }
 return(sum);
 }
 }

a. The .ToString("N0") that you see here is an example of ToString() using
one of the Standard Numeric Format Strings in C#. The N tells ToString() to add a
separator every three digits (e.g., the commas in 123,456,789), and the 0 means that
there should be zero digits after the decimal point. Search the Internet for "C#
Standard Numeric Format Strings" to learn more.

2. To use the DiceProbability enumerator, click Play and then select Main Camera in the
Hierarchy pane.

3. In the Main Camera:Dice Probability (Script) Inspector, you can set numDice (the
number of dice) and numSides (the number of sides for each die) and then click
checkToCalculate to calculate the probability of any specific number coming up
on those dice.

Unity enumerates all the possible results and then outputs the results to the Console pane as
well as a graph in the Scene pane. To better see the graph, you might need to click the
mountain button at the top of the Scene pane (to turn off the skybox view), switch to the 2D
view, and zoom out.

Try it first with the default setting of 2 dice of 6 sides each (2d6) and you'll get these results
in the console (you will have to click the message in the console to see more than the first
two lines):

2 1
3 2
4 3
5 4
6 5
7 6

973

8 5
9 4
10 3
11 2
12 1

Total Rolls: 36

UnityEngine.MonoBehaviour:print(Object)
<CalculateRolls>c__Iterator0:MoveNext() (at Assets/DiceProbability.cs:110)
UnityEngine.MonoBehaviour:StartCoroutine(IEnumerator)
DiceProbability:Update() (at Assets/DiceProbability.cs:34)

4. In the Inspector, try setting numDice=8 and numSides=6. Then check
checkToCalculate.

You'll see that this takes a lot longer to calculate and that the results (and the curve graph)
progressively update each time the coroutine yields (see the Coroutines section in this
appendix). To speed this up, try setting maxIterations=100,000. maxIterations
is the number of die rolls that the code will calculate before the coroutine yields and
allows Unity to show you the results. The more maxIterations you allow, the faster
the overall calculation will complete because the code will calculate more rolls in between
showing you results. Choosing fewer maxIterations will show you results more
frequently, but that will drastically slow down the overall time to calculate.

Now any time you want to know the probability of something like rolling a 13 on 8d6, you
can figure it out through enumeration. Some salient lines from the console output are:

8 1
9 8
…
12 330
13 792
14 1,708
…
47 8
48 1

Total Rolls: 1,679,616

This means that the probability of rolling a 13 on 8D6 is 792 / 1,679,616 = 11 / 23,328 ≈

974

0.00047 ≈ 0.05%.

You could also modify this code to roll the dice a specified number of times and choose
random rolls each time. With a high number of rolls, this would give you a practical
probability instead of the theoretical probability that is currently produced (see Jesse
Schell's Rule 9 of probability in Chapter 11, "Math and Game Balance").

Dot Product
Another extremely useful math concept is the dot product. A dot product of two vectors is
the result of multiplying the respective X, Y, and Z components of each vector together and
adding the results, as shown in the following code listing:
Click here to view code image

1 Vector3 a = new Vector3(1, 2, 3);
2 Vector3 b = new Vector3(4, 5, 6);
3 float dotProduct = a.x*b.x + a.y*b.y + a.z*b.z; // a
4 // dotProduct = 1*4 + 2*5 + 3*6
5 // dotProduct = 4 + 10 + 18
6 // dotProduct = 32
7 dotProduct = Vector3.Dot(a,b); // This is the real way to do it in C# // b

a. Line 3 shows a manual calculation of the dot product of Vector3s a and b.
b. Line 7 shows the same calculation performed using the built-in static method
Vector3.Dot().

At first, this might not seem very important, but dot products have an extremely useful
property: The float that the dot product4 a•b returns is equivalent to a.magnitude *
b.magnitude * Cos(Θ) where Θ is the angle between the two vectors, as shown in Figure
B.4.

975

Figure B.4 Dot product examples (decimal numbers are approximate values)

Figure B.4.A shows a standard example of a dot product. In this example, the unit vector5 b
is pointing along the X axis. b has the coordinates [1, 0], and vector a has the coordinates
[1, 1]. The a vector can be thought of as two parts: the part parallel to b (the X coordinate
of a, shown with the thin green line on top of b) and the part perpendicular to b (the Y
coordinate of a, shown with the dashed green line). The length of the part of a that is
parallel to b is known as the projection of a onto b and is the result of the dot product a•b.
The dot product takes the whole of a [1, 1], which has a length equal to the square root of
2 (≈1.414) and tells us how much of that vector is parallel to b. As mentioned previously,
there are two different ways to calculate a dot product, both of which are shown in B.4.A
and both of which give us the result of 1. This means that the length of vector a when
projected onto unit vector b is 1.

Figure B.4.B shows that when two vectors are completely perpendicular, their dot product
is zero. So here the projection of a onto b is zero.

Figure B.4.C shows the projection of a longer vector a onto b. Here again, both versions of
the dot product calculation give us the same correct result.

As you see in Figure B.4.D, a dot product can also be used to tell whether an enemy is
facing the player character (which can be useful in stealth games). Here, vector a is [-3, 2]
and b is [1, 0]. The dot product a•b is -3. If the enemy is looking in the b direction, and the
dot product of projecting the vector to the player a onto unit vector b is negative, then that

976

means the player is behind the enemy. Although all the examples in Figure B.4 show b
pointing along the X axis, the dot product still works perfectly regardless of the direction in
which b is pointing, as long as b is a unit vector.

You can use dot products in several other places as well, and it's very common in computer
graphics programming (for instance, dot products are used to determine whether a surface
is facing toward a light).

Interpolation
An interpolation refers to any mathematical blending between two values. When I was
working as a contract programmer after college, I feel that one of the major reasons I got a
lot of job offers was because the motion of elements in my graphics code looked smooth
and juicy (to use Kyle Gabler's term6). This was accomplished through the use of various
forms of interpolation, easing, and Bézier curves, all of which I present in this section of
the appendix.

Linear Interpolation
A linear interpolation is a way of mathematically defining a new value or position by
stating that it is in between two existing values. All linear interpolations follow the same
formula:
Click here to view code image

p01 = (1-u) * p0 + u * p1

In code, this would look something like this:

Click here to view code image

1 Vector3 p0 = new Vector3(0, 0, 0);
2 Vector3 p1 = new Vector3(1, 1, 0);
3 float u = 0.5f;
4 Vector3 p01 = (1-u) * p0 + u * p1;
5 print(p01); // prints: (0.5, 0.5, 0) the point half-way between p0 & p1

In the preceding code listing, a new point p01 is created by interpolating between the
points p0 and p1. The value u ranges in value between 0 and 1. This can happen with any
number of dimensions, though you usually interpolate Vector3s in Unity.

Time-Based Linear Interpolations
In a time-based linear interpolation, you are guaranteed that the interpolation will complete
in a specific amount of time because the u value is based on the amount of time that has
passed divided by the total desired duration of the interpolation.

977

Unity Example—Time-Based Linear Interpolation
To create a Unity example, do the following:

1. Create a new Unity project named Interpolation Project. Save the scene as
_Scene_Interp.

2. Create a cube in the hierarchy (GameObject > 3D Object > Cube).
a. Select Cube in the Hierarchy pane and attach a TrailRenderer to it (Components >

Effects > Trail Renderer).
b. Open the Materials array of the TrailRenderer and set Element 0 to the built-

in material Default-Particle. (Click the circle to the right of Element 0 to see
Default-Particle in the list of available materials.)

3. Create a new C# script in the Project pane named Interpolator. Attach it to Cube and
then open it in MonoDevelop to enter this code:

Click here to view code image

using UnityEngine;
usingSystem.Collections;

public class Interpolator : MonoBehaviour {
 [Header("Set in Inspector")]
 public Vector3 p0 = new Vector3(0,0,0);
 public Vector3 p1 = new Vector3(3,4,5);
 public float timeDuration = 1;
 // Click the checkToStart checkbox to start moving
 public bool checkToStart = false;

 [Header("Set Dynamically")]
 public Vector3 p01;
 public bool moving = false;
 public float timeStart;

 // Update is called once per frame
 void Update () {
 if (checkToStart) {
 checkToStart = false;

 moving = true;
 timeStart = Time.time;
 }

 if (moving) {
 float u = (Time.time-timeStart)/timeDuration;
 if (u>=1) {
 u=1;
 moving = false;
 }

 // This is the standard linear interpolation function
 p01 = (1-u)*p0 + u*p1;

978

 transform.position = p01;
 }
 }
}

4. Switch back to Unity and click Play. In the Cube:Interpolator (Script) component,
check the box next to checkToStart, and Cube will move from p0 to p1 in 1
second. If you adjust timeDuration to another value and then check
checkToStart again, you can see that Cube always moves from p0 to p1 in
timeDuration seconds. You can also change the location of p0 or p1 while Cube is
moving, and it will update accordingly.

Linear Interpolations Using Zeno's Paradox
Zeno of Elea (ca. 490–430 BCE) was a Greek philosopher who proposed a set of
paradoxes having to do with the philosophical impossibility of everyday, commonsense
motion.

In Zeno's Dichotomy Paradox, the question is posed of whether a moving object can ever
reach a stationary point. Imagine that a frog is hopping toward a wall. Every hop, he covers
half of the remaining distance to the wall. No matter how many times the frog hops, it will
still have covered only half of the distance remaining to the wall after its last hop, so it will
never reach the wall.

Ignoring the philosophical implications (and the complete lack of rationality) of this, you
can actually use a similar concept along with linear interpolation to create a smooth motion
that eases toward a certain point. This is used throughout this book to make cameras that
smoothly follow various points of interest.

Unity Example—Zeno's Paradox Interpolation
Continuing the same Interpolation Project from before:

1. Add a sphere to the scene (GameObject > 3D Object > Sphere) and move it
somewhere away from Cube.

2. Create a new C# script in the Project pane named ZenosFollower and attach it to
Sphere.

3. Open ZenosFollower in MonoDevelop and enter this code:
Click here to view code image

using UnityEngine;
using System.Collections;

public class ZenosFollower : MonoBehaviour {

979

 [Header("Set in Inspector")]
 public GameObject poi; // Point Of Interest
 public float u = 0.1f;
 public Vector3 p0, p1, p01;

 // Update is called once per frame
 void FixedUpdate () {
 // Get the position of this and the poi
 p0 = this.transform.position;
 p1 = poi.transform.position;

 // Interpolate between the two
 p01 = (1-u)*p0 + u*p1;

 // Move this to the new position
 this.transform.position = p01;
 }
}

4. Save the code and return to Unity.
5. Set the poi of Sphere:ZenosFollower to be the cube (by dragging Cube from the

Hierarchy pane into the poi slot of the Sphere:ZenosFollower (Script) Inspector).
6. Save your scene!

Now, when you click Play, the sphere moves toward the cube. If you select the cube and
check the checkToStart box, the sphere will continue to follow the cube through its
motions. You can also move the cube around in the Scene window manually and watch the
sphere follow.

Try changing the value of u in the Sphere:ZenosFollower Inspector. Lower values will
make it follow more slowly whereas higher values will make it follow more rapidly. A
value of 0.5 would make the sphere cover half of the distance to the cube every frame,
which would exactly mimic Zeno's Dichotomy Paradox (but in practice, this follows far too
closely). It is true that with this specific code, the sphere will never get to exactly the same
location as the cube, and the movement is not very controllable, but this is meant to just be
a very quick, simple following script.

FixedUpdate() is used instead of Update() in ZenosFollower to make the behavior
consistent across all computers. If Update() had been used, then depending on the
processor load on your computer at any given time, the Sphere would follow closer or
further away because more or fewer Update() calls would happen each second as the
frame rate experienced natural variations. Using Update() would also cause the sphere
to follow much closer on fast machines than on slow ones for the same reason.
FixedUpdate() makes behavior consistent across all machines at all times because it is
always called 50 times per second.7

980

Interpolating More Than Just Position
You can interpolate almost any kind of numeric value. In Unity, this means that you can very
easily interpolate values like scale, rotation, and color among others.

Unity Example—Interpolating Various Attributes
You can either do this in the same scene as the previous interpolation examples or in a new
project:

1. Create a new scene named _Scene_Interp2 and create two new cubes in its Hierarchy
named c0 and c1.

2. Make a new material for each cube (Assets > Create > Material) named Mat_c0 and
Mat_c1.

3. Drag each material onto its respective cube to apply the material.
4. Select c0 and set its position, rotation, and scale to anything you want (as long as it's

visible on screen and the scale X, Y, and Z are positive). Under the c0:Mat_c0 section
of the Inspector, you should also set the color to whatever you want.

5. Do the same for the transform of c1 and the color of Mat_c1, making sure that c1 and c0
have different positions, rotations, scales, and colors from each other.

6. Add a third cube to the scene, set its position to P:[0, 0, 0], and name it Cube01.
7. Create a new C# script named Interpolator2 and attach it to Cube01. Enter this code

into Interpolator2:
Click here to view code image

using UnityEngine;
using System.Collections;

public class Interpolator2 : MonoBehaviour {
 [Header("Set in Inspector")]
 public Transform c0;
 public Transform c1;
 public float timeDuration = 1;
 // Click the checkToStart checkbox to start moving
 public bool checkToStart = false;

 [Header("Set Dynamically")]
 public Vector3 p01;
 public Color c01;
 public Quaternion r01;
 public Vector3 s01;
 public bool moving = false;
 public float timeStart;

 private Material mat, matC0, matC1;

981

 void Awake() {
 mat = GetComponent<Renderer>().material;
 matC1 = c1.GetComponent<Renderer>().material;
 matC0 = c0.GetComponent<Renderer>().material;
 }

 // Update is called once per frame
 void Update () {
 if (checkToStart) {
 checkToStart = false;

 moving = true;
 timeStart = Time.time;
 }

 if (moving) {
 float u = (Time.time-timeStart)/timeDuration;
 if (u>=1) {
 u=1;
 moving = false;
 }

 // This is the standard linear interpolation function
 p01 = (1-u)*c0.position + u*c1.position;
 c01 = (1-u)*matC0.color + u*matC1.color;
 s01 = (1-u)*c0.localScale + u*c1.localScale;
 // Rotations are treated differently because Quaternions are tricky
 r01 = Quaternion.Slerp(c0.rotation, c1.rotation, u);
 // Apply these to this Cube01
 transform.position = p01;
 mat.color = c01;
 transform.localScale = s01;
 transform.rotation = r01;
 }
 }
}

8. Save the script and return to Unity.
9. Drag c0 from the Hierarchy pane into the c0 field of the Cube01:Interpolator2

(Script) Inspector. Also drag c1 from the Hierarchy into the c1 field of the
Interpolator2 script.

10. Click Play and then click the checkToStart check box in the
Cube01:Interpolator2 Inspector. You'll see that Cube01 now interpolates much more
than just position.

Linear Extrapolation
All the interpolations so far have had u values that ranged from 0 to 1. If you allow the u
value to go beyond this range, you get extrapolation (so named because instead of
interpolating between two values, it now extrapolates data outside of the original two

982

points).

Given the initial two points on a number line of 10 and 20, an extrapolation of u=2 would
work as shown in Figure B.5.

Figure B.5 An example of extrapolation

Unity Example—Linear Extrapolation
To see this in code, make the following bolded code additions to Interpolator2. In addition
to extrapolation, this additional code also allows the movement to loop.
Click here to view code image

public class Interpolator2 : MonoBehaviour {
 [Header("Set in Inspector")]
 public Transform c0;
 public Transform c1;
 public float uMin = 0;
 public float uMax = 1;
 public float timeDuration = 1;
 public bool loopMove = true; // Causes the move to repeat
 …
 void Update () {
 …
 if (moving) {
 float u = (Time.time-timeStart)/timeDuration;
 if (u>=1) {
 u=1;
 if (loopMove) {
 timeStart = Time.time;
 } else {
 moving = false; // This line is now within the else clause
 }
 }

 // Adjust u to the range from uMin to uMax
 u = (1-u)*uMin + u*uMax;
 // ^ Look familiar? We're using a linear interpolation here too!

 // This is the standard linear interpolation function
 p01 = (1-u)*c0.position + u*c1.position;
 …
 }
 }

983

}

Now, if you click PIay in Unity and then click the checkToStart box on Cube01, you'll
get the same behavior as before. Try changing uMin to -1 and uMax to 2 in the
Cube01:Interpolator2 (Script) Inspector. Click checkToStart, and you'll see that the
color, position, and scale all extrapolate and go beyond the original range that you set.8 You
can now also check loopMove to repeat the interpolation endlessly.

Rotation will not extrapolate beyond the rotation of c0 or c1 due to a limitation of the
Quaternion.Slerp() method (which is short for the Spherical Linear intERPolation
that is used for rotations in Unity). Rather than independently interpolate each of the X, Y,
and Z rotation values, a Slerp attempts to choose the most direct path from one rotation to
another. However, if Slerp() is passed any number below 0 as its u value, it treats it as
0 (and any number above 1 is treated as 1).

If you look at the documentation for Vector3, it also has a Lerp() (short for Linear
intERPolation) method that can interpolate between Vector3s, but I never use that function
because it also clamps the values of u to the range from 0 to 1 and doesn't allow
extrapolation. In Unity 5, a Vector3.LerpUnclamped() method was added that does
not clamp to the 0 to 1 range. I do use the unclamped version, but I still think it's important
for you to learn how to Lerp on your own, which is why you didn't use
Vector3.LerpUnclamped() in the code for this section.

Easing for Linear Interpolations
The interpolations you've been doing so far are pretty nice, but they also have a very
mechanical feel to them because they start abruptly, move at a constant rate, and then stop
abruptly. Happily, several different easing functions can be used to make this movement
more interesting. This is most easily explained with a Unity example.

Unity Example—Interpolation Easing
To create the example, follow these steps.

1. Create a new C# script named Easing and open it in MonoDevelop to add the
following code. As you do so, note that Easing does not extend MonoDevelop.

Click here to view code image

using UnityEngine;

public class Easing{

 public enum Type{ // a
 linear,
 easeIn,

984

 easeOut,
 easeInOut,
 sin,
 sinIn,
 sinOut
 }

 static public floatEase (floatu,TypeeType,floateMod = 2) { // c
 floatu2 = u;

 switch(eType) { // b

 case Type.linear:
 u2 = u;
 break;

 case Type.easeIn:
 u2 =Mathf.Pow(u, eMod);
 break;

 case Type.easeOut:
 u2 =1-Mathf.Pow(1-u, eMod);
 break;

 case Type.easeInOut:
 if(u <=0.5f) {
 u2 =0.5f*Mathf.Pow(u*2, eMod);
 }else{
 u2 =0.5f+0.5f*(1-Mathf.Pow(1-(2*(u-0.5f)), eMod));
 }
 break;

 case Type.sin:
 // Try eMod values of 0.15f and -0.2f for Easing.Type.sin // c
 u2 = u + eMod *Mathf.Sin(2*Mathf.PI*u);
 break;

 case Type.sinIn:
 // eMod is ignored for SinIn
 u2 =1-Mathf.Cos(u *Mathf.PI *0.5f);
 break;

 case Type.sinOut:
 // eMod is ignored for SinOut
 u2 =Mathf.Sin(u *Mathf.PI *0.5f);
 break;
 }

 return(u2);
 }
}

a. This enum is defined within the Easing type, so variables of this enum type outside
of this class would be declared as Easing.Type. Within the Easing class, Type can

985

be used instead.
b. This switch statement contains cases for each type of easing.
c. eMod is an optional float parameter of the static Ease() function. It is used in

various ways as a modifier for many easing types. For example, for easeIn, it is
used as the power to which u is raised; e.g., if eMod is 2, then u2 = u2; if eMod is 3,
then u2 = u3. For sin easing, eMod is the multiplier for the amplitude of the sine
curve that is added to the line (see Figure B.6 for some examples).

Figure B.6 Various easing curves and their formulae. In each case, the number after the
pipe (|) represents the eMod (i.e., easingMod) value.

This Easing class holds all the easing functions for u, making it easy to import them into
any of your projects. The various easing curves are shown and described in Figure B.6,
except for sinIn and sinOut, which are sine-based, less flexible versions of easeIn
and easeOut.

2. Save the Easing script, open the Interpolator2 script, and make the following
modifications.

Click here to view code image

public class Interpolator2 : MonoBehaviour {
 [Header("Set in Inspector")]
 …
 public bool loopMove = true; // Causes the move to repeat
 public Easing.Type easingType = Easing.Type.linear;
 public float easingMod = 2;

986

 // Click the checkToStart checkbox to start moving
 public bool checkToStart = false;
 …
 void Update () {
 …
 if (moving) {
 …
 // Adjust u to the range from uMin to uMax
 u = (1-u)*uMin + u*uMax;
 // ^ Look familiar? We're using a linear interpolation here too!

 // The Easing.Ease function modifies u to change tweak movement
 u = Easing.Ease(u, easingType, easingMod);

 // This is the standard linear interpolation function
 p01 = (1-u)*c0.position + u*c1.position;
 …
 }
 }
 }

3. Save the Interpolator2 script in MonoDevelop and switch back to Unity.
4. In the Cube01:Interpolator2 (Script) Inspector, set uMin = 0 and uMax = 1. Also

check loop-Move to set it to true.
5. Save your scene!
6. Click Play and click checkToStart. Now, because loopMove is checked as well,

Cube01 continuously interpolates between c0 and c1.

Try playing around with the different settings for easingType. easingMod only affects
the easeIn, easeOut, easeInOut, and sin easing types. For the sin type, try an
easingMod of 0.15 as well as one of -0.3 to see the flexibility of this sine-based easing
type.

In Figure B.6 you can see a graphical representation of various easing curves. In this figure,
the horizontal dimension represents the initial u value, while the vertical dimension
represents the eased u value (u2). You can see that in every example when u=0, u2 also
equals 0 and when u=1, u2 also equals 1. Because of this, if the linear interpolation is time
based, the value will always move completely from p0 to p1 in the same amount of time
regardless of the easing settings.

The Linear curve shows no easing (u2 = u). In each of the other curves shown, the u2 = u
line remains as a dashed diagonal line to show normal, linear behavior. If the vertical
component of a curve is ever below the dashed diagonal, the movement is lagging behind a
linear curve. Conversely, if the vertical component of the curve is ever above the dashed
diagonal, the eased curve is ahead of where the linear movement would have been. The
slope of the curve represents the speed of the interpolation at that point: A 45° slope is the

987

same speed as the linear interpolation, whereas a shallower slope is slower and a more
steep slope is faster.

The EaseIn curve starts slowly and then moves faster toward the end (u2 = u*u). This is
called "easing in" because the first part of the motion is "easy" and slow before it then
speeds up.

The EaseOut curve is the opposite of the EaseIn curve. With this curve, the movement
starts quickly and then slows at the end. This is commonly known as "easing out."

The three Sin curves on the bottom of the diagram all follow the same formula (u2 = u +
eMod * sin(u*2π)), where eMod is a floating-point number (the variable eMod or
easingMod in the code). The multiplication of u * 2π inside of the sin() ensures that as
u moves from 0 to 1, it passes through a full sine wave (moving center, up, center, down,
and back to center). If eMod=0, the sine curve has no effect on the curve (that is, the curve
remains linear). As eMod gets further from 0 (either positively or negatively), it has more
of an effect.

The curve Sin|-0.2 is an ease-in-out with a bounce. The eMod value of -0.2 adds a negative
sine wave to the linear progression, causing a moving object to back up a bit from p0, move
quickly toward p1, overshoot a bit, and then settle at p1. An eMod value closer to zero of
Sin|-0.1 would cause the object to ease-in to full speed at the center point and then slow as
it approached p1 without the extrapolation bounce at either end.

In the curve Sin|0.16, a slight sine curve is added to the linear u progression, causing the
curve to get ahead of linear, stop briefly in the middle, and then hurry to catch up at the end.
If you're moving an object, this brings it to the center point, slows it in the middle to
"feature" it for a while, and then moves it out.

The curve Sin|0.6 is the easing curve that is used by Enemy_2 in Chapter 31, "Space
SHMUP Plus." In this case, enough positive sine wave has been added to cause the object
to shoot past the center point to a point about 80% of the way to p1, then move back to a
point 20% of the way to p1, and then finally move to p1.

Bézier Curves
A Bézier curve is a linear interpolation between more than two points. Just as with a
normal linear interpolation, the base formula is p01 = (1-u) * p0 + u * p1. The Bézier curve
just adds more points and more calculations.

Given three points: p0, p1, and p2

p01 = (1-u) * p0 + u * p1

988

p12 = (1-u) * p1 + u * p2
p012 = (1-u) * p01 + u * p12

As is demonstrated in the preceding equations, for the three points p0, p1, and p2, the
location of the point of the Bézier curve is calculated by first performing a linear
interpolation between p0 and p1 (the resulting point is called p01), then performing a linear
interpolation between p1 and p2 (called p12), and finally performing a linear interpolation
between p01 and p12 to obtain the final point, p012. A graphical representation of this is
shown in Figure B.7.

Figure B.7 A linear interpolation and three-point and four-point Bézier curves

A four-point curve requires more calculations to accommodate all four points:

p01 = (1-u) * p0 + u * p1
p12 = (1-u) * p1 + u * p2
p23 = (1-u) * p2 + u * p3
p012 = (1-u) * p01 + u * p12
p123 = (1-u) * p12 + u * p23
p0123 = (1-u) * p012 + u * p123

Four-point Bézier curves are used in many drawing programs as a way of defining very
controllable curves, including: Adobe Flash, Illustrator, and Photoshop; The Omni
Groups' OmniGraffle; and many others. In fact, the curve editor used in Unity for animation
and TrailRenderer thickness uses a form of four-point Bézier curves.

Unity Example—Bézier Curves
Follow these steps to create a Bézier curve example in Unity. When writing code, I don't
use the accented é in Bézier because code tends to be written without any accented
characters.

1. Create a new scene in your Unity project and save it as _Scene_Bezier.
2. Add four cubes to the Hierarchy named c0, c1, c2, and c3.

a. Set the transform.scale of all cubes to S:[0.5, 0.5, 0.5].
b. Position the cubes in various positions around the scene and adjust your Scene view

so that you can see all of them.

989

3. Add a sphere to the scene.
a. Attach a TrailRenderer to the sphere.
b. Open the Materials array of the TrailRenderer and set Element 0 to the built-

in material Default-Particle.
4. Create a new C# script named Bezier and attach it to Sphere. Open Bezier in

MonoDevelop and enter the following code to demonstrate a four-point Bézier curve in
Unity:

Click here to view code image

using UnityEngine;
using System.Collections;

public class Bezier : MonoBehaviour {
 [Header("Set in Inspector")]
 public float timeDuration = 1;
 public Transformc0, c1, c2, c3;
 // Set checkToStart to true to start moving
 public bool checkToStart = false;

 [Header("Set Dynamically")]
 public float u;
 public Vector3 p0123;
 public bool moving = false;
 public float timeStart;

 void Update () {
 if (checkToStart) {
 checkToStart = false;
 moving = true;
 timeStart = Time.time;
 }

 if (moving) {
 u = (Time.time-timeStart)/timeDuration;
 if (u>=1) {
 u=1;
 moving = false;
 }

 // 4-point Bezier curve calculation
 Vector3 p01, p12, p23, p012, p123;

 p01 = (1-u)*c0.position + u*c1.position;
 p12 = (1-u)*c1.position + u*c2.position;
 p23 = (1-u)*c2.position + u*c3.position;

 p012 = (1-u)*p01 + u*p12;
 p123 = (1-u)*p12 + u*p23;

 p0123 = (1-u)*p012 + u*p123;

990

 transform.position = p0123;

 }
 }
}

5. Save the Bezier script and return to Unity.
6. Assign each of the four cubes to their respective fields in the Sphere:Bezier (Script)

Inspector.
7. Click Play and then click the checkToStart check box in the Inspector.

Sphere will trace a Bézier curve between the four cubes. It's important to note here that
Sphere only ever touches c0 and c3. It is influenced by but does not touch c1 and c2. This is
true of all Bézier curves. The ends of the curve always touch the first and last points, but no
points in-between are ever touched. If you're interested in looking into a kind of curve
where the midpoints are touched, look up "Hermite spline" online (as well as other kinds of
splines).

A Recursive Bézier Curve Function
As you saw in the previous section, the additional calculations for adding more control
points to a Bézier curve are pretty straightforward conceptually, but it takes a while to type
all the additional lines of code. The upcoming code listing uses a recursive function to
handle any number of points without any additional code. It's a little conceptually complex,
so let's start by considering how it should work.

To interpolate a standard three-point Bézier curve, you start with three points: [p0, p1, p2
]. However, in order to interpolate them, you need to first break it down into two smaller
interpolations [p0, p1] and [p1, p2]. You interpolate each of these and return the
interpolated points p01 and p12. Finally, you interpolate between p01 and p12 to get the
final point p012.

The Bezier() function does the same thing, recursively breaking the problem down to
smaller and smaller lists of points until each branch gets to a list of just one point, and then
returning those points up the recursion chain, interpolating on the way up.

In the first edition of this book, the recursive Bezier() function created a new
List<Vector3> with each recursion, but that was very inefficient because it wasted both
memory and processing power with each creation of a new List. In fact, interpolating a
four-point Bézier curve with the first-edition version of Bezier() would create fourteen
additional lists.

Rather than make a ton of new lists, the second edition version of Bezier() just passes a

991

reference to the same List into each of its recursions along with two integers—iL and iR
—as you can see in the Bezier() function declaration.

Click here to view code image

static public Vector3 Bezier(float u, List<Vector3> pts, int iL=0, int iR=-1)
{…}

The integers iL and iR are each an index into the List pts, meaning that iL and iR are
references to elements of pts. If iL is 0, then it's pointing to the 0th element of pts. If iR
is 3, then it's pointing to the third element of pts. iL and iR are optional parameters. If
neither are passed in (i.e., Bezier() is called with just u and pts arguments), then iL
will be 0, and iR will start as -1 but will thereafter be given the index of the last element
of pts.

iL represents the leftmost element of pts that is being considered by any recursion of
Bezier(), and iR represents the rightmost element. So, for a four-point List pts, the
initial value of iL will be 0, and iR will start at 3 (the index of the last point in pts).
Each time the Bezier() function recurs, it branches and sends fewer points to the next
level. Rather than create new Lists, the new version of Bezier() adjusts iL and iR to
look at a smaller section of the overall List pts. Eventually, terminal cases will be
reached in each branch where iL and iR both point to the same element of pts, and then
the value of that element is returned up the chain as a Vector3, and the series of actual
interpolations takes place as the chain of recursion unwinds.

Figure B.8 shows the series of recursive calls that are made by a single four-point call to
the Bezier() function. The green arrows trace the calls, and the red dashed arrows show
the returns. You can see that either iL or iR is respectively incremented or decremented
with each call, and the elements of pts that are black in the diagram are those that are in
the range from iL to iR for each call to Bezier().

992

Figure B.8 The path of calls (solid green arrow) and returns (dashed red arrow) when
recursively interpolating a four-point Bezier curve.

The way that this Bezier() function works does make two separate calls to determine
the value of p12 (it has two green arrows pointing to it and two red arrows returning from
it). This is somewhat inefficient, but eliminating that overlap would have required a lot
more complex code.

The following code listing implements this recursive function to calculate a Bézier curve
for any number of points. A version of this is included in the ProtoTools Utils class that
is part of the initial unitypackage for Chapters 31 through 35:

Click here to view code image

static public Vector3Bezier(floatu,List<Vector3> pts,intiL=0,intiR=-1) { // a
 if(iR == -1) { // b
 iR = pts.Count-1;
 }

993

 if(iL == iR) { // This is the terminal case // c
 return(pts [iL]);
 }

 // Two recursive calls to Bezier, each using one fewer of the points in l
 Vector3lV3 = Bezier(u, pts, iL, iR-1); // d
 Vector3rV3 = Bezier(u, pts, iL+1,iR); // e

 // Interpolate the results from the Bezier recursions at lines d & e
 Vector3res = Vector3.LerpUnclamped(lV3, rV3, u); // f
 return(res);
}

a. The Bezier() function takes as input a float u and a List<Vector3> pts of points to
interpolate. It also has two optional parameters, iL and iR, which represent the
indices in pts of the leftmost (iL) and rightmost (iR) element being considered by
this recursion of Bezier(). See Figure B.8 for more information.

b. If iR does come in as -1, iR is set to the index of the last element in pts.
c. The terminal case of the recursive function is reached when iL == iR. If iL == iR,

then both the left and right indices into the List pts are pointing at the same Vector3
element. When this occurs, the Vector3 to which they both point is returned.

d. This is one of the two recursive calls to Bezier(). Here, the iR index into pts is
decremented by 1, and the full list pts is passed into the recursion with iL and iR as
arguments. This has the same effect as creating a new List containing all but the last
element of pts, but it is much more efficient.

e. This is the other recursive call to Bezier(). Here iL index into pts is incremented
by 1. This has the effect of passing all but the first element of pts into the next
recursion.

f. The results of the recursive calls on lines d and e have been stored in two Vector3s:
lV3 and rV3. These two Vector3s are interpolated by
Vector3.LerpUnclamped(), and the result is returned up the recursion chain.

The Utils C# script includes several overloads of the Bezier() function for different
point types (e.g., Vector3, Vector2, float, and Quaternion). It also includes overloads that
use the params keyword to allow any number of points to be passed in as arguments to the
Bezier() function rather than a List.

Click here to view code image

// This overload of Bezier() allows an Array or a series of Vector3s as input
static public Vector3 Bezier(float u, params Vector3[] vecs) { //
g
 return(Bezier(u, new List<Vector3>(vecs))); // Calls Bezier() on line a
}

g. As covered in Chapter 24, "Functions and Parameters," the params keyword allows

994

the vecs array parameter to accept either a Vector3 array or a series of individual
Vector3 parameters separated by commas (after the first float argument).

So, two possible valid calls to this overload of Bezier() for a five-point Bézier curve
could be

Click here to view code image

float u = 0.1f;
Vector3 p0, p1, p2, p3, p4;

Vector3[] points = new Vector3[] { p0, p1, p2, p3, p4 };

Utils.Bezier(u, points); //
h
Utils.Bezier(u, p0, p1, p2, p3, p4); //
i

h. Here, the array points is passed into the array vecs, which is nothing unexpected.
i. On this line, the params keyword allows the series of Vector3s parameters (i.e., p0,
p1, p2, p3, p4) to automatically be converted into a Vector3 array and assigned
to vecs.

Lines h and i will both call the overload of Bezier() with the vecs array (declared on
line g). Then on the single line of that overload, the vecs array is converted to a
List<Vector3>, and when Bezier() is called with a List<Vector3> as the second
argument, it calls the original version of Bezier() declared on line a of the preceding
code listing.

Role-Playing Games
Many good role-playing games (RPGs) are out there. The most popular is still probably
Dungeons & Dragons by Wizards of the Coast (D&D), which is now in its fifth edition.
Since the third edition, D&D has been based on the d20 system, which uses a single twenty-
sided die in place of the many complex die rolls that were common in prior systems. I like
D&D for a lot of things, but I have found that my students often get bogged down in combat
when attempting to run D&D as their first system; it has a lot of very specific combat rules,
especially in the fourth edition.

My personal recommendation for a first RPG system is FATE by Evil Hat Productions,
especially the streamlined FATE Accelerated (FAE) system. FAE is a simple system that
allows players to contribute directly to the narrative much more than other systems allow.
(Other systems give all power over events to the game master running the game.) You can
learn about the core version of FATE at the website http://faterpg.com, and you can read the
free FATE system reference document (SRD) at http://fate-srd.com. For info on FATE

995

http://faterpg.com
http://fate-srd.com

Accelerated, and to get a free 50-page eBook with all the info you need to get started, check
out http://www.evilhat.com/home/fae/.

Tips for Running a Good Role-Playing Campaign
Running a role-playing campaign can do wonders for your abilities as both a game designer
and storyteller. Here are some tips that I've found to be very useful when my students start
running campaigns:

 Start simple: A lot of different role-playing systems are out there, and they vary greatly
in the complexity of their rules. As described in the preceding section, I recommend
starting with a simple system like the FATE Accelerated system by Evil Hat Productions.
After you've played a few games with that system, you can move on to more complex
systems like D&D. The fifth edition of D&D has a relatively straightforward core
rulebook with many supplemental rulebooks to add as you get deeper into the system.
 Start short: Rather than starting with the first episode of a campaign that you expect to
take a full year of play to complete, try starting with a simple mission that can be
wrapped up in a single night of play. This gives your group a chance to try out their
characters and the system and see if they like both. If not, it's easy to change to something
else, and it's much more important that the players enjoy their first experience role-
playing than that you kick off an epic campaign.
 Help the players get started: If the players in your campaign have little or no prior
experience role-playing, creating their characters for them is a very good idea. This
gives you the chance to make sure that the characters have complementary abilities and
stats so that they'll combine into a good team. A standard role-playing party is composed
of the following characters:

 A warrior to absorb enemy damage and fight up close (a.k.a., a tank)
 A wizard to do long-range damage and detect magic (a.k.a., a glass cannon)
 A thief to disarm traps and make powerful sneak attacks (a.k.a., a blaster)
 A cleric to detect evil and heal the other party members (a.k.a., a controller) If you're
going to create characters for your players, you should get early buy-in from them by
asking them to tell you about the kind of play experience they would like and the kind
of abilities that they want their character to have. Early buy-in and interest is one of the
keys to getting your players past the rough patches that can happen at the beginning of a
campaign.

 Plan for improvisation: Your players will frequently do things that you don't expect.
The only way to plan for this is to prepare yourself for flexibility and improvisation. Be
ready with things like maps of generic spaces, a list of names that could be used for
NPCs (non-player characters) that the party may or may not encounter, and a few generic
enemies or monsters of various difficulties that you can conjure at will. The more you
have ready beforehand, the less time you'll have to spend looking through your rulebook

996

http://www.evilhat.com/home/fae/

in the middle of the game.
 Be willing to make rulings: If you can't find the answer to a question in the rules after 5
minutes of looking, just make a ruling using your best judgment and agree with the
players that you'll look it up after the game session is over. This keeps the game from
bogging down due to esoteric rules.
 It's also the players' story: Remember to allow the players to go off the beaten path. If
you've prepared too narrow a scenario, you might be tempted to not let them do so, but
that would run the risk of killing their enjoyment of the game.
 Remember that constant optimal challenge isn't fun: In the discussion of flow in
Chapter 8, "Design Goals," you read that if players are always optimally challenged,
they get exhausted quickly. This is also true in RPGs. Boss fights should always
optimally challenge your players, but you should also have fights where the players win
easily (this helps demonstrate to them that their characters are actually getting stronger
as they level up) and sometimes even fights that the players need to flee from to survive
(this is usually not expected by players, and can be really dramatic for them). Unlike
most systems, FAE has a really intriguing game mechanic that makes giving up and
fleeing a much better choice than fighting to lose, which is another reason I really like it.

If you keep these tips in mind, it should help your role-playing campaigns be a lot more fun
for both you and your players.

User Interface Concepts
This section covers button mapping, which allows you to use Microsoft gamepad
controllers on your Windows, macOS, or Linux machine and information about how to
enable right-click on macOS computers.

Axis and Button Mapping for Microsoft Controllers
Although most of the games included in this book use a mouse or keyboard interface, I'm
guessing you might want to eventually hook up a gamepad controller to your games.
Generally, the easiest controller to get working on a PC, macOS, or Linux is the Microsoft
Xbox 360 Controller for Windows, though I've also seen people have a lot of luck with a
PS4 or Xbox One controller.

However, it is unfortunately true that each platform (PC, macOS, and Linux) interprets the
controllers differently, so you'll need to set up a Unity InputManager that adapts to how the
controller works on each platform.

Alternatively, you could save yourself a lot of trouble and choose an input manager from
the Unity Asset Store. Several of my students have used InControl by Gallant Games,

997

which maps input from Microsoft, Sony, Logitech, and Ouya controllers to the same input
code in Unity. Just search in the Unity Asset Store for "InControl" or go to:

http://www.gallantgames.com/pages/incontrol-introduction

If you do want to configure the Unity InputManager yourself, Figure B.9 contains
information from the Unify community's page about the Xbox 360 controller.9 The numbers
in the figure indicate the joystick button number that can be accessed by the InputManager
Axes window. The axes are designated with the letter a before them (for example, aX, a5).
If working with multiple joysticks on the same machine, you can designate a specific
joystick in the InputManager Axes by using joystick # button # (e.g., "joystick 1 button 3").
The same Unify page also includes a downloadable InputManager setup for four
simultaneous Microsoft controllers.

998

http://www.gallantgames.com/pages/incontrol-introduction

Figure B.9 Xbox controller mapping for PC, macOS, and Linux

On a PC, the driver for the controller should install automatically. On Linux (Ubuntu 13.04
and later), it should be included as well. For macOS, you need to download the driver from
the GitHub open source project at
https://github.com/360Controller/360Controller/releases.

Right-Clicking on macOS

999

https://github.com/360Controller/360Controller/releases

Throughout this book, I sometimes ask you to right-click on something. However, many
people don't know how to right-click on a Macintosh because it's not the default setting for
macOS trackpads and mice. There are actually several ways to right-click, and the one you
use depends on how new your Mac is and how you prefer to interact with your machine.

Control-Click = Right-Click
Near the bottom-left corner of all modern macOS keyboards is a control key. If you hold
down the control key and then left-click (your normal click) on anything, macOS treats it as
a right-click.

Use Any PC Mouse
You can use almost any PC mouse that has two or three buttons on macOS. I personally use
a Logitech MX Anywhere 2 or a Razer Orochi.

Set Your macOS Mouse to Right-Click
If you have a macOS mouse made in 2005 or later (the Apple Mighty Mouse or Apple
Magic Mouse), you can enable right-click by

1. Open System Preferences > Mouse from the apple menu in the top left corner of your
screen.

2. Select the Point & Click tab at the top of the screen.
3. Check the box next to Secondary click.
4. Choose Click on right side from the pop-up menu directly below Secondary Click.

This makes a click on the left side of the mouse left-click and a click on the right side right-
click.

Set Your macOS Trackpad to Right-Click
As with the Apple Mouse, you can configure any Apple laptop trackpad (or the Bluetooth
Magic Trackpad) to right-click.

1. Open System Preferences > Trackpad from the apple menu in the top-left corner of
your screen.

2. Choose the Point & Click tab at the top of the window.
3. Check the box next to Secondary Click.
4. If you choose Click or tap with two fingers from the pop-up menu directly below

Secondary Click, it will make tapping with one finger the standard left-click and
tapping with two fingers the right-click. Other right-click trackpad options are also

1000

available.

1. Erich Gamma, Richard Helm, Ralph Johnson, and John Vissides, Design Patterns:
Elements of Reusable Object-Oriented Software (Reading, MA: Addison-Wesley,
1994). The Factory Pattern is one of many described in the book. Others include the
Singleton Pattern, which is used in many of the tutorials in this book.

2. The full description of the Component Pattern is far more complex, but this definition
serves our needs.

3. Robert Nystrom, Game Programming Patterns (Genever Benning, 2014). ©2014 by
Robert Nystrom.

4. The • symbol is used here (and commonly in math) to represent the dot product, as
opposed to the * that represents standard multiplication of floats and the × that
represents a cross product of two vectors.

5. A unit vector is a vector with a magnitude of 1 (i.e., a length of 1).
6. "Juice It or Lose It" is a great 2012 talk by Martin Jonasson and Petri Purho about

adding juiciness to games. You can try the link https://www.youtube.com/watch?
v=Fy0aCDmgnxg or just search for "juice it or lose it."

7. FixedUpdate() is called 50 times per second because the default value for
Time.fixedDeltaTime is 0.02 (one 50th of a second), but you can change the
frequency at which FixedUpdate() is called by adjusting
Time.fixedDeltaTime. This is especially useful if you've changed Time.
timeScale to something like 0.1 (slowing down Unity to one 10th regular speed). At
a Time. timeScale of 0.1, FixedUpdate() would only be called every 0.2
seconds in real time, leading to visibly stuttering physics movement. Any time you alter
Time.timeScale, you should also alter Time.fixedDeltaTime by the same
amount; so for a Time.timeScale of 0.1, you want a Time. fixedDeltaTime
of 0.002 to still experience fifty FixedUpdate()s every real time second.

8. You might receive a warning in the console telling you that "BoxColliders does[sic] not
support negative scale or size." Don't worry about this. The extrapolation of scale could
cause negative scaling here, but we're not worried about collision detection in this
example.

9. The Unify community's page for this is http://wiki.unity3d.com/index.php?
title=Xbox360Controller.

1001

https://www.youtube.com/watch?v=Fy0aCDmgnxg
http://wiki.unity3d.com/index.php?title=Xbox360Controller

APPENDIX C

ONLINE REFERENCE

Whereas many online references just give you a list of websites to check out, I
thought using this appendix to show you where and how I tend to look for answers
online when I need them would be more useful. Appropriately, this includes a few
basic links, but it also includes strategies for tracking down information and
answers to problems that you might encounter.

I recommend reading this straight through once (it's very short) and then
returning to it when you encounter an issue.

Unity Tutorials
Unity has created a series of tutorials over the years that can be very useful to check out.
This book focused on short gameplay tutorials to help you understand how to program game
mechanics, whereas the tutorials created by Unity tend to spend an equal amount of time on
art assets, animation, building scenes, and visual effects in addition to scripting. This book
is about you learning how to design and prototype games; their tutorials are about learning
all the different features of the Unity engine.

Be aware when looking at these that many were made with older versions of Unity, and
they sometimes don't update the tutorials to match the new version of the engine (meaning
that sometimes the elements of the Unity interface that the tutorial describes or some code
libraries that they use might have changed). In addition, some of the very old tutorials were
written in JavaScript rather than C#. This should be fine for you—especially after you've
read and understood the code in this book—but in general, I recommend looking for
tutorials written in C# to make sure you're finding more recent ones.

Unity's website offers a Learn section that is meant to introduce you to Unity through
several different tutorials. This link takes you to that page. Choose a topic that you want to
learn about, and you can view video tutorials to help you do so:

 Learn section—Tutorials: http://unity3d.com/learn/tutorials

1002

http://unity3d.com/learn/tutorials

Unite Conference Archive
After you have some experience with Unity under your belt, you might want to look at some
more advanced resources. A great place to do this is to look at videos of various talks from
the Unite conference over the years. Unity holds versions of Unite all over the world every
year and records many of the talks. You can find them all here:

 https://unite.unity.com/archive

Programming Help
As you delve further into programming Unity, you'll find that the documentation for
programming Unity with C# is primarily located in two places: Unity's scripting
documentation and the Microsoft C# reference. The Unity scripting reference does a
fantastic job of documenting Unity-specific features, classes, and components, but it doesn't
cover any of the core C# classes (such as List<>, Dictionary<>, and so on). For these, turn
to Microsoft's C# documentation. I recommend first looking for something in the Unity
documentation available on your computer, and if it's not there, then look in the Microsoft
docs.

Unity Scripting Reference
Unity scripting references include the following:

 Online: http://docs.unity3d.com/Documentation/ScriptReference/
 Local: From within Unity, choose Help > Scripting Reference from the menu bar. This
brings up a version of the reference that is stored locally on your computer. Even if you
don't have an Internet connection, this reference is available. (I use it while traveling all
the time.)

Microsoft C# Reference
Search Bing.com for Microsoft C# Reference. The first hit should be what you're looking
for. As of the time of writing this book, the direct URL is:

 http://msdn.microsoft.com/en-us/library/618ayhy6.aspx

Stack Overflow
Stack Overflow is an online community of developers helping developers. People post
questions, and other members of the site answer them. In a bit of gamification, those who
give the best answers (as voted by other members) earn experience points and prestige on
the site:

1003

https://unite.unity.com/archive
http://docs.unity3d.com/Documentation/ScriptReference/
http://msdn.microsoft.com/en-us/library/618ayhy6.aspx

 http://stackoverflow.com

Often, when I'm trying to figure out how to do something new or unusual, I'll end up finding
a good answer on Stack Overflow. For instance, if I want to know how to sort a List<>
using LINQ, I enter "C# LINQ sort list of objects" into Google, and as I write this, the top
eight hits are Stack Overflow questions. I usually find myself there via a Google search
rather than starting on the Stack Overflow website itself, but when a search result is on
stackoverflow.com, it's my first choice for finding good answers.

Learning More C#
I highly recommend two additional books for learning more about C#:

 For beginners: Rob Miles's C# Programming Yellow Book,
http://www.csharpcourse.com
Rob Miles, a lecturer at the University of Hull, has written a fantastic book on C#
programming that he updates often. You can find the current version on his website. It is
witty, clear, and comprehensive.

 For reference: C# 4.0 Pocket Reference, 3rd Edition,
http://shop.oreilly.com/product/0636920013365.do
Although there is now a C# 5.0 version of this reference, Unity is still using the C# 4.0
standard (well, it's most of C# 4.0; there are actually a few bits missing), so this is the
reference for you. Any time I have a C# question, this is the first place I turn. It is a
truncated version of the information in O'Reilly's C# in a Nutshell book, but I actually
find the pocket reference more useful. It also includes a ton of LINQ information.

Search Tips
Any time you want to search for something having to do with C#, make C# the first term in
your search. If you just search for list, the first thing to come up has nothing to do with
coding. Searching for C# list gets you to the right place immediately.

Similarly, if you want to find anything related to Unity, be sure to make Unity your first
search term.

Finding Assets
The following sections provide advice on finding various art and audio assets.

The Unity Asset Store

1004

http://stackoverflow.com
http://www.csharpcourse.com
http://shop.oreilly.com/product/0636920013365.do

You can access the Asset Store by opening the Asset Store window in Unity (choose
Window > Asset Store from the menu bar) or by going to the website in a standard browser.
The Asset Store has a huge collection of models, animations, sounds, code, and even
complete Unity projects that you can download. Most of the assets are available for a small
fee, and some of the assets on the site are free. Some assets are very pricey, but they are
often worth it and can save you hundreds of hours of development:

 https://www.assetstore.unity3d.com/

Models and Animations
These sites are some places to look for 3D models. Some are free, but many are paid. Also,
be aware that many of the free ones are for noncommercial use only:

 TurboSquid: http://www.turbosquid.com/
 Google 3D Warehouse: http://3dwarehouse.sketchup.com/
Be aware that nearly all the assets on the Google 3D Warehouse site are in the SketchUp
or Collada formats. Unity has an importer for SketchUp files, but as I am writing this, the
importer only works with SketchUp 2015 files. You might need to open the SketchUp or
Collada file in SketchUp and then save it as a SketchUp 2015 file for Unity to import it
correctly.

Fonts
Nearly all the fonts on these sites are free for noncommercial use, but you will often need to
pay to use them on commercial projects:

 http://www.1001fonts.com/
 http://www.1001freefonts.com/
 http://www.dafont.com/
 http://www.fontsquirrel.com/
 http://www.fontspace.com/

Other Tools and Educational Discounts
If you are a student or faculty member of a university, you qualify for many discounts on
software.

 Adobe: Adobe offers the entire Creative Cloud suite of their tools to students at a
discounted monthly rate, good for one year. This includes Photoshop, Illustrator,
Premier, and others.

1005

https://www.assetstore.unity3d.com/
http://www.turbosquid.com/
http://3dwarehouse.sketchup.com/
http://www.1001fonts.com/
http://www.1001freefonts.com/
http://www.dafont.com/
http://www.fontsquirrel.com/
http://www.fontspace.com/

http://www.adobe.com/creativecloud/buy/students.html
 Affinity: Affinity makes Designer (an Illustrator competitor) and Photo (a Photoshop
competitor), which seem to be very good programs and only cost about $40 each to own
forever (as opposed to paying Adobe every month). No student discount, but relatively
cheap and high quality.
http://affinity.serif.com/
 AutoDesk: AutoDesk gives students and educators a free 36-month license for almost
any of their tools, including 3ds Max, Maya, Motionbuilder, Mudbox, and more.
http://www.autodesk.com/education/free-software/featured
 Blender: Blender is a free, open source tool for modeling and animation. It includes
many of the capabilities of software like Maya and 3ds Max but is entirely free and can
be used for commercial purposes. However, its interface is quite different from what
you might be used to from other modeling and animation software.
http://www.blender.org/
 SketchUp: SketchUp is another tool for modeling. It has very intuitive modeling
controls and is updated frequently. The basic version, SketchUp Make, is completely
free (though not for commercial use), and SketchUp Pro is available at a discounted
price for students and educators. In newer versions of SketchUp, exporting obj and fbx
format files is possible, which Unity can import easily, though the best format for import
into Unity is probably to save your model as a SketchUp 2015 file. If you're making your
own models in SketchUp and exporting to obj or fbx, consider checking the Triangulate
all faces, Export two-sided faces, and Swap YZ coordinates options and setting your
Units to Meters when exporting files (these settings are not necessary if you save the
model as a SketchUp 2015 file).
http://www.sketchup.com/

1006

http://www.adobe.com/creativecloud/buy/students.html
http://affinity.serif.com/
http://www.autodesk.com/education/free-software/featured
http://www.blender.org/
http://www.sketchup.com/

INDEX

Symbols
& (bitwise AND) operator, 334, 889
&& (AND) operator, 332
// comment notation, 302, 314, 719
/* */ comment notation, 719
== (equality) operator, 336–338
> (greater than) operator, 338
>= (greater than or equal to) operator, 339
!= (inequality) operator, 338
< (less than) operator, 338
<= (less than or equal to) operator, 339
% (modulus operator), 357
! (NOT) operator, 332
|| (OR) operator, 332
. (period), 293
| (pipe / bitwise OR) operator, 334, 889
; (semicolon), 277, 292, 299, 405–407
<< (shift left operator), 890
_ (underscore), 296
2D depth-sorting order (Bartok), 732–736
2of12inf word list, 756
2x Multi Sampling setting, 808
3-act structure, 52–54
3D / 2D button (New Project screen), 883
3D cameras, 467
3D printing, 48
3x5 note cards, 133
5-act structure, 50–52

A
AAA development, costs of, 241–242

1007

absolute spreadsheet references, 165
AbsorbPowerUp(), 619–620
accessibility, color blindness and, 75
accessors, 424
achievers (player type), 68
acquaintances as playtesters, 147–148
action puzzles, 214
actions

Apple Picker game, 263–264
discernible, 65
integrated, 65

acts
five-act structure, 50–52
three-act structure, 52–54

Add(), 361, 367, 370
AddBack(), 659–660
AddCard(), 729, 735–736
AddDecorators(), 655–657
AddFaces(), 657–658
AddPips(), 657–658
Adkison, Peter, 99
ADL (automated data logging) and playtesting, 155
Adobe

educational discounts, 951
Photoshop, 547–548

aesthetics
cultural aesthetics (Layered Tetrad), 35, 82–83
dynamic aesthetics (Layered Tetrad), 34, 70–75
Elemental Tetrad framework, 28
inscribed aesthetics (Layered Tetrad), 33, 47–49
MDA (mechanics, dynamics, and aesthetics) framework, 21

Affinity
educational discounts, 951
Photo, 547–548

Agile development
Agile Alliance, 224
manifesto for, 224–225
Scrum

1008

BDCs (burndown charts), 227–238
development of, 225
meetings, 227
product backlog, 226
releases, 226–227
sprints, 226–227
teams, 226

Agile Software Development with Scrum (Schwaber and Beedle), 225
agon, 112
AI (artificial intelligence), 740–743
Alaxchiiaahush, 118
Albahari, Ben, 728
Albahari, Joseph, 728
alea, 112
Alexander, Christopher, 45
allocation of memory, 288
alpha phase, 104
alpha values (color), 595–596
alternate reality games (ARGs), 17, 44–45
ambiguous decisions, 124
ampersand (&), 889
analysis phase (iterative design), 93–94
Anderson, Nels, 213
animation, 950

Bartok
Bartok class, 714–715
BartokLayout script, 718–722
camera setup, 716–717
CardBartok script, 711–714
game layout, 717–718
importance of, 709
PrefabCard, 715–716

Dungeon Delver
animation states, 813
attack pose animations, 818–821
walking animation, 810–813, 817–818

procedural animation, 72–73
Word Game, 785–788

1009

announcing beginning/end of rounds (Prospector Solitaire), 699–700
anti-aliasing issues, 807–808
Apache OpenOfice Calc, 162
Apple

Meguerian v. Apple Inc, 87
Numbers, 162
Objective-C, 288
paper prototyping by, 130
Test Flight, 705

Apple GameObject
actions, 264
catching, 483–484
creating, 464–465
dropped apple notifications, 488–489
flowchart, 266
stopping if they fall too far, 480–481

Apple Picker, 261–262
action lists, 263–264
Apple GameObject, 263

catching, 483–484
dropped apple notifications, 488–489
flowchart, 266
programmer art, 461–464
stopping if they fall too far, 480–481

AppleTree GameObject, 263
basic movement, 472–473
changes of direction, 474–476
configuration variables, 470–472
flowchart, 266–267, 470
physics layers, 478–480
programmer art, 461–464

art assets, 461–466
basic gameplay, 262
Basket GameObject, 263

catching apples with, 483–484
destroying when apple is dropped, 489–490
flowchart, 264
instantiating, 481–482

1010

moving with mouse, 482–483
points for each caught apple, adding, 486–488
programmer art, 466

camera setup, 466
camera settings, 468–469
orthographic versus perspective cameras, 467

game panel settings, 469
GUI and game management

basket destruction when apple is dropped, 489–490
dropped apple notifications, 488–489
high scores, 491–494
points for each caught apple, adding, 486–488
score counter, 484–486

potential modifications to, 494
preparation for, 461
time-based games, 474

AppleDestroyed(), 488–490
AppleTree GameObject

basic movement, 472–473
changes of direction, 474–476
configuration variables, 470–472
flowchart, 266–267, 470
physics layers, 478–480
programmer art, 461–464

applications. See projects
Approximately(), 325
ARGs (alternate reality games), 17, 44–45
arguments, 294, 391–393, 398
Array2dEx script, 376
ArrayEx script, 371–372
arrays

Array2dEx script, 376
ArrayEx script, 371–372
converting Lists to, 367
definition of, 360
empty elements in, 373–375
jagged, 379–381
methods, 374–375

1011

multidimensional, 376–379
properties, 374–375
when to use, 383
zero indexed, 366

arrows, indirectly guiding players with, 201–202
art, gameplay as, 82–83
art assets

Apple Picker game, 461
Apple, 464–465
AppleTree, 461–464
Basket, 466

Dungeon Delver, 823
Mission Demolition, 497–502, 516–520
procedural visual art, 72–73
Prospector Solitaire, 698–699
Space SHMUP

enemy artwork, 557–559
power-ups, 612–613

The Art of Game Design (Schell), 10, 20, 40–41, 95, 122, 174, 198
artificial intelligence (AI), 740–743
Assassin's Creed, 201

limited possibilities in, 54–55
screen resolution, 74

Asset Packages, 546–548, 883
Asset Store, 97, 950
Assets folder, 297–298
assignment operator (=), 336
asymmetric games, 160
Atkinson, Kevin, 756
attaching C# scripts, 300–301, 407–408
attack pose animations (Dungeon Delver)

coding, 819–821
generating, 818

attention, 121–123
Attractor script, 441–442
attributes

interpolating, 928–930
XML (eXtensible Markup Language), 913

1012

audio design, 203
auditory play environment, 74
authoring languages, 286
authorized transmedia, 85–86
AutoDesk, 951
automated data logging (ADL), 155
AT (automated testing), 157
automatic properties, 899
autotelic empowerment, 119–120
avatars, 56–58, 203–204
average damage

calculating, 188–189
charting, 189–190

Awake(), 392
Apple Picker, 493
Space SHMUP, 620

axis mapping, 944–945

B
backface culling, 770
background noise, 47–48
backlogs

product backlog, 226
sprint backlogs, 226–227

balance
concept of, 160
weapon balance, 186–187

average damage, 188–190
balanced values example, 192–193
duplicating weapon data, 190–191
overall damage, 191
percent chance for each bullet, 187–188
rebalancing weapons, 192

balrog, 77
Bartle, Richard, 67–68
Bartok, 4–9

2D depth-sorting order, 732–736
AI (artificial intelligence), 740–743

1013

analysis of, 8–9
animation, 709
Bartok class, 714–715
BartokLayout script, 718–722
build settings, 710–711
building for WebGL, 750–752
camera setup, 716–717
CardBartok class, 711–714, 744
comments, 719
deblocking, 6
design changes to, 9
digital version, 4
empty draw piles, 745–746
enabling human players in, 744–745
fanning the hands, 730–731
game concept, 708
game layout, 717–718
game over logic, 749–750
game UI (user interface), 746–749
handling turns in, 736–740
initial card deal, 731–732
moving cards in, 730–731
objective, 5
online version of, 708
Player class

AddCard(), 729
creating, 722–726
FanHand(), 726–728, 730–731
LINQ (Language Integrated Query) language, 728–730

playtesting, 6
PrefabCard, 715–716
procedures, 64
questions to ask, 6–7
rules for, 5–9
scene setup, 708–709

BartokLayout script, 718–722
BartokLayoutXML, 717–718
Basket GameObject

1014

actions, 264
adding points for each caught apple, 486–488
catching apples with, 483–484
destroying when apple is dropped, 489–490
flowchart, 264
instantiating, 481–482
moving with mouse, 482–483
programmer art, 466

Bateman, Chris, 14–15, 112, 118
BBEdit, 378
BDCs (burndown charts), 227–228

creating, 238
Daily Scrum worksheet, 236–238
Main worksheet, 229–233

sprint progress, 232–233
sprint settings, 230
task assignments, 231
time estimation, 232–233

Person Chart, 235–236
Stacked Person Chart, 233–234
Task Rank Chart, 233–234

BDV (Burndown Velocity), 234
Beale, Alan, 756
Beedle, Mike, 225
behavioral change, games for, 111
Berkebile, Bob, 260
beta phase, 104
beta tests, 153, 154

closed online beta tests, 153
limited online beta tests, 154
open online beta tests, 154

Bethesda Softworks, 82. See also Skyrim
Bézier curves

definition of, 936–937
recursive functions, 904, 938–942
Unity example, 937–938

BioWare's Mass Effect
dialogue choices in, 58

1015

player interaction pattern, 43
screen resolution, 74

bitwise AND, 334, 889
bitwise Boolean operators, 889–890
bitwise OR, 334, 889
Blade Runner, 58
Blender, 951
Blow, Jonathan, 109
bndCheck (Enemy_1
class), 586–587
board games, systems thinking in, 258
Bogost, Ian, 115
Boid script, 443, 446–449, 452–454
Boids project, 436

Attractor script, 441–442
Boid script, 443, 446–449, 452–454
Boids values, 455
component-oriented design, 440
LookAtAttractor script, 443
Neighborhood script, 449–452
simple model, 436–439
Spawner script, 444–446

Boids values, 455
Boolean operators, 332–335

bitwise, 334, 889–890
combining, 334–335
if statements and, 340–341
logical equivalence, 335
NOT operator (!), 332
AND operator (&&), 332
OR operator (II), 332

Boolean variables, 322
boss fights, 221
boundaries

FDD (Formal, Dramatic, and Dynamic) framework, 25
Layered Tetrad framework, 44–45

Box colliders, 305, 329
bracket access, 318

1016

brainstorming, 99–102
break statement, 355–356
Brice, Mattie, 125
brightness of environment, 73–74
Brigs, Jeff, 71–72
Brown, Edmund G., 86–87
Brown v. Entertainment Merchants Association, 86–87
bugs. See debugging
bullets, determining percent chance for, 187–188
Burgun, Keith, 10, 14, 82–83, 120, 124
burndown charts. See BDCs (burndown charts)
Burndown Velocity (BDV), 234
Burnout series, 220
button mapping, 944–945
BuySomeMilk() function, 290

C
C#. See also functions; methods; projects; variables

advantages of, 275
arguments, 294
arrays

ArrayEx script, 371–372
definition of, 360
empty elements in, 373–375
jagged, 379–381
methods, 374–375
multidimensional, 376–379
properties, 374–375
when to use, 383
zero indexed, 366

capitalization, 277, 300
classes

components of, 419–421
Enemy class sample project, 422–424, 428–429
fields, 420–421
inheritance, 428
instances, 320–322, 426–427
properties, 424–426

1017

race conditions, 428
subclasses, 429–431
superclasses, 429–431

comment notation
// comment notation, 302, 314, 719
/* */ comment notation, 719

commonly used collections, 360–362
coroutines

definition of, 891
Unity example, 891–892

debugging, 403–405
attaching debugger to Unity, 413–414
attaching/removing scripts, 407–408
compile-time bugs, 405–407
examining code, 414–416
runtime errors, 409–410
stepping through code, 410–413
variables in debugger, 416–417

definition of, 360
Dictionary, 368–371
enums, 541, 892–893
features of, 286

compiled language, 286–288
function-based, 290
managed code, 288–289
object-orientation, 291
strong typing, 289

generic collections, 362–363
interfaces

definition of, 895
Unity example, 895–899

Lists, 363–368
altering, 367
jagged, 381–383
methods, 360, 366–367
properties, 366–367
when to use, 383
zero indexed, 366

1018

naming conventions, 899–900
online references, 949
operators

bitwise Boolean operators, 889–890
order of operations, 900–901
precedence of, 900–901

order of operations, 293
queues, 361
race conditions, 901–903
runtime speed, 275
scripts, 329

attaching, 300–301
creating, 298–303, 884–885

semicolon (;), 277, 292, 299
spaces, 300, 307
strings, 294
syntax, 292–294
whitespace in, 452

C# 5.0 Pocket Reference (Albahari and Albahari), 728
Caillois, Roger, 112
Call of Duty, 94
call to action, 197
callback functions, 709
calling functions, 294
camelCase, 319, 899
camera setup

Apple Picker game, 466
camera settings, 468–469
orthographic versus perspective cameras, 467

Bartok, 716–717
Dungeon Delver game, 796

Game Pane, 796–797
GUI camera, 797
main camera, 797
making camera follow Dray, 842–843
protection for TileCamera.MAP, 845
Tile.SetTile(), 845–846

Mission Demolition, 497–499, 511–516

1019

camera-based guidance, 202–203
capitalization, 277, 300, 319, 405
Capsule colliders, 328
Card class (Prospector Solitaire)

building cards in code, 653–660
Card script, 645–646
shuffling cards, 660–661

card games. See also Bartok; Prospector Solitaire
decks of cards, 180–182

custom card decks, 181
deblocking, 6
nanDECK, 181
in paper prototyping, 131
shuffling, 182

Tri-Peaks, 661
card sleeves, 131
CardBartok class, 711–714, 744
CardClicked(), 679–680, 688–689, 744–745
CardProspector class, 668–669
Carnegie Mellon Entertainment Technology Center, 245
Cash, Bryan, 113
castle (Mission Demolition)

goals, 527
multiple castles, 535
testing, 527
walls and slabs, 525–527

catching apples (ApplePicker game), 483–484
CBCallback(), 742
CCGs (collectible card games), 99
chain reaction games, 221
chain scoring (Prospector Solitaire), 685–689
char variables, 317
characters

FDD (Formal, Dramatic, and Dynamic)framework, 26
Layered Tetrad framework, 50

charts
Apple Picker flowcharts 264–267
BDCs (burndown charts), 227–228

1020

creating, 238
Daily Scrum worksheet, 236–238
Main worksheet, 229–233
Person Chart, 235–236
Stacked Person Chart, 233–234
Task Rank Chart, 233–234

cheaters, 69
CheckForGameOver(), 683–684
CheckWord(), 784–785
CheckWordInLevel(), 766–767
Chen, Jenova, 109, 115, 146
choices, 125
Chromatic Vision Simulator, 75
Chrono Trigger, 55
Chutes and Ladders. See Snakes and Ladders
Cialdini, Robert, 4
CIL (Common Intermediate Language), 275, 288
citizens, 44
class variables, 318
classes. See also names of specific classes (for example, Cloud class)

components of, 419–421
definition of, 291
Enemy class sample project

EnemyZig, 430–431
implementation, 428–429
project setup, 422–424

fields, 420–421
inheritance, 291, 428
instances, 320, 426–427
JaggedListTest, 381–383
properties, 424–426
subclasses, 429–431, 670–671
superclasses, 291, 429–431, 670–671

clauses
condition clause, 353
initialization clause, 353
iteration clause, 354

Clear(), 360, 361, 367, 370

1021

clear decisions, 125
ClearWeapons(), 618–619
clickable cards (Prospector Solitaire), 677–680
Clock project, 891
closed online beta tests, 153
closing tags (XML), 913
Cloud Build (Unity), 705
Cloud class, 517–520
CloudCrafter class, 521–523
clouds (Mission Demolition)

Cloud class, 517–520
CloudCrafter class, 521–523
multiple clouds, 521–523
programmer art, 516–520

Clover Studio, Okami, 57
code libraries, 260–261
coll collection, 366
Collaborate (Unity), 705
collaborative prototyping, 130
collaborators, 44
collectible card games (CCGs), 99
collection phase (brainstorming), 101
collections. See also arrays

commonly used collections, 360–362
CubeSpawner3
script, 383–386
definition of, 360
Dictionary, 368–371
generic collections, 362–363
Lists

altering, 367
ListEx script, 363–365
methods, 360, 366–367
properties, 366–367
when to use, 383
zero indexed, 366

queues, 361
Collider components, 305, 328–329

1022

Dungeon Delver
collider, adding to Dray, 832
per-tile collision scripts, 829–831

scaling, 588
collision phase (brainstorming), 102
collisions

Dungeon Delver, 828–832
Space SHMUP, 607–608

color
color blindness, 75
Color variables, 323–324
default to invisible alpha, 595–596
Word Game, 788–790

comments, 302, 314
// comment notation, 302, 719
/* */ comment notation, 719
Mission Demolition, 517–521
XML (eXtensible Markup Language), 913

Common Intermediate Language (CIL), 275, 288
communication, 110
community, 110
comparison operators, 336–339

combining with if statements, 340–341
equality operator (==), 336–338
greater than operator (>), 338
greater than or equal to operator (>=), 339
inequality operator (!=), 338
less than operator (<), 338
less than or equal to operator (<=), 339

competitors, 43–44
compiled languages, 286–288. See also C#
compile-time bugs, 317, 318, 405–407
complex problems, breaking down, 261
Component Pattern, 906–907
component scripts, 555
component-oriented design

Boids project, 440
Dungeons & Dragons, 794–795

1023

compound statements, 340
computer language, 260–261
concepts, teaching, 206
condition clause, 353
conditional statements, 339–345

if, 339–340
if…else, 342

conferences, 246–247
configuration

new projects, 882–884
Unity, 277–278
Unity Analytics, 883

conflict, structured, 118–119
conflicting objectives, 42
Console pane (Unity), 283
constant access time, 368
constraints, 198–199
construction puzzles, 214
construction set for puzzle design, 218
Contains(), 361
ContainsKey(), 361, 370
ContainsValue(), 361, 370
continue statement, 357
control-clicking in macOS, 946
converting Lists to arrays, 367
cooperative play, 43
Core War, 62–63
coroutines

definition of, 891
Unity example, 891–892
Word Game, 757–761

cosine, 914–917
cosplay, 82
costs of AAA development, 241–242
Count, 361
Counter Strike, 81
counting down, 354
C.P.U. Bach, 71–72

1024

Crazy Cakes, 155
Creation Kit™ (Bethesda Softworks), 82
Csíkszentmihályi, Mihaly, 115–117
Cube GameObject

creating, 303–306
making prefab from, 306–311

CubeSpawner script, 307, 404
CubeSpawner3 script, 383–386
culling, backface, 770
cultural aesthetics, 82–83
cultural impact of games, 86–89
cultural layer (Layered Tetrad), 34–36, 80–81

aesthetics, 82–83
authorized transmedia and, 85–86
cultural impact of games, 86–89
mechanics, 81–82
narrative, 83–84
technology, 84–85

cultural mechanics, 81–82
cultural narrative, 83–84
cultural technology, 84–85
cumulative outcomes, 69–70
curves. See Bézier curves
custom card decks, 181
custom game levels, 82

D
D&D (Dungeons & Dragons), 56, 75–76, 83, 942
Daily Scrum worksheet, 236–238
damage from enemies

Dungeon Delver
DamageEffect class, 852–853
Dray class modifications, 853–856

Space SHMUP, 571–575
damage per second (DPS) calculators, 84
damage to enemies

average damage
calculating, 188–189

1025

charting, 189–190
Dungeon Delver

DamageEffect to Grappler, 871
modifying enemy to take damage, 856–859

overall damage, 191
Space SHMUP, 609–612

DamageEffect class, 852–853, 871
dangers of infinite loops, 349
datastreams, recording during individual playtesting, 151
death, 70
deblocking, 6
debugger

attaching to Unity, 413–414
examining code with, 414–416
watching variables in, 416–417

debugging, 403–405. See also debugger
attaching/removing scripts, 407–408
common bugs, 277, 405
compile-time bugs, 317, 318, 405–407
force quitting applications, 412–413
in iterative design, 572
runtime errors, 409–410
stepping through code, 410–413

decision making
discernible decisions, 65
integrated decisions, 65
interesting decisions, 124–125

Deck class (Prospector Solitaire)
Deck script, 646
parsing information from Deck XML, 648–650

decks of cards, 180–182. See also card games
custom card decks, 181
deblocking, 6
nanDECK, 181
in paper prototyping, 131
shuffling, 182

declaring variables, 292, 314–315
decrement operators, 351, 354

1026

Default layer, 889
Defense of the Ancients (DotA), 81
defining variables, 314
delegates (function), 893–895
Delver Level Editor, 877
DelverCollisions text file, 828–829
DelverData.txt file, 799–800
DelverTiles.png file, 798–799
Dequeue(), 361
design goals

attention and involvement, 121–123
designer-centric goals, 108–111
empowerment, 119–120
experiential understanding, 125–127
flow, 115–118
fun, 112–113
interesting decisions, 124–125
lusory attitude, 113–115
player-centric goals, 108
puzzles, 219
structured conflict, 118–119

design patterns, 905
additional resources on, 908
Component, 906–907
Singleton, 905–906
Strategy, 907–908

Design Patterns: Elements of Reusable Object-Oriented Software (Gamma et al), 905
design phase (iterative design), 95–96
designer-centric goals, 108–111
designers

brainstorming, 99–100
collection phase, 101
collision phase, 102
discussion phase, 102
expansion phase, 100
rating phase, 102

changing your mind, 103
designer game views, 21

1027

game development process, 103–105
innovation, 98–99
iterative design, 92–93, 572

analysis phase, 93–94
design phase, 95–96
implementation phase, 96–97
iterations, 98
testing phase, 97–98

listening skills, 95–96
responsibilities, 36–37
scoping, 105–106

Destiny, 94
development costs, 241–242
development environment, 261. See also Unity
development process, 103–105
development team, 226
Diaconis, Persi, 6
dialogue choices, 58
Diamante, Vincent, 72
dice probability, 179, 917–922

examining with Google Sheets, 162–174
in paper prototyping, 131
probability math, 174–178

Dichotomy Paradox (Zeno), 926–928
Dictionary, 368–371, 596–600
DictionaryEx script, 368–369
Die Technik des Dramas (Freytag), 50–51
difficulty

game balance and, 160
puzzles, 213, 219

digital game industry. See game industry
digital prototyping, 261. See also projects

purpose of, 460
systems thinking, 258

breakdown of complex problems, 261
code libraries, 260–261
computer language, 260–261
development environment, 261

1028

simple instructions, 259
direct guidance, 196–198

Kya: Dark Lineage, 196
Legend of Zelda: Ocarina of Time, 197
maps and guidance systems, 197
methods of, 196–197
pop-ups, 198
Skyrim, 196
Valkyria Chronicles, 196

direction, changing (Apple Picker), 474–476
directional lighting

Apple Picker game, 464
Mission Demolition, 497
Space SHMUP game, 548

discernible decisions, 65, 124
discussion phase (brainstorming), 102
Dishonored, 120
distributions, weighted, 182–183
Doctor Who, "The Doctor's Daughter," 55–56
doors, unlocking (Dungeon Delver), 843

GateKeeper class, 845–848
IKeyMaster interface, 844–845

dot product, 922–924
dot syntax, 277
DotA (Defense of the Ancients), 81
double-edged decisions, 124
do…while loops, 352
downloading Unity, 270
DPS (damage per second) calculators, 84
dramatic elements (FDA framework), 26–27
dramatics

components of, 50
definition of, 49
empathetic character versus avatar, 56–58
five-act structure, 50–52

interactive versus linear, 54–58
plot versus free will, 54–56
purposes for, 58–59

1029

three-act structure, 52–54
Dray (Dungeon Delver), 808

adding collider to, 832
adding health to, 849–850
animation, 813
attack pose animations

coding, 819–821
generating, 818

connecting GUI to, 850–852
enabling enemies to damage

DamageEffect class, 852–853
Dray class modifications, 853–856

IFacingMover interface implementation, 834–836
input keys, handling, 816–817
making camera follow Dray, 842–843
modifying to accept Grappler, 869–871
moving, 814–816, 839–842
naming conventions, 809
sprite layering, 822
walking animation, 810–813, 817–818

first animation, 810–811
Walk_0, 812–813
Walk_1, 813

DropApple(), 477
dropped apple notifications (ApplePicker), 488–489
dropping items (Dungeon Delver)

Enemy script modifications, 861
randomized item drops, 861–863

dungeon (Dungeon Delver)
preparing scene, 872–873
swapping map tiles for enemies and items, 873–877

Dungeon Delver
camera setup, 796

Game Pane, 796–797
GUI camera, 797
main camera, 797
making camera follow Dray, 842–843
protection for TileCamera.MAP, 845

1030

Tile.SetTile(), 845–846
component-oriented design, 794–795
Delver Level Editor, 877
Dray (hero), 808

adding collider to, 832
adding health to, 849–850
attack pose animations, 818–821
connecting GUI to, 850–852
enabling enemies to damage, 852–856
IFacingMover interface implementation, 834–836
input keys, handling, 816–817
making camera follow Dray, 842–843
modifying to accept Grappler, 869–871
moving, 814–816, 839–842
naming conventions, 809
sprite layering, 822
walking animation, 810–813, 817–818

dungeon data, 798
DelverData.txt, 799–800
DelverTiles.png, 798–799

dungeon implementation
preparing scene, 872–873
swapping map tiles for enemies and items, 873–877

game overview, 794
Grappler

adding damage to, 871
Grapple script, 864–869
modifying Dray to accept, 869–871
picking up, 871
testing, 871–872

grid alignment, 832–833
GridMove script, 837–838
IFacingMover interface, 833–837

GUI elements, 848–849
adding health to Dray, 849–850
connecting to Dray, 850–852

hexadecimal numbers, 800–801
items

1031

dropping, 861
picking up, 859–860, 871
swapping map tiles for, 873–877

maps
generating from data, 801–805
showing, 806–808
swapping map tiles for enemies and items, 873–877

per-tile collision
collider, adding to Dray, 832
DelverCollisions text file, 828–829
per-tile collision scripts, 829–831

potential modifications to, 877–878
project setup, 795–796
Skeletos (enemy)

dropping items on death, 861
Enemy base class, 823–824
IFacingMover interface implementation, 836–837
InRoom script, 825–827
keeping inside room, 827–828
LateUpdate() method, 827–828
modifying to take damage, 856–859
programmer art, 823
Skeletos subclass, 824–825

SwordController GameObject, 821–822
Tile class, 802–803
TileCamera class, 803–805
unlocking doors, 843

GateKeeper class, 845–848
IKeyMaster interface, 844–845

Dungeons & Dragons, 56, 75–76, 83, 942
dynamic elements. See also dynamic layer (Layered Tetrad)

dynamic aesthetics, 70
FDD (Formal, Dramatic, and Dynamic)framework, 27
MDA (mechanics, dynamics, and aesthetics) framework, 21

dynamic layer (Layered Tetrad), 33–34
aesthetics, 70–75
emergence, 62–63
mechanics

1032

definition of, 64
house rules, 67
meaningful play, 65
outcomes, 69–70
player intent, 67–69
procedures, 64
strategy, 65–67

narrative, 75–78
definition of, 78
emergent narrative, 77–78
interactive narrative incunabula, 75–77

player's role in, 62–63

E
easing for linear interpolation, 932–936

Mission Demolition, 514
Space SHMUP, 592

easy of entry (puzzles), 220
Edison, Thomas, 18
EditPadPro, 378
education programs. See game education programs
educational discounts, 951
The Elder Scrolls V: Skyrim, 82
Electronic Arts, 150
Elemental Tetrad, 20, 28–29
elements (XML), 913 Elite Beat Agents, 71
else statements, 342
emails, follow-up, 247
emergence, 63

emergent narrative, 27, 77–78
FDD (Formal, Dramatic, and Dynamic) framework, 27

emotional connection, influencing player behavior with, 205–206
empathetic characters, 56–58
empowerment, 119–120
empty array elements, 373–375
empty draw piles (Bartok), 745–746
empty-element tags (XML), 913
endogenous, 10

1033

enemies
Dungeon Delver

dropping items on death, 861
Enemy base class, 823–824
IFacingMover interface implementation, 836–837
InRoom script, 825–827
keeping inside room, 827–828
LateUpdate() method, 827–828
modifying to take damage, 856–859
programmer art, 823
Skeletos subclass, 824–825
swapping map tiles for, 873–877

Enemy class sample project
implementation, 428–429
project setup, 422–424

Space SHMUP
allowing projectiles to destroy enemies, 580
artwork, 557–559
deleting enemy when offscreen, 562–566
Enemy C# script, 559–562
Enemy_1, 584–587
Enemy_2, 588–590
Enemy_3, 590–592
Enemy_4, 625–634
GetAllMaterials(), 610–612
making drop power-ups, 622–625
making enemies damage player, 571–575
OnCollisionEnter(), 607–608
showing damage to, 609–612
spawning at random, 566–568

Enemy base class, 823–824
Enemy C# script, 559–562
Enemy class

implementation, 428–429
project setup, 422–424

Enemy_1 class (Space SHMUP), 584–587
Enemy_2 class (Space SHMUP), 588–590
Enemy_3 class (Space SHMUP), 590–592

1034

Enemy_4 class (Space SHMUP)
collider modifications, 625–626
movement of, 626–628
splitting into multiple parts, 628–634

EnemyZig class, 430–431
engagement, 112
Enqueue(), 361
Entertainment Software Association (ESA), 86–87, 240–241
Entertainment Technology Center (Carnegie Mellon), 245
enums, 541, 593, 892–893
environmental aesthetics, 73–75
epilepsy, effect of games on, 75
equality operator (==), 336–338
errors. See debugging
ESA (Entertainment Software Association), 86–87, 240–241
estimated hours (BDC Main worksheet), 232–233
Eve Online, 84
Evil Hat Productions' FATE Core system, 56
examining code, 414–416
Excel, 162
expanding weapon options, 617–620
expansion phase (brainstorming), 100
experience points (XP), 70
experiences, 46
experiential understanding, 125–127
explorers, 68
eXtensible Markup Language (XML), 912–913
extrapolation, linear, 930–932

F
Fac(), 400–401
faceUp property (Card class), 658
factorials, calculating, 400–401
fairness, 160
Fallout 3, 55, 82
fame, 109
fan art, 82
fan fiction, 83

1035

FanHand(), 726–728, 730–731, 735–736
fan-made game guides, 85
fanning the hands (Bartok), 726–728, 730–731
fans, cultural messages sent by, 87–89
FarmVille, 114
Farscape, "A Clockwork Nebari," 55–56
FATE Accelerated (FAE) system, 942
FATE Core system, 56
FDD (Formal, Dramatic, and Dynamic)

framework, 20, 24, 24–27
dramatic elements, 26–27
dynamic elements, 27
formal elements, 25

features list, 226
feedback, 192–193, 700–704
fiction, interactive, 76–77
Field, Syd, 52
fields, 420–421
fiero, 112–113
Final Fantasy VII, 124–125

characters, 56–57
limited possibilities in, 55

final outcomes, 70
Find(), 487
finishing projects, 253
fireDelegate(), 893
First Amendment protection of games, 86–87
first-person shooters, 94
five aesthetic senses, 47–48
five-act structure, 50–52
FixedUpdate(), 442

Apple Picker, 476
Dungeon Delver, 838
Mission Demolition, 512

float variables, 390–391
FloatingScore GameObject, 693–694
FloatingScore script, 689–692
FloatingScoreHandler(), 696–698

1036

FloatOpDelegate(), 893
flock of birds simulation (Boids), 434–435
flow, 45, 115–118
Flow (Csíkszentmihályi), 116–117
Flower, 72
flukes, 8
focus testing, 156
focused prototyping, 130
folders

Assets, 297–298
renaming, 297–298

follow camera
Dungeon Delver, 842–843
Mission Demolition, 511–516

FollowCam class, 511–516
follow-up emails, 247
fonts, 378, 950–951
force-quitting applications, 350, 412–413
foreach loops, 354–355, 373–374
foreshadowing, 55–56
Formal, Dramatic, and Dynamic framework. See FDD (Formal, Dramatic, and Dynamic)

framework
formal elements (FDA framework), 25
formal group testing, 150–151
formal individual playtesting, 151–153
forms of beta tests, 155
fortune, as design goal, 109
forward slash

// comment notation, 302, 314, 719
/* */ comment notation, 719

FPSs. See first-person shooters
frames, 264, 265
frameworks. See game analysis frameworks
free will versus plot, 54–56
freemium games, 242–243
Frequency, 71
Freytag, Gustav, 50–51
Freytag's pyramid, 50–52

1037

fulfillment, 112–113
Fullerton, Tracy, 10, 13, 20, 40
fun, as design goal, 112–113
function delegates, 600–602, 893–895
Function Examples project, 388
functions. See also methods

accessors, 424
callback functions, 709
calling, 294
capabilities of, 290
definition of, 388–391, 421
Dictionary functions, 370
function delegates, 600–602, 893–895
Function Examples project, 388
names, 395
overloading, 397
overriding, 431
parameters and arguments, 391–393, 398
passing information to, 391
reasons for using, 395–396
recursive functions, 400–401, 903–904, 938–942
return values, 393–395
static functions, 394–396

G
Gabler, Kyle, 221
Gallant Games, InControl, 944
"game," definitions of, 10–16

Bernard Suits' definition, 10–12
importance of, 14–16
Jesse Schell's definition, 13–14
Keith Burgun's definition, 14
nebulous nature of, 16
Sid Meier's definition, 12
Tracy Fullerton's definition, 13

game analysis frameworks. See also Layered
Tetrad framework Elemental Tetrad, 20, 28–29
FDD (Formal, Dramatic, and Dynamic), 20, 24, 24–27

1038

MDA (mechanics, dynamics, and aesthetics), 20–24
game balance, 160

positive/negative feedback, 192–193
weapon balance, 186–187

average damage, 188–190
balanced values example, 192–193
duplicating weapon data, 190–191
overall damage, 191
percent chance for each bullet, 187–188
rebalancing weapons, 192

game conferences, 246–247
Game Design Theory (Burgun), 10, 82–83, 120
Game Design Workshop (Fullerton), 10, 20, 40
Game Developers Conference, 246
game development process, 103–105
game education programs, 243–246
Game Feel (Swink), 460
game industry, 240

breaking in to
follow-up emails, 247
interviewing, 248–250
networking, 246–247
projects, starting, 250–253

costs of AAA development, 241–242
ESA (Entertainment Software Association), 240–241
freemium games, 242–243
game education programs, 243–246
indie community, 243
working conditions in, 241

game layout (Bartok), 717–718
game logic

Bartok, 749–750
Prospector Solitaire, 677

making cards clickable, 677–680
matching cards from mine, 680–685

game management
Apple Picker

basket destruction when apple is dropped, 489–490

1039

dropped apple notifications, 488–489
high scores, 491–494
points for each caught apple, adding, 486–488
score counter, 484–486

Mission Demolition, 538–544
game masters, 56
game mods, 81
Game pane

Dungeon Delver, 796–797
Unity, 283

game panel settings (Apple Picker), 469
Game Programming Patterns (Nystrom), 908
game states (Word Game), 791–792
game testing. See playtesting
game volume, 74
GameObjects, 326, 327, 550–551. See also projects

actions, 264
assigning layers to, 570–571
Box Collider component, 305
class instances, 426–427
Collider components, 305, 328–329
Cube, 303–311
instances, 306
Mesh Filter component, 305
Mesh Renderer component, 305
MeshFilter component, 328
Prefab GameObjects, creating, 653
Renderer component, 328
Rigidbody component, 305, 329
Transform component, 304–305, 328

GameOver(), 688–689
gameRestartDelay field (Hero class), 575
GamerGate, 87–88
Gamma, Erich, 905
"Gang of Four," 905
Garfield, Richard, 99
GateKeeper class, 845–848
GDC Vault, 253

1040

Gen Con, 246
generic collections, 362–363
generic methods, 326–327
GET_MAP(), 845
get{} accessor, 424
GetAllMaterials(), 610–612
GetAxis(), 552–553
GetComponent(), 326–327, 427, 487
GetEmptyWeaponSlot(), 618–619
GetKeyDown(), 443
GetRoomPosOnGrid(), 832
Gimp, 547–548
GMs (game masters), 56
Goal class, 534
goals of design. See design goals
God of War, 117–118
gold cards (Prospector Solitaire), 705
gold phase, 104
Google 3D Warehouse, 950
Google Sheets

balancing weapons with, 186–187
average damage, 188–190
balanced values example, 192–193
duplicating weapon data, 190–191
overall damage, 191
percent chance for each bullet, 187–188
rebalancing weapons, 192

compared to other spreadsheet programs, 161–162
examining dice probability with, 162–174
importance of, 160–161

Gran Turismo, 220
Grandia III, 124–125
Grapple script, 864–869
Grappler (Dungeon Delver)

Grapple script, 864–869
adding damage to, 871
modifying Dray to accept, 869–871

picking up, 871

1041

testing, 871–872
The Grasshopper (Suits), 10, 113
greater good, designing for, 111
greater than operator (>), 338
greater than or equal to operator (>=), 339
grid alignment

Dungeon Delver, 832–833
GridMove script, 837–838
IFacingMover interface, 833–837

movement on different grid types, 131
GridMove script, 837–838
ground (Mission Demolition), 497
GUI

Apple Picker
basket destruction when apple is dropped, 489–490
dropped apple notifications, 488–489
high scores, 491–494
points for each caught apple, adding, 486–488
score counter, 484–486

Dungeon Delver, 848–849
adding health to Dray, 849–850
connecting GUI to Dray, 850–852
GUI camera, 797

guiding players
direct guidance, 196–198
guidance systems, 197
indirect guidance, 198–206
Guitar Hero, 199

H
HAL Laboratories, Kirby games, 65
Half-Life, 81
Halo, 94
Hamlet on the Holodeck (Murray), 76
Havok, 220
health (Dungeon Delver), 849–852
Health PickUp item, 862
hearing, 47

1042

Hello, World program
C# script, 298–303
Cube GameObject, 303–306
CubeSpawner3 script, 383–386
functions

print(), 299
Start(), 303
Update(), 302–303, 309–310

prefabs, 306–311
project folder, 297–298
project setup, 296–298
scene view, 312

Helm, Richard, 905
help, Unity Scripting Reference, 472
Hero ship (Space SHMUP)

creating, 549–550
enabling to collect power-ups, 616–617
keeping on screen, 555–557
shield, 553–554
shooting ability

allowing projectiles to destroy enemies, 580
giving Hero ability to shoot, 578–579
Projectile C# script, 579–580
ProjectileHero, 577–578
Update(), 550–551

heroes
Dray (Dungeon Delver), 808

input keys, handling, 816–817
moving, 814–816
naming conventions, 809
walking animation, 810–813

Hero ship (Space SHMUP)
creating, 549–550
keeping on screen, 555–557
shield, 553–554
shooting ability, 577–580
Update(), 550–551

hexadecimal numbers, 800–801

1043

Hierarchy pane (Unity), 283
high scores (Apple Picker)

adding, 491–492
preserving in PlayerPrefs, 492–494

HighScore GameObject, 491–492
The Hitchhiker's Guide to the Galaxy, 120
Homo Ludens (Huizinga), 25, 114
Horizontal Re-Sequencing (HRS), 71
hours, estimating, 231–233
house rules, 67
Hoye, Mike, 83
HRS (Horizontal Re-Sequencing), 71
Huizinga, Johan, 25, 114
human player, enabling (Bartok), 744–745
Hunicke, Robin, 20

I
if statements, 339–340. See also switch statements

combining with operators, 340–341
nesting, 342–343

IFacingMover interface, 833–837
if…else statements, 342
IKeyMaster interface, 844–845
ilinx, 112
images

image puzzles
mixed-mode, 217
single-mode, 216

importing, 642–644
Imaginary Games (Bateman), 112, 118
immediacy of objectives, 41–42
immediate outcomes, 69
implementation phase (iterative design), 96–97
implicit variables, 424
importing

images, 642–644
Unity asset package, 546–548

iMUSE, 71

1044

includes, 421
InControl, 944
The Incredible Machine, 214
increment operators, 351
incremental innovation, 99
IndexOf(), 361, 367, 375
indie community, 243
IndieCade, 16, 105, 110, 243, 246
indirect guidance, 198

audio design, 203
camera-based guidance, 202–203
emotional connection, influencing player behavior with, 205–206
Guitar Hero, 199
Journey, 205
Kya, Dark Lineage, 205
methods of

constraints, 198–199
goals, 199
visual design, 200–203

Minecraft, 199
physical interface, 199
player avatar, 203–204
Rock Band, 199
Uncharted 3, 202–203

industry. See game industry
inequality operator (!=), 338
infinite loops, 349
informal individual playtesting, 148–149
information, 49
inheritance (class), 291, 428
InitDeck(), 646
initial card deal (Bartok), 731–732
initialization clause, 353
initializing variables, 292, 315
innovation, 98–99
input keys, handling, 816–817
InputManagers, 552–553, 944
InRoom script, 825–827

1045

inscribed layer (Layered Tetrad), 32–33
aesthetics

definition of, 47
five aesthetic senses, 47–48
goals, 49

mechanics
boundaries, 44–45
objectives, 41–42
overview of, 40–41
player relationships, 43–44
resources, 45
rules, 44
spaces, 45–46
tables, 46–47

narrative
components of, 50
definition of, 49
empathetic character versus avatar, 56–58
five-act structure, 50–52
interactive versus linear, 54–58
plot versus free will, 54–56
purposes for, 58–59
three-act structure, 52–54

technology, 59–60
Insert(), 367
Inspector pane (Unity), 283, 329–330
installing Unity

on macOS, 271
on Windows, 272–273

instance variables, 320
instances (class), 306, 320, 426–427
instant feedback (puzzles), 219
InstantiateBoid(), 445
instructions, directly guiding players with, 197
int variables, 316
integrated decisions, 65, 124
integration, teaching new skills with, 208
intellectual property (IP), 251

1046

intent (player), 67–69
interaction patterns (players), 43
interactive narrative incunabula, 75–77
interest curve, 122–123
interest polling, 156
interesting decisions, 71, 124–125
interfaces

definition of (C#), 895
IFacingMover, 833–837
IKeyMaster, 844–845
paper prototypes for, 133–134
Unity example, 895–899

interpolation, linear
Bézier curves

definition of, 936–937
recursive Bézier curve functions, 938–942
Unity example, 937–938

definition of, 924
easing for, 932–936

Mission Demolition, 514
Space SHMUP, 592

interpolating other numeric values, 928–930
time-based, 925–926
Zeno's Dichotomy Paradox, 926–928

Interpolation project, 925–927
interpreted languages, 287
intersectional innovation, 99
interview, 248–250
investigators, 144, 150–151
Invoke()

Bartok, 709
Prospector Solitaire, 699–700

involvement, as design goal, 121–123
IP (intellectual property), 251
isometric views, 468
items (Dungeon Delver), dropping, Enemy script modifications, 861
items (Dungeon Delver)

dropping, randomized item drops, 861–863

1047

picking up, 859–863
swapping map tiles for, 873–877

iteration clause, 354
iteration speed, 130
iteration variables, 351
iterations, 98
iterative design, 92–93, 572

analysis phase, 93–94
changing your mind, 103
design phase, 95–96
implementation phase, 96–98
iterations, 98

iTween, 260

J
jagged arrays, 379–381
jagged Lists, 381–383
JaggedArrayEx script, 379–381
JaggedListTest class, 381–383
Japanese roleplaying game (JRPG), 124–125
JavaScript, 274–275
Jenkins, Henry, 86
Johansson, Frans, 98
Johnson, Ralph, 905
joining projects, 250
Journey, 41–42, 146, 205–206
JRPG. See Japanese roleplaying games (JRPG)
juiciness, 550
Jumbline 2, 754
jump statements, 355–357

K
Kaboom!, 261
Kaplan, Larry, 261
keys (Dictionary), 368
keys (Dungeon Delver)

dropping 861–863

1048

picking up, 859–860
killer (player type), 68
Kim, Scott, 212–213, 218
Kya: Dark Lineage, 196, 204, 208

1049

L
lab setup, 152
labels (Google Sheets), 169–170
landmarks, 45–46, 200
Language Integrated Query language. See LINQ
(Language Integrated Query) language
languages. See programming languages
LateUpdate()

Dungeon Delver, 827–828
MoveAlong script, 426–427

launching Unity, 277–278
lawsuits

Brown v. Entertainment Merchants Association, 86–87
Meguerian v. Apple Inc, 87

Layer Collision Matrix settings, 478–480
Layered Tetrad framework, 31–32

cultural layer, 34–36, 80–81
aesthetics, 82–83
authorized transmedia and, 85–86
cultural impact of games, 86–89
mechanics, 81–82
narrative, 83–84
technology, 84–85

designer responsibility, 36–37
dynamic layer, 33–34 aesthetics, 70–75

emergence, 63–64
mechanics, 64–70
narrative, 75–78
player's role in, 62–63
technology, 78

inscribed layer, 32–33
aesthetics, 47–49
mechanics, 40–47
narrative, 49–59
technology, 59–60

LayerMasks, 889–890
layers

1050

Dungeon Delver, 822
LayerMasks, 889–890
Prospector Solitaire, 674–676
Space SHMUP, 570–571
user layers, 890

Layout(), 774–778, 787–788
Layout menu (Unity), 278–283
Layout script (Prospector Solitaire), 665–667
LayoutGame(), 671–673
LayoutXML.xml file, 664–665
League of Legends, 240
LeBlanc, Marc, 20
Legend of Zelda. See also Dungeon Delver

boss fights in, 221
game mods for, 83
inscribed dramatics in, 59
paper prototype

game concept, 134–136
new traversal mechanics, 136–138
playtesting, 138–139

resources, 45
silent protagonists, 57

Legend of Zelda: Ocarina of Time, 197
LEGO blocks, paper prototypes and, 133
Lemarchand, Richard, 112, 121
Lerp(), 515
Les Jeux et Les Hommes (Caillois), 112
less than operator (<), 338
less than or equal to operator (<=), 339
Letter C# script, 771–773, 785–787
letters, follow-up, 247
levels (Dungeon Delver), 877
libraries (code), 260–261, 399
LibreOffice Calc, 162
light, indirectly guiding players with, 200
limited online beta tests, 154
limited possibilities, 54–55
linear extrapolation, 930–932

1051

linear interpolation, 449
Bézier curves

definition of, 936–937
recursive Bézier curve functions, 938–942
Unity example, 937–938

definition of, 924
easing for, 932–936

Mission Demolition, 514
Space SHMUP, 592

interpolating other numeric values, 928–930
time-based, 925–926
Zeno's Dichotomy Paradox, 926–928

linear narrative, 54–58
LINQ (Language Integrated Query) language, 275, 728–730
listening skills, 95–96
ListEx script, 363–365
Lists

altering, 367
jagged, 381–383
ListEx script, 363–365
methods, 360, 366–367
properties, 366–367
when to use, 383
zero indexed, 366

Little Big Planet, 82
lmZero variable, 890
LoadMap(), 806
LoadScene(), 492
logic puzzles

mixed-mode, 217
single-mode, 216

logical equivalence, 335
long-term objectives, 42
LookAhead(), 447
LookAtAttractor script, 443
for loops, 352–353
loops

definition of, 290

1052

do…while loops, 352
foreach, 373–374
foreach loops, 354–355
infinite loops, dangers of, 349
jump statements, 355–357
for loops, 352–353
while loops, 348–351

Lucas, George, 106
LucasArts

iMUSE, 71
X-Wing, 49, 71

ludology
definition of, 19
game analysis frameworks

Elemental Tetrad, 20, 28–29
FDD (Formal, Dramatic, and Dynamic), 20, 24–27
Layered Tetrad, 31–38
MDA (mechanics, dynamics, and aesthetics), 20–24

Ludwig, Manfred, 66
lusory attitude, 113–115

M
machine language, 286
machinima, 83
macOS

force-quitting applications, 350
installing Unity on, 271
right-clicking, 297, 946

magic circle, 114–115
Magic: The Gathering, 99
Main worksheet (BDC), 229–233
Mainichi, 125–127
Majestic, 17
Majestic, 44–45
MakeCards(), 655–657
MakeCharDict(), 766–767
managed code, 288–289
"The Mangle of Play" (Steinkuehler), 80–81

1053

Manifesto for Agile Software Development, 224–225
maps

axis and button mapping, 944–945
directly guiding players, 197
Dungeon Delver

anti-aliasing issues, 807–808
generating from data, 802–805
ShowMap() method, 806–807
swapping map tiles for enemies and items, 873–877

Marathon, 94
Mario games, messages embedded in, 88
Mark of the Ninja, 213
markup (XML), 913
masks, LayerMasks, 889–890
Mass Effect

dialogue choices in, 58
player interaction pattern, 43
screen resolution, 74

matching cards (Prospector Solitaire), 680–685
math concepts

cosine, 914–917
dice probability, 917–922
dot product, 922–924
game balance, 160

positive/negative feedback, 192–193
weapon balance, 186–193

Google Sheets
balancing weapons with, 186–193
compared to other spreadsheet programs, 161–162
examining dice probability with, 162–174
importance of, 160–161

linear extrapolation, 930–932
linear interpolation

Bézier curves, 936–942
definition of, 924
easing for, 932–936
interpolating other numeric values, 928–930
time-based, 925–926

1054

Zeno's Dichotomy Paradox, 926–928
permutations, 184–186
probability

dice probability, 162–174
examining with Google Sheets, 162–174
probability math, 174–178

randomizer technologies
decks of cards, 180–182
dice, 179
spinners, 179

sine, 914–917
weighted distributions, 182–183
weighted probability, 183–184

Mathf, 325
Max() function, 515
MDA (mechanics, dynamics, and aesthetics) framework, 20–21

designer and player game views, 21
Snakes and Ladders example, 22–24

meaningful play, 65, 124
mechanics

cultural mechanics (Layered Tetrad), 35, 81–82
dynamic mechanics (Layered Tetrad)

definition of, 34, 64
house rules, 67
meaningful play, 65
outcomes, 69–70
player intent, 67–69
procedures, 64
strategy, 65–67

Elemental Tetrad framework, 28
inscribed mechanics (Layered Tetrad)

boundaries, 44–45
definition of, 32
objectives, 41–42
overview of, 40–41
player relationships, 43–44
resources, 45
rules, 44

1055

spaces, 45–46
tables, 46–47

MDA (mechanics, dynamics, and aesthetics) framework, 21
Media Molecule, Little Big Planet, 82
The Medici Effect (Johansson), 98
meeting people in industry, 246–247
meetings (Scrum), 227
Meguerian v. Apple Inc, 87
Meier, Sid, 10, 12, 71–72, 109, 124
memory allocation, 288
Mesh colliders, 329
Mesh Filter component, 305
Mesh Renderer component, 305
MeshFilter component (GameObjects), 328
methods. See also functions

AbsorbPowerUp(), 619–620
Add(), 361, 367, 370
AddBack(), 659–660
AddCard(), 729, 735–736
AddDecorators(), 655–657
AddFaces(), 657–658
AddPips(), 657–658
AppleDestroyed(), 488–490
array methods, 374–375
Awake(), 392, 620
CardClicked(), 679–680, 688–689, 744–745
CBCallback(), 742
CheckForGameOver(), 683–684
CheckWord(), 784–785
CheckWordInLevel(), 766–767
Clear(), 360, 361, 367, 370
ClearWeapons(), 618–619
Contains(), 361
ContainsKey(), 361, 370
ContainsValue(), 361, 370
Count(), 361
Dequeue(), 361
DropApple(), 477

1056

Enqueue(), 361
Fac(), 400–401
FanHand(), 730–731, 735–736
Find(), 487
fireDelegate(), 893
FixedUpdate(), 442

Apple Picker, 476
Dungeon Delver, 838
Mission Demolition, 512

FloatingScoreHandler(), 696–698
FloatOpDelegate(), 893
GameOver(), 688–689
generic methods, 326–327
GET_MAP(), 845
GetAllMaterials(), 610–612
GetAxis(), 552–553
GetComponent(), 326–327, 427, 487
GetEmptyWeaponSlot(), 618–619
GetKeyDown(), 443
GetRoomPosOnGrid(), 832
IndexOf(), 361, 375
InitDeck(), 646
Insert(), 367
InstantiateBoid(), 445
Invoke()

Bartok, 709
Prospector Solitaire, 699–700

LateUpdate()
Dungeon Delver, 827–828
MoveAlong script, 426–427

Layout(), 787–788
LayoutGame(), 671–673
Lerp(), 515
List methods, 366–367
LoadMap(), 806
LookAhead(), 447
MakeCards(), 655–657
MakeCharDict(), 766–767

1057

Max(), 515
Move(), 430–431
MoveToDiscard(), 678–679, 734–735
MoveToTarget(), 678–679, 734–735
OnCollisionEnter(), 483
OnMouseEnter(), 505–506
OnMouseExit(), 505–506
OnMouseUpAsButton(), 744
OnTriggerEnter()

Boids project, 451
Space SHMUP, 571–575

Parse(), 488
PassTurn(), 736–738
Peek(), 361
Pop(), 362
PopulateSpriteRenderers(), 675
print(), 294, 299
Push(), 362
ReadDeck(), 646
RemoteAt(), 361
Remove(), 361, 367, 370
RemoveAt(), 367
Resize(), 375
ScreenToWorldPoint(), 482
SendMessage(), 709
SET_MAP(), 845
SetActive(), 504
SetSortingLayerName(), 675
SetTableauFaces(), 682–683
SetTile(), 845–846
SetUpUITexts(), 702
ShotFired(), 542
ShowMap(), 806–807
ShowResultsUI(), 703–704
Start(), 392

Hello, World program, 303
Prospector Solitaire, 661

SubWordSearchComplete(), 769

1058

SwitchView(), 542
ToArray(), 367
Update(), 388–389, 392

Apple Picker, 472–473
Dungeon Delver, 819–821
Enemy class, 422–424
Hello, World program, 302–303, 309–310
Mission Demolition, 508–509
Space SHMUP, 550–551
Time.deltaTime between, 442

UpdateDrawPile(), 678–679
methods of playtesting

formal group testing, 150–151
formal individual playtesting, 151–153
informal individual playtesting, 148–149
online playtesting, 153–154
taking notes, 149

Michigan State University, 245
Microsoft controllers, axis and button mapping
for, 944–945
Microsoft Excel, 162
Microsoft Visual Studio Community, 272
Midgley, Mary, 15–16
mid-term objectives, 41
migraines, effect of games on, 75
Miles, Rob, 949
mimicry, 112
mine tableau (Prospector Solitaire)

CardProspector class, 668–669
Layout script, 665–667
LayoutXML.xml file, 664–665
positioning cards in, 671–674
Prospector class, 667–668, 669–670, 671–673
sorting layers, 674–676

Minecraft, 97, 199
autotelic empowerment in, 119–120
map applications for, 84
messages embedded in, 88

1059

procedural environment, 73
Mission Demolition

art assets, 497–502
camera setup, 497–499
castle

goals, 527
multiple castles, 535
testing, 527
walls and slabs, 525–527

clouds
multiple clouds, 521–523
programmer art, 516–520

comments, 517–521
directional lighting, 497
enums, 541
follow camera, 511–516
game concept, 496–497
game logic, 528–529
game management, 538–544
ground, 497
hitting goal, 534
Project plane organization, 523–524
project setup, 496
projectile

following at launch, 511–516
instantiating, 505–511
programmer art, 502
projectile trails, 529–534

slingshot
programmer art, 499–501
showing when slingshot is active, 503–505
Slingshot class, 503

UI (user interface), 536–537
vection and sense of speed, 516–521

MissionDemolition script, 538–541
misspellings in code, 277, 405
mixed-mode puzzles, 217
MOBAs (multi-user online battle arenas), 81

1060

mobile devices, compiling Prospector Solitaire on, 699–705
models, 950
mods, 81
modulus operator (%), 357
Mojang. See Minecraft
Moksha Patamu. See Snakes and Ladders
money, as design goal, 109
MonoDevelop, 289, 293, 299, 884
monolithic programming, 434–435
Monopoly

house rules, 67
objectives, 42
resources, 45

monospaced fonts, 378
mood, 49
Moon, Alan R., 16
mouse

moving GameObjects with, 482–483
right-clicking, 297

Move(), 430–431
MoveAlong script, 426–427
movement

Apple Picker, 472–473
Basket GameObject, 482–483
on different grid types, 131
Dungeon Delver, 814–816

making camera follow Dray, 842–843
moving from room to room, 839–842

Space SHMUP, 626–628
MoveToDiscard(), 678–679, 734–735
MoveToTarget(), 678–679, 734–735
multicast delegates, 895
multidimensional arrays, 376–379
multilateral competition, 43
multiple dialogue choices, 58
multiple parts, splitting enemy into, 628–634
multiple players versus game, 43
multi-user online battle arenas (MOBAs), 81

1061

Murray, Janet, 76
music, procedural, 71–72
Myst, 214

N
naming conventions, 899–900

Dray (Dungeon Delver), 809
function names, 395
Google Sheets, 166
scripts, 885
variables, 319, 329–330

nanDECK, 181
narrative

cultural narrative (Layered Tetrad), 35, 83–84
dynamic narrative (Layered Tetrad)

definition of, 34, 75–76
emergent narrative, 77–78
interactive narrative incunabula, 75–77

game mods, 83
inscribed narrative (Layered Tetrad)

components of, 50
definition of, 33, 49
empathetic character versus avatar, 56–58
five-act structure, 50–52
interactive versus linear, 54–58
plot versus free will, 54–56
purposes for, 58–59
three-act structure, 52–54

Naughty Dog's Uncharted 2: Drake's Deception,84
negative feedback, 192–193
negative impact of gaming, 86–87
Neighborhood script, 449–452
nested if statements, 342–343
networking

follow-up emails, 247
game conferences, 246–247

Neverwinter Nights, 83
New Project screen, 882–884

1062

New Scene command (File menu), 304
Nintendo Entertainment System's Legend of Zelda, 134–139
noisy environments, 74
non-player characters. See NPCs (non-player characters) non-shorting operators, 334
NOT operator (!), 332
Notch (Markus Persson), 97
note cards, paper prototypes and, 133
notebooks, paper prototypes and, 133
novel decisions, 124–125
novelty in puzzles, 212–213
NPCs (non-player characters)

development of, 56
emotional connection, influencing player
behavior with, 205–206
indirectly guiding players with, 204–206
modeling behaviors, 204

Numbers by Apple, 162
numeric values

hexadecimal numbers, 800–801
interpolating, 928–930

NVIDIA PhysX engine, 220, 329
Nystrom, Robert, 908

O
Objective-C, 288
objectives, 41

conflicting, 42
defining player relationships with, 43–44
FDD (Formal, Dramatic, and Dynamic)
framework, 25
immediacy of, 41–42
importance of, 42

object-orientation, 291
Object-Oriented Programming (OOP), 291
objects. See GameObjects
The Ocarina of Time, 221
Okami, 57
OnCollisionEnter(), 483, 607–608

1063

online playtesting, 153–154, 155
online references

educational discounts, 951
fonts, 950–951
Microsoft C#, 949
Stack Overflow, 949
tutorials, 948
Unity Archive, 948
Unity scripting references, 949

OnMouseEnter(), 505–506
OnMouseExit(), 505–506
OnMouseUpAsButton(), 744
OnTriggerEnter()

Boids project, 451
Space SHMUP game, 571–575

OOP (Object-Oriented Programming), 291
Boids project, 436

Attractor script, 441–442
Boid script, 443, 446–449, 452–454
Boids values, 455
component-oriented design, 440
LookAtAttractor script, 443
Neighborhood script, 449–452
simple model, 436–439
Spawner script, 444–446

component-oriented design, 440
flock of birds metaphor, 434–436

open games, 5
open online beta tests, 154
opening tags (XML), 913
OpenOffice Calc, 162
operations, order of, 293, 900–901
operators

AND operator, 332, 889
Boolean operators, 332–335, 889–890

combining, 334–335
combining with if statements, 340–341
NOT operator (!), 332

1064

AND operator (&&), 332
OR operator (II), 332

comparison operators, 336–339
combining with if statements, 340–341
equality operator (==), 336–338
greater than operator (>), 338
greater than or equal to operator (>=), 339
inequality operator (!=), 338
less than operator (<), 338
less than or equal to operator (<=), 339

decrement operators, 351, 354
increment operators, 351
modulus operator (%), 357
non-shorting operators, 334
order of operations, 900–901
precedence of, 900–901
shorting operators, 333–334

optimal challenge, state of, 115
optimal strategy, 65–66
optional parameters, 398
OR operator, 332, 889
order of operations, 293, 900–901
orthographic cameras, 467
Osu! Tatake! Ouendan, 71, 112–113
outcomes, 25, 69–70
overall damage, 191
overloading functions, 397
overridden functions, 431
overscoping, 105, 251

P
Pajitnov, Alexey, 212
panes (Unity), 283
paper games, 60
paper prototypes, 97

benefits of, 130
best uses for, 139
example of

1065

game concept, 134–136
new traversal mechanics, 136–138
playtesting, 138–139

for interfaces, 133–134
movement on different grid types, 131
poor uses for, 140
tools, 131–133

Papo y Yo, 110
Parallax script, 635–636
parameters (function), 391–393, 398
params keyword, 399–400
PaRappa the Rapper, 71
Parse(), 488
parsing

information from Deck XML, 648–650
word list, 756

particle systems, 72
Passage, 11
passing variables, 294
PassTurn(), 736–738
A Pattern Language (Alexander), 45
Pauling, Linus, 99
Pausch, Randy, 244
PCO (Procedural Composition), 71–72
Pearce, Celia, 16
Peek(), 361
pen-and-paper RPGs, 56
percent chance for each bullet, 187–188
performative empowerment, 120
period (.), 293
permutations, 184–186
perpetual motion puzzles, 219
Persia: The Sands of Time, 54–55
Person Chart (BDC), 235–236
personal development, designing for, 111
personal expression, designing for, 110
Personal version (Unity), 273–274
perspective cameras, 467

1066

Persson, Markus "Notch,"109
per-tile collision (Dungeon Delver)

collider, adding to Dray, 832
DelverCollisions text file, 828–829
per-tile collision scripts, 829–831

Philosophical Investigations (Wittgenstein), 14–15
physical interface, indirectly guiding players with, 199
physics games

Mission Demolition
art assets, 497–502
camera setup, 497–499
castle, 524–527, 535
clouds, 516–520, 521–523
comments, 517–521
directional lighting, 497
enums, 541
follow camera, 511–516
game concept, 496–497
game logic, 528–529
game management, 538–544
ground, 497
hitting goal, 534
Project plane organization, 523–524
project setup, 496
projectile, 502, 505–511
projectile trails, 529–534
slingshot, 499–501, 503–505
UI (user interface), 536–537
vection and sense of speed, 516–521

physics puzzles, 220
physics layers

Apple Picker game, 478–480
NVIDIA PhysX engine, 329
Space SHMUP, 568–571

Physics Manager, 478
PhysX engine, 329
picking up items (Dungeon Delver), 859–860, 871
pipe (|), 889

1067

pipe cleaners, paper prototypes and, 133
Planetfall, 77
play, kinds of, 112
play environment

auditory, 74
player considerations, 75
visual, 73–74

Player class (Bartok)
AddCard(), 729
creating, 722–726
FanHand(), 730–731
fanning the hands, 726–728

player interaction patterns (FDD), 25
player versus player, 43
player-centric goals, 108

attention and involvement, 121–123
empowerment, 119–120
experiential understanding, 125–127
flow, 115–118
fun, 112–113
interesting decisions, 124–125
lusory attitude, 113–115
structured conflict, 118–119

player-made external tools, 84
PlayerPrefs, preserving high scores in, 492–494
players

avatar, indirectly guiding players with, 203–204
game views, 21
intent, 67–69
interaction patterns, 43
player-centric goals, 108

attention and involvement, 121–123
empowerment, 119–120
experiential understanding, 125–127
flow, 115–118
fun, 112–113
interesting decisions, 124–125
lusory attitude, 113–115

1068

structured conflict, 118–119
relationships, 43–44

defining player relationships with, 43–44
interaction patterns, 43

role in game design, 62–63
types of, 67–69

playtesting, 97–98, 155
Bartok, 6
beta tests, 153
Dungeon Delver, 871–872
equality by value or reference, 337–338
FDD (Formal, Dramatic, and Dynamic)
framework, 27
flukes, 8
investigators, 144
Legend of Zelda, 138–139
methods of, 148

formal group testing, 150–151
formal individual playtesting, 151–153
informal individual playtesting, 148–149
online playtesting, 153–154

Mission Demolition, 527
paper prototypes, 138–139
playtest data tables, 46
playtesters

acquaintances as, 147–148
circles of, 145
searching for, 147–148
tissue playtesters, 146
trusted friends as, 147
ways to be a great playtester, 144–145
you as, 145–146

post-playtest survey questions, 150
puzzle design, 218
reasons for, 144
taking notes, 149

Plenty Coups (Crow Chief Alaxchiiaahush), 118
plot, 50, 54–56

1069

Pogo.com, 155 Pokémon, 75, 85
Pop(), 362
PopulateSpriteRenderers(), 675
pop-ups, directly guiding players, 198
portability (code), 287
positioning cards (Prospector Solitaire), 671–674
positive/negative feedback, 192–193
Post-It® notes, 133
post-playtest survey questions, 150
post-release, 104–105
PowerUp script, 614–616
power-ups (Space SHMUP)

enabling hero to collect, 616–617
making enemies drop, 622–625
PowerUp script, 614–616
programmer art, 612–613
types of, 612

practical probability, 178
precedence of operators, 900–901
Prefab GameObjects

creating, 306–311, 653
PrefabCard, 715–716
PrefabLetter, 769–771

premises, 26, 50
preproduction, 103–104
presentation of puzzles, 219
Pressed for Words, 754
Princess Peach (Mario games), 88
print(), 294, 299
prior art research, 94
privacy concerns, 152
probability

dice probability, 917–922
examining with Google Sheets, 162–174
probability math, 174–178
randomizer technologies

decks of cards, 180–182
dice, 179

1070

spinners, 179
tables, 46
weighted probability, 183–184

procedural aesthetics
definition of, 70–71
procedural music, 71–72
procedural visual art, 72–73

procedural animation, 72–73
Procedural Composition (PCO), 71–72
procedural environments, 73
procedural languages, 290
procedural music, 71–72
procedural visual art, 72–73
procedures

definition of, 64
FDD (Formal, Dramatic, and Dynamic) framework, 25

product backlog, 226
product owners, 226
production, 104
profiler (Unity), 761–763
programming languages. See also C#

authoring languages, 286
CIL (Common Intermediate Language), 275
compiled languages, 286–288
interpreted languages, 287
JavaScript, 274–275
learning, 275–277
LINQ (Language Integrated Query) language, 275
runtime speed, 275

progression, 46, 60
Project pane (Unity), 283
Project plane (Mission Demolition), 523–524
Projectile C# script, 579–580, 598–600
ProjectileHero

allowing projectiles to destroy enemies, 580
assigning to Hero script, 578–579
creating, 577–578
modifying to use WeaponDefinitions, 598–600

1071

ProjectileLine class, 529–533
projectiles

Mission Demolition
following at launch, 511–516
hitting goal, 534
instantiating, 505–511
programmer art, 502
projectile trails, 529–534

Space SHMUP
allowing projectiles to destroy enemies, 580
assigning to Hero script, 578–579
creating, 577–578
modifying to use WeaponDefinitions, 598–600

Projectile C# script, 579–580
projects. See also names of specific projects (for example, Apple Picker)

Enemy class
implementation, 428–429
project setup, 422–424

finishing, 253
folders

creating, 297–298
renaming, 297–298

joining, 250
preparing for development, 884–885
scenes, creating, 304
setting up, 882–884
starting, 250–253

properties, 421, 424–426
arrays, 374–375
automatic, 899
Dictionary, 370
List, 366–367

Prospector class, 669–670, 671–673
announcing beginning/end of rounds, 699–700
Prospector script, 646–647

Prospector Solitaire
art assets, 698–699
build settings, 640–642

1072

cards
building cards in code, 653–660
Card script, 645–646
CardProspector class, 668–669
construction of, 644–645

gold cards, 705
making cards clickable, 677–680
matching cards from mine, 680–685
shuffling, 660–661

compiling on mobile device, 699–705
decks of cards

Deck script, 646
parsing information from Deck XML, 648–650

example of play, 662–664
game concept, 661
game logic, 677

making cards clickable, 677–680
matching cards from mine, 680–685

importing images into, 642–644
mine tableau

CardProspector class, 668–669
Layout script, 665–667
LayoutXML.xml file, 664–665
positioning cards in, 671–674
Prospector class, 667–668, 669–670, 671–673
sorting layers, 674–676

project setup, 640
Prospector class, 669–671

announcing beginning/end of rounds, 699–700
Prospector script, 646–647

rules of, 662
scoring, 685

chain scoring, 685–689
FloatingScore GameObject, 693–694
FloatingScore script, 689–698
giving player feedback on score, 700–704
Scoreboard GameObject, 695–698
Scoreboard script, 692–693

1073

showing score to players, 689–698
ways to earn points, 685

sprites
assigning, 650–652
constructing cards from, 644–645
creating Prefab GameObjects for, 653
importing images as, 642–644

protagonists, 43
prototypes. See digital prototyping; paper
prototypes
pseudocode, 366
The Psychology of Persuasion (Cialdini), 4
PT_XMLReader, 913
Push(), 362
puzzles, 211–212

boss fights, 221
chain reaction games, 221
definition of, 212–213
design goals, 219
digital puzzle design steps, 218–219
elements of fun in, 212–213
genres of puzzles, 213–215
modes of thought required by, 215–217
physics puzzles, 220
reasons for playing, 215
Scott Kim on, 212–213
sliding blocks/position puzzles, 220
stealth puzzles, 220
traversal puzzles, 220

Q
QA (quality assurance) testing, 156–157
Quake, 84
quality assurance (QA) testing, 156–157
Quaternion variables, 324
Queasy Games' Sound Shapes, 82
quest outcomes, 69
queues, 361

1074

R
race conditions, 901–903

definition of, 428
Space SHMUP, 557, 620–622

RAM (Random-Access Memory), 288
Random-Access Memory (RAM), 288
randomization, 60

random direction changes, 476–478
random spawning of enemies, 566–568
randomized item drops, 861

Enemy script modifications, 862–863
Health PickUp item, 862

randomizer technologies
decks of cards, 180–182
dice, 179
spinners, 179

rating phase (brainstorming), 102
Ravensburger's Up the River. See Up the River
ReadDeck(), 646
rebalancing weapons, 192
recording playtest sessions, 151, 152
recruiters, 248
recursive functions, 400–401, 903–904, 938–942
Red vs. Blue (RvB), 83
references

absolute, 165
relative, 165
testing equality by, 337–338

relationships (player) 43–44
relative references, 165
releases, 226–227
RemoteAt(), 361
Remove(), 361, 367, 370
RemoveAt(), 367
renaming project folders, 297–298
Renderer component (GameObjects), 328
repeating elements, permutations with, 185–186
Resize(), 375

1075

resolution, screen, 74
resources, 25, 45
restarting game (Space SHMUP), 575–576
return values, 393–395
Reynolds, Craig, 435
rhythm games, 71
riffle shuffles, 6
right-clicking, 297, 946
Rigidbody component, 305, 329

Dungeon Delver, 814–815
Mission Demolition, 513–514

RigidbodySleep class, 525
Riot Games, 240
Roberts, Sam, 16
RoboCup tournament, 62–63
RoboRally, 99
Rock Band, 199
Rocky Horror Picture Show, 62
Rogers, Scott, 63–64
Rohrer, Jason, 11
role fulfillment, 57
role-playing games. See RPGs (role-playing games)
Romeo and Juliet (Shakespeare), 50–52
Romero, John, 109
Rooster Teeth Productions' Red vs. Blue (RvB), 83
rotation. See Quaternion variables
rows/columns (Google Sheets), 166–169
royalty points, 252
RPGs (role-playing games), 56, 942, 942–944
rule of three, 221
rules, 44

FDD (Formal, Dramatic, and Dynamic) framework, 25
house rules, 67
Prospector Solitaire, 662
puzzle design, 218

Rules of Play (Salen and Zimmerman), 65
runtime errors, 409–410
runtime speed, 275

1076

RvB (Red vs. Blue), 83
Ryan, Malcolm, 4

S
Salen, Katie, 65, 124
Save Scene command (File menu), 296
saving scenes, 296, 884
scaling colliders, 588
Scene pane (Unity), 283
scenes

creating, 304
preparing for development, 884–885
saving, 296, 884
scene view, changing, 312
Space SHMUP, 548–549

schedules for projects, 252–253
Schell, Jesse, 10, 13–14, 40–41, 95, 114, 122, 174, 198, 203
Schwaber, Ken, 225
scope, 105–106

overscoping, 251
variables, 392, 908–912

Scoreboard GameObject, 695–698
Scoreboard script, 692–693
ScoreManager script, 783–784
scoring

Apple Picker, 484–486
Prospector Solitaire, 685

chain scoring, 685–689
FloatingScore GameObject, 693–694
FloatingScore script, 689–698
giving player feedback on score, 700–704
Scoreboard GameObject, 695–698
Scoreboard script, 692–693
showing score to players, 689–698
ways to earn points, 685

Word Game, 782–785
screen layout (Word Game), 769

backface culling, 770

1077

Layout() method, 774–778
Letter C# script, 771–773
PrefabLetter, 769–771

screen resolution, 74
Screen variables, 399
ScreenToWorldPoint(), 482
Scripting Reference, 472
scripts (C#), 329. See also debugging; projects

Array2dEx, 376
attaching, 300–301
attaching/removing, 407–408
changing name of, 885
creating, 298–303, 884–885
DictionaryEx, 368–369
JaggedArrayEx, 379–381

scrolling starfield battleground (Space SHMUP), 634–636
Scrum

BDCs (burndown charts), 227–228
creating, 238
Daily Scrum worksheet, 236–238
Main worksheet, 229–233
Person Chart, 235–236
Stacked Person Chart, 234–235
Task Rank Chart, 233–234

development of, 225
product backlog, 226
releases, 226–227
Scrum Masters, 226
Scrum meetings, 227
Scrum teams, 226
sprints, 226–227

searching for playtesters, 147–148
semicolon (;), 277, 292, 299, 405–407
SendMessage(), 709
senses, 47–48
sequencing, 206–208, 218–219
serializable WeaponDefinition class, 594–596
serious games, 111

1078

SET_MAP(), 845
set{} accessor, 424
SetActive(), 504
SetSortingLayerName(), 675
SetTableauFaces(), 682–683
SetTile(), 845–846
setting (narrative), 50
Settlers of Catan, 45, 67
SetUpUITexts(), 702
ShaderLab, 548
Shakespeare, William, 50–52
Sheets. See Google Sheets
shield (Space SHMUP), 553–554
shieldLevel property (Hero class), 575
shift left operator (<<), 890
SHMUP (shoot 'em up) games. See Space SHMUP
shooting ability (Space SHMUP)

adding to Weapon script, 603–607
allowing projectiles to destroy enemies, 580
expanding weapon options, 617–620
firing ability, 603–607
giving Hero ability to shoot, 578–579
Projectile C# script, 579–580
ProjectileHero, 577–578
WEAP_DICT Dictionary, 596–600
Weapon GameObject, 602–607
WeaponDefinition class, 594–596
WeaponFireDelegate(), 600–602
WeaponType enum, 593

shortcuts, 138
shorting operators, 333–334
short-term objectives, 41
ShotFired(), 542
showing maps (Dungeon Delver)

anti-aliasing issues, 807–808
ShowMap() method, 806–807

ShowMap(), 806–807
ShowResultsUI(), 703–704

1079

shuffling decks of cards, 182, 660–661
silent protagonists, 57
similarity, indirectly guiding players with, 200
simplification in puzzle design, 218
sine, 914–917
single player versus game, 43
single-mode puzzles, 216
singleton pattern, 445, 905–906
Skeletos (Dungeon Delver), 824–825

dropping items on death, 861
Enemy base class, 823–824
IFacingMover interface implementation, 836–837
InRoom script, 825–827
keeping inside room, 827–828
LateUpdate() method, 827–828
modifying to take damage, 856–859
programmer art, 823
Skeletos subclass, 824–825

SketchUp, 951
skills, teaching, 206

integration, 208
sequencing, 206–208

Skyrates, 113, 154, 154
Skyrim, 196

game mods for, 82, 83
limited possibilities in, 55
objectives, 42

slabs (Mission Demolition), 525–527
slate, 152
sliding blocks/position puzzles, 220
slingshot (Mission Demolition)

programmer art, 499–501
showing when slingshot is active, 503–505
Slingshot class, 503, 533–534

SlotDef class, 719
smell, 48
Snakes and Ladders, 22–24

modifying for strategic play, 23–24

1080

rules for play, 22–23
social change, games for, 111
socializers, 68
software, educational discounts for, 951
software design patterns, 905

additional resources on, 908
Component, 906–907
Singleton, 905–906
Strategy, 907–908

Solitaire. See Prospector Solitaire
sorting layers (Prospector Solitaire), 674–676
Sound Shapes, 82
Space Quest II, 120
Space SHMUP, 546

enemies
allowing projectiles to destroy, 580
artwork, 557–559
deleting enemy when offscreen, 562–566
Enemy C# script, 559–562
Enemy_1, 584–587
Enemy_2, 588–590
Enemy_3, 590–592
Enemy_4, 625–634
GetAllMaterials(), 610–612
making drop power-ups, 622–625
making enemies damage player, 571–575
OnCollisionEnter(), 607–608
showing damage to, 609–612
spawning at random, 566–568

Hero ship
creating, 549–550
damage from enemies, 571–575
enabling to collect power-ups, 616–617
keeping on screen, 555–557
shield, 553–554
Update(), 550–551

physics layers, 568–571
potential modifications to, 637–638

1081

power-ups
enabling hero to collect, 616–617
making enemies drop, 622–625
PowerUp script, 614–616
programmer art, 612–613
types of, 612

project setup, 547, 584
race conditions, 557, 620–622
restarting game, 575–576
scrolling starfield battleground, 634–636
setting scene for, 548–549
shooting ability

allowing projectiles to destroy enemies, 580
expanding weapon options, 617–620
firing ability, 603–607
giving Hero ability to shoot, 578–579
Projectile C# script, 579–580
ProjectileHero, 577–578
WEAP_DICT Dictionary, 596–600
Weapon GameObject, 602–607
WeaponDefinition class, 594–596
WeaponFireDelegate(), 600–602
WeaponType enum, 593

tags, 570–571
tuning variables for, 636–637
Unity asset package, importing, 546–548
Utils script, 609

spaces, 45–46, 300, 307
Spawner script, 444–446
spawning enemies at random, 566–568
Spec Ops: The Line, 54–55, 59
speed, sense of (Mission Demolition), 516–521
Sphere colliders, 328
spinners, 179
splitting enemy into multiple parts, 628–634
spoilsports, 69
Spore, 72–73
spreadsheets. See Google Sheets

1082

sprint backlogs, 226–227
sprint progress (BDC Main worksheet), 232–233
sprint settings (BDC Main worksheet), 230
sprints, 226–227
sprites

importing images as, 642–644
Prospector Solitaire

assigning, 650–652
constructing cards from, 644–645
creating Prefab GameObjects for, 653
importing, 642–644

Stack Overflow, 949
Stacked Person Chart (BDC), 233–234
Star Wars: A New Hope, 52–54
starfield battleground (Space SHMUP), 634–636
Start(), 392

Boids project, 449
Hello, World program, 303
Prospector Solitaire, 661

starting projects, 250–253
state tracking, 60
statements

params, 399–400
yield, 891

states
animation states (Dungeon Delver), 813
Word Game, 791–792

static functions, 394–396
static variables, 320
stealth puzzles, 220
Steinkuehler, Constance, 80–81
stepping through code, 410–413
stopping apples (Apple Picker), 480–481
story. See also narrative

Elemental Tetrad framework, 28
FDD (Formal, Dramatic, and Dynamic) framework, 26
story puzzles, 214

strategy

1083

designing for, 66–67
optimal strategy, 65–66
Snakes and Ladders, 23–24
strategy puzzles, 215
Strategy Pattern, 907–908

Street Fighter, 82–83
strings, 294, 317
strong typing, 289, 314, 363
structured conflict, 118–119
subclasses, 429–431, 670–671
subroutines, 290
SubWordSearchComplete(), 769
Suits, Bernard, 10–12, 113
Super Mario Bros., 65, 206
Super Mario Odyssey, 88
superclasses, 291, 429–431, 670–671
Swain, Chris, 18, 20
Swink, Steve, 460
switch statements, 343–345
SwitchView(), 542
SwordController GameObject (Dungeon Delver), 821–822
symmetric games, 160
synchronizing data, 152
syntax (C#), 292–294
SystemInfo variables, 326
systems thinking, 258

Apple Picker, 261–262, 267
action lists, 263–264
Apple flowchart, 266
Apple GameObject, 263
AppleTree flowchart, 266–267
AppleTree GameObject, 263
basic gameplay, 262
Basket flowchart, 264
Basket GameObject, 263

breakdown of complex problems, 261
code libraries, 260–261
computer language, 260–261

1084

development environment, 261
simple instructions, 259

T
tables, 46–47
tags (XML), 913
taking playtest notes, 149
task assignments (BDC Main worksheet), 231
Task Rank Chart (BDC), 233–234
taste, 48
teaching skills, 206–208
teams

creating, 251
Scrum, 226
team competition, 43

technology
Elemental Tetrad framework, 28
Layered Tetrad framework

cultural technology, 35, 84–85
dynamic technology, 34, 78
inscribed layer, 33, 59–60

Tekken, 112–113
terminal case of recursion, 904
Test Flight, 705
TestFairy, 705
testing. See playtesting
testing phase (iterative design), 97–98
tetrad frameworks. See Elemental Tetrad;

Layered Tetrad framework Teuber, Klaus, 67
text editors, 378
TextWrangler, 378
TGC. See thatgamecompany
That Dragon, Cancer, 110
thatgamecompany

Flower, 72
Journey, 41–42

theoretical probability, 178
three, rule of, 221

1085

three-act structure, 52–54
Ticket to Ride, 16
Tile class, 802–803
TileCamera class, 803–805
Tile.SetTile(), 845–846
time estimation (BDC Main worksheet), 232–233
time-based games, 474
time-based linear interpolation, 925–926
Time.deltaTime, 474
tissue playtesters, 146
Titanfall, 94
ToArray(), 367
Tony Hawk's Pro Skater, 82–83, 120
tools

paper prototyping tools, 131–133
player-made external tools, 84

touch, 48
tracking

player actions, 58
state, 60

trackpacks, right-clicking on, 946
traditional dramatics

five-act structure, 50–52
three-act structure, 52–54

trails, indirectly guiding players with, 200
Transform component, 304–305, 328
transmedia, 85–86
traversal

paper prototyping, 136–138
shortcuts, 138
traversal puzzles, 220

trickiness of puzzles, 213
Tri-Peaks, 661
troubleshooting. See debugging
trusted friends as playtesters, 147
TurboSquid, 950
turns (Bartok), 736–740
tutorials, 948

1086

typing
strong typing, 289, 314, 363
weak typing, 274–275, 289

U
uGUI (Unity Graphical User Interface), 484–485
UIs (user interfaces)

axis and button mapping, 944–945
Bartok, 746–749
Mission Demolition, 536–537
right-clicking on macOS, 946

Uncharted 2, 84
Uncharted 3, 121, 201–203
underscore (_), 296
unexpected mechanical emergence, 63–64
unilateral competition, 43
Unity, 273. See also projects; variables

advantages of, 273–274
Analytics, 883
API Reference, 472
Archive, 948
asset package, importing, 546–548
Asset Store, 97, 950
attaching debugger to, 413–414
Cloud Build, 705
coding concepts

bitwise Boolean operators, 889–890
coroutines, 891–892
enums, 892–893
function delegates, 893
interfaces, 895–899
LayerMasks, 889–890
naming conventions, 899–900
order of operations, 900–901
race conditions, 901–903
recursive functions, 903–904

Collaborate, 705
Download Assistant, 270

1087

downloading, 270
example project, 278–279
force quitting, 412–413
InputManagers, 552–553, 944
installing

on macOS, 271
on Windows, 272–273

launching, 277–278
LayerMasks, 889–890
linear interpolation, 449

Bézier curves, 936–942
definition of, 924
easing for, 514, 932–936
interpolating other numeric values, 928–930
time-based, 925–926
Zeno's Dichotomy Paradox, 926–928

panes, 283
Personal version, 273–274
Physics Manager, 478–480
pricing, 273–274
profiler, 761–763
programming languages for, 274–275
Scripting Reference, 472
ShaderLab, 548
uGUI (Unity Graphical User Interface), 484–485
Unity Download Assistant, 270
Unity Plus, 273–274
Unity Pro, 273–274
window layout, 278–283

UnityEngine library, 260
University of Southern California Interactive Media & Games Division, 245
unlocking doors (Dungeon Delver), 843

GateKeeper class, 845–848
IKeyMaster interface, 844–845

Uno. See Bartok
un-typed collections, 363
Up the River, 59, 66
Update(), 388–389, 392

1088

Apple Picker, 472–473
Dungeon Delver, 819–821
Enemy class, 422–424
Hello, World program, 302–303, 309–310
Mission Demolition, 508–509
Space SHMUP, 550–551
Time.deltaTime between, 442
Word Game, 779–782

UpdateDrawPile(), 678–679
updates, fixed, 442
usability testing, 156
user friendliness of puzzles, 219
user interfaces. See UIs (user interfaces)
user layers, 890
Utils script, 609

V
Valkyria Chronicles, 196
values

assigning to variables, 314–315
Dictionary values, 368
testing equality by, 337–338

Valve, 81
variables

assigning, 292, 314–315
bool, 316
char, 317
class, 318
declaring, 292, 314–315
defining, 314
float, 316
implicit, 424
initializing, 292, 315
int, 316
iteration variables, 351
naming conventions, 319, 329–330
passing, 294
scope, 319, 908–912

1089

string, 317
strong typing, 314
Unity variables, 320–322

Color, 323–324
instance variables, 320
Mathf, 325
Quaternion, 324–325
Screen, 326
static variables, 320
SystemInfo, 326
Vector3, 322–323

watching in debugger, 416–417
vection (Mission Demolition), 516–521
Vector3
variables, 322–323
Vertical Re-Orchestration (VRO), 71
views, changing, 312
virtual functions, overriding, 431
vision, 47
Vissides, John, 905
visual art, procedural, 72–73
visual design, indirectly guiding players by, 200–203
visual play environment, 73–74
Visual Studio Community, 272
void, returning, 394–395
volume (game), 74
VRO (Vertical Re-Orchestration), 71

W
walking animation (Dungeon Delver), 817–818

animation states, 813
first animation, 810–811
Walk_0, 812–813
Walk_1, 813

walls (Mission Demolition), 525–527
War, 62–63
Warcraft III, 81
waterfall method, 224

1090

Wave class, 637–638
ways to be a great playtester, 144–145
weak typing, 274–275, 289
WEAP_DICT Dictionary, 596–600
Weapon GameObject, 602–607
WeaponDefinition class, 594–596
WeaponFireDelegate(), 600–602
weapons

Space SHMUP
expanding weapon options, 617–620
firing ability, 603–607
WEAP_DICT Dictionary, 596–600
Weapon GameObject, 602–607
WeaponDefinition class, 594–596
WeaponFireDelegate(), 600–602

WeaponType enum, 593
weapon balance, 186–187

balanced values example, 192–193
calculating average damage, 188–189
charting average damage, 189–190
duplicating weapon data, 190–191
overall damage, 191
percent chance for each bullet, 187–188
rebalancing weapons, 192

WeaponType enum, 593
WebGL, 288, 750–752
weighted distributions, 182–183
weighted probability, 183–184
Westwood Studios' Blade Runner, 58
while loops, 348–351
whiteboards, 133
whitespace, 452
will to finish, 253
Williams, John, 71
window layout (Unity), 278–283
Windows

force-quitting applications, 350
installing Unity on, 272–273

1091

Wittgenstein, Ludwig, 14–15
Wizards of the Coast, 56, 99. See also Dungeons & Dragons
Word Game

color, 788–790
coroutines, 757–761
game play, 754–755
game setup, 763–765
game states, 791–792
interactivity, 778
Layout() method, 787–788
letter animation, 785–788
Letter C# script, 785–787
project setup, 754
scoring, 782–785
screen layout, 769

backface culling, 770
Layout() method, 774–778
Letter C# script, 771–773
PrefabLetter, 769–771

Unity profiler, 761–763
Update() method, 779–782
word list

building levels from, 765–769
parsing, 756

WordLevel class, 765–769
Wyrd class, 773–774

word lists
2of12inf, 756
building levels from, 765–769
parsing, 756

word puzzles
mixed-mode, 217
single-mode, 216

Word Whomp, 754
WordLevel class, 765–769
worksheets, BDCs (burndown charts)

Daily Scrum, 236–238
Main worksheet, 229–233

1092

Person Chart, 235–236
Stacked Person Chart, 233–234
Task Rank Chart, 233–234

World of Goo, 219
Wright, Will, 109
Wyrd class, 773–774

X
XML (eXtensible Markup Language), 912–913
XP (experience points), 70
X-Wing, 49, 71

Y- Z
Yager Development's Spec Ops, 54–55
yield statements, 891
Zeno's Dichotomy Paradox, 926–928
zero indexed, 366
Zimmerman, Eric, 65, 124
Zork, 76–77
Zubeck, Robert, 20

1093

Code Snippets

1094

1095

Code Snippets

1096

1097

Code Snippets

1098

1099

1100

1101

1102

Code Snippets

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

Code Snippets

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

Code Snippets

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

Code Snippets

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

Code Snippets

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

Code Snippets

1229

1230

1231

1232

1233

1234

Code Snippets

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

Code Snippets

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

Code Snippets

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

Code Snippets

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

Code Snippets

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

Code Snippets

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

Code Snippets

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

Code Snippets

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

Code Snippets

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

Code Snippets

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

Code Snippets

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

	Title Page
	Copyright Page
	Dedication
	Contents at a Glance
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	Part I Game Design and Paper Prototyping
	1 Thinking Like a Designer
	You Are a Game Designer
	Bartok: A Game Exercise
	The Definition of Game
	Summary

	2 Game Analysis Frameworks
	Common Frameworks for Ludology
	MDA: Mechanics, Dynamics, and Aesthetics
	Formal, Dramatic, and Dynamic Elements
	The Elemental Tetrad
	Summary

	3 The Layered Tetrad
	The Inscribed Layer
	The Dynamic Layer
	The Cultural Layer
	The Responsibility of the Designer
	Summary

	4 The Inscribed Layer
	Inscribed Mechanics
	Inscribed Aesthetics
	Inscribed Narrative
	Inscribed Technology
	Summary

	5 The Dynamic Layer
	The Role of the Player
	Emergence
	Dynamic Mechanics
	Dynamic Aesthetics
	Dynamic Narrative
	Dynamic Technology
	Summary

	6 The Cultural Layer
	Beyond Play
	Cultural Mechanics
	Cultural Aesthetics
	Cultural Narrative
	Cultural Technology
	Authorized Transmedia Are Not Part of the Cultural Layer
	Summary

	7 Acting Like a Designer
	Iterative Design
	Innovation
	Brainstorming and Ideation
	Changing Your Mind
	Scoping
	Summary

	8 Design Goals
	Design Goals: An Incomplete List
	Designer-Centric Goals
	Player-Centric Goals
	Summary

	9 Paper Prototyping
	The Benefits of Paper Prototypes
	Paper Prototyping Tools
	Paper Prototyping for Interfaces
	An Example Paper Prototype
	Best Uses for Paper Prototyping
	Poor Uses for Paper Prototyping
	Summary

	10 Game Testing
	Why Playtest?
	Being a Great Playtester Yourself
	The Circles of Playtesters
	Methods of Playtesting
	Other Important Types of Testing
	Summary

	11 Math and Game Balance
	The Meaning of Game Balance
	The Importance of Spreadsheets
	The Choice of Google Sheets for This Book
	Examining Dice Probability with Sheets
	The Math of Probability
	Randomizer Technologies in Paper Games
	Weighted Distributions
	Permutations
	Using Sheets to Balance Weapons
	Positive and Negative Feedback
	Summary

	12 Guiding the Player
	Direct Guidance
	Four Methods of Direct Guidance
	Indirect Guidance
	Seven Methods of Indirect Guidance
	Teaching New Skills and Concepts
	Summary

	13 Puzzle Design
	Scott Kim on Puzzle Design
	Puzzle Examples in Action Games
	Summary

	14 The Agile Mentality
	The Manifesto for Agile Software Development
	Scrum Methodology
	Burndown Chart Example
	Creating Your Own Burndown Charts
	Summary

	15 The Digital Game Industry
	About the Game Industry
	Game Education
	Getting Into the Industry
	Don't Wait to Start Making Games!
	Summary

	Part II Digital Prototyping
	16 Thinking in Digital Systems
	Systems Thinking in Board Games
	An Exercise in Simple Instructions
	Game Analysis: Apple Picker
	Summary

	17 Introducing the Unity Development Environment
	Downloading Unity
	Introducing Our Development Environment
	Launching Unity for the First Time
	The Example Project
	Setting Up the Unity Window Layout
	Learning Your Way Around Unity
	Summary

	18 Introducing Our Language: C#
	Understanding the Features of C#
	Reading and Understanding C# Syntax
	Summary

	19 Hello World: Your First Program
	Creating a New Project
	Making a New C# Script
	Making Things More Interesting
	Summary

	20 Variables and Components
	Introducing Variables
	Strongly Typed Variables in C#
	Important C# Variable Types
	The Scope of Variables
	Naming Conventions
	Important Unity Variable Types
	Unity GameObjects and Components
	Summary

	21 Boolean Operations and Conditionals
	Booleans
	Comparison Operators
	Conditional Statements
	Summary

	22 Loops
	Types of Loops
	Set Up a Project
	while Loops
	do...while Loops
	for Loops
	foreach Loops
	Jump Statements within Loops
	Summary

	23 Collections in C#
	C# Collections
	Using Generic Collections
	List
	Dictionary
	Array
	Multidimensional Arrays
	Jagged Arrays
	Whether to Use Array or List
	Summary

	24 Functions and Parameters
	Setting Up the Function Examples Project
	Definition of a Function
	Function Parameters and Arguments
	Returning Values
	Proper Function Names
	Why Use Functions?
	Function Overloading
	Optional Parameters
	The params Keyword
	Recursive Functions
	Summary

	25 Debugging
	Getting Started with Debugging
	Stepping Through Code with the Debugger
	Summary

	26 Classes
	Understanding Classes
	Class Inheritance
	Summary

	27 Object-Oriented Thinking
	The Object-Oriented Metaphor
	An Object-Oriented Boids Implementation
	Summary

	Part III Game Prototype Examples and Tutorials
	28 Prototype 1: Apple Picker
	The Purpose of a Digital Prototype
	Preparing
	Coding the Apple Picker Prototype
	GUI and Game Management
	Summary

	29 Prototype 2: Mission Demolition
	Getting Started: Prototype 2
	Game Prototype Concept
	Art Assets
	Coding the Prototype
	Summary

	30 Prototype 3: Space SHMUP
	Getting Started: Prototype 3
	Setting the Scene
	Making the Hero Ship
	Adding Some Enemies
	Spawning Enemies at Random
	Setting Tags, Layers, and Physics
	Making the Enemies Damage the Player
	Restarting the Game
	Shooting (Finally)
	Summary

	31 Prototype 3.5: Space SHMUP Plus
	Getting Started: Prototype 3.5
	Programming Other Enemies
	Shooting Revisited
	Showing Enemy Damage
	Adding Power-Ups and Boosting Weapons
	Making Enemies Drop Power-Ups
	Enemy_4—A More Complex Enemy
	Adding a Scrolling Starfield Background
	Summary

	32 Prototype 4: Prospector Solitaire
	Getting Started: Prototype 4
	Build Settings
	Importing Images as Sprites
	Constructing Cards from Sprites
	The Prospector Game
	Implementing Prospector in Code
	Implementing Game Logic
	Adding Scoring to Prospector
	Adding Some Art to the Game
	Summary

	33 Prototype 5: Bartok
	Getting Started: Prototype 5
	Build Settings
	Coding Bartok
	Building for WebGL
	Summary

	34 Prototype 6: Word Game
	Getting Started: Prototype 6
	About the Word Game
	Parsing the Word List
	Setting Up the Game
	Laying Out the Screen
	Adding Interactivity
	Adding Scoring
	Adding Animation to Letters
	Adding Color
	Summary

	35 Prototype 7: Dungeon Delver
	Dungeon Delver—Game Overview
	Getting Started: Prototype 7
	Setting Up the Cameras
	Understanding the Dungeon Data
	Adding the Hero
	Giving Dray an Attack Animation
	Dray's Sword
	Enemy: Skeletos
	The InRoom Script
	Per-Tile Collision
	Aligning to the Grid
	Moving from Room to Room
	Making the Camera Follow Dray
	Unlocking Doors
	Adding GUI to Track Key Count and Health
	Enabling Enemies to Damage Dray
	Making Dray's Attack Damage Enemies
	Picking Up Items
	Enemies Dropping Items on Death
	Implementing a Grappler
	Implementing a New Dungeon—The Hat
	The Delver Level Editor
	Summary

	Part IV Appendices
	Appendix A Standard Project Setup Procedure
	Appendix B Useful Concepts
	Appendix C Online Reference
	Index
	Code Snippets

